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Abstract

During fetal development and early-infancy, environmental signals can induce epigenetic changes

that alter neurobehavioral development and later-life mental health. Several neurodevelopmental

genetic diseases influence epigenetic regulatory genes and genomic imprinting. Recently, brain

epigenetic marks have been involved in idiopathic neurodevelopmental disorders including autism

spectrum disorders (ASD). The placenta is an important regulator of the intrauterine environment

that links maternal and fetal nervous systems. Placental epigenetic signatures have been associated

with neurodevelopment of healthy newborns quantified through the NICU Network

Neurobehavioral Scales (NNNS). Associations have been observed for DNA methylation of genes

involved in cortisol (NR3C1, HSD11B), serotonin (HTR2A), and metabolic (LEP) pathways.

Dysregulation of imprinted genes and microRNAs has also been associated with neurobehavior

assessed by NNNS. Further analysis is needed to characterize the mechanisms by which the

epigenome influences neurodevelopment, and the connection between this dysregulation and

mental health disorders. In the future, epigenetic marks could serve as functional biomarkers of

mental health and cognitive function.

Keywords

Neurobehavior; epigenetics; NNNS; Placenta; Autism; DNA Methylation

Introduction

The developmental origins of health and disease hypothesis (DOHaD) proposes that

environmental cues during fetal development and early-infancy induce adaptive responses

that can influence later-life disease susceptibility [1]. Populations exposed to prenatal

famine show an increased risk of later-life mental outcomes, specifically schizophrenia,

depression, addiction and dysregulation of stress response suggesting that intrauterine
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conditions program later-life mental health [2]. This early-life programming requires

plasticity, thus epigenetic mechanisms have been proposed as molecular mediators because

these integrate genetic and environmental signals with the control of gene expression [3].

Epigenetics is the study of heritable but feasibly environmentally modifiable control of gene

expression potential without DNA sequence changes[4]. The major systems of epigenetic

regulation include DNA methylation, genomic imprinting, non-coding RNAs (ncRNA) and

histone modifications. DNA methylation is the best characterized epigenetic mark and

involves the addition of a methyl group to cytosines usually within CpG dinucleotides that

in promoters frequently results in gene silencing[4]. Epigenetic regulation is essential during

development when somatic and germ cells experience a global epigenetic remodeling that

regulates cell and tissue differentiation [5, 6]. The quality of the environment during this and

other sensitive periods could alter this epigenetic reprogramming. Rodent studies have

shown that maternal behavior in early-life influences offspring behavior during adulthood

through epigenetic deregulation of NR3C1 and other loci [7-9] . This suggests that during

intrauterine and early postnatal-life, epigenetic programming occurs that has long-term

influences on mental health (Figure 1).

In this review, we outline the evidence relating epigenetic variation and neurodevelopmental

diseases, then discuss epigenetic marks in the placenta, a crucial organ for intrauterine

development, and their role in infant neurodevelopmental outcomes.

Role of Epigenetics in Neurodevelopmental Disease

The significance of epigenetics in neurodevelopment is illustrated in genetic conditions that

influence epigenetic regulatory genes and affect cognitive functions [10]. Rett syndrome

(RTT) is a neurodevelopmental condition associated with autism spectrum disorder (ASD),

and is caused by genetic mutations in the x-linked MECP2 [11]. MeCP2 is a chromatin-

associated protein that binds to methylated DNA, is highly expressed in the brain, and is

required for neuronal maturation. Loss or aberrant MeCP2 function leads to epigenetic

deregulation and impaired synaptic function [10, 12]. Similarly, genomic imprinting

disorders of 15q11-13 lead to Angelman syndrome (AS) and Prader-Willi syndrome (PWS),

neurodevelopmental pathologies with structural and functional brain changes [13-15].

Imprinted genes are expressed in parent-of-origin-specific manner because DNA

methylation silences the other allele [16]. A large proportion of imprinted genes are

expressed in the brain, and imprinting disorders frequently exhibit neurodevelopmental

delay [13]. Although, most AS and PWS cases are caused by genetic changes, in some cases

loss of gene function is attributable to an imprinting defect or epimutation [17]. Moreover,

15q11-13 duplications are frequent cytogenetic abnormalities in ASD [18].

The majority of neurodevelopmental disorders, including ASD, cannot be directly associated

with specific genetic changes, but have complex genetic and environmental influences

contributing to disease [18]. Since epigenetic mechanisms integrate these signals, a number

of studies suggest that idiopathic neurodevelopmental disorders may result from epigenetic

dysregulation of neurological pathways. Most human studies of neurobehavioral disease and

epigenetics (Table 1)[19-27] compare epigenetic profiles between ASD cases and controls in

Lesseur et al. Page 2

Med Epigenet. Author manuscript; available in PMC 2015 June 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



post-mortem brain samples, a highly relevant tissue, but not readily available. This

limitation imposes cross-sectional study designs and reduces sample sizes. Thus, when

selecting tissues for epigenetic studies of human neurobehavior, it is important to consider

the high tissue-specificity of epigenetic marks, relevance to neural development and

accessibility for prospective studies.

Placental Epigenetics and Infant Neurobehavior

During intrauterine life, the placenta is the essential regulator of the fetal environment [28],

and has been described as a third brain linking the mother and infant[29]. Recent evidence

suggests similarities between neuronal and placental DNA methylation profiles in areas

associated with neuronal development genes [30]. In order to study epigenetic changes that

occur during prenatal development and their relationship with infant neurobehavioral

outcomes, we have explored placental epigenetic marks as functional biomarkers of the in-

utero environment in a large population-based cohort of healthy term infants: the Rhode

Island Child Health Study (RICHS). We assessed newborn neurobehavior using the

Neonatal Intensive Care Unit Network Neurobehavioral Scales (NNNS), a comprehensive

evaluation of neurobehavioral performance, including neurologic and behavioral measures

and signs of stress [31]. Profiles of neurobehavior derived through NNNS have previously

shown to predict neurodevelopmental and cognitive performance in childhood [32].

Maternal cortisol influences the development of the fetal HPA axis and is metabolized

through the placenta [33]. Thus, changes in placental cortisol metabolism may alter infant

neurobehavioral outcomes. We have analyzed epigenetic changes in cortisol response genes

HSD11B2 and NR3C1 within the RICHS cohort. HSD11B2 inactivates cortisol by

metabolizing it to cortisone, protecting the infant from excess glucocorticoids [34].

HSD11B2 promoter methylation was associated with decreased quality of movement [35].

In an expanded study, we observed an interaction between maternal anxiety and HSD11B2

methylation that contributed to infant hypotonia [36]. NR3C1 encodes the glucocorticoid

receptor, is expressed in the placenta and is involved in metabolism of maternal cortisol.

NR3C1 placental methylation is positively associated with infant attention and quality of

movement NNNS scores, and negatively associated with stress abstinence scores [37]. In a

larger study, we observed an interaction between maternal depression and NR3C1

methylation on infant hypotonicity, lethargy and self-regulation[36]. Both HSD11B2 and

NR3C1 promoter methylation are negatively associated with expression [35, 37], suggesting

that infants with higher methylation of these genes are exposed to increased cortisol. The

cortisol response pathway influences infant cognitive development and physical maturation

in humans [38, 39]. Altered placental cortisol response may alter infant neuromuscular and

stress responses, as reflected in the infant attention, stress-abstinence and quality of

movement scores. Further analysis of other genes involved in cortisol response, such as

FKBP5, is needed to fully understand the contribution of these epigenetic changes to infant

neurobehavior.

Cortisol response and serotonergic tone are intimately linked, and serotonin can stimulate

the HPA axis[34]. During fetal development, serotonin is important for the development of

brain circuits[40], and the placenta acts as a transient source of serotonin during early
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development [41]. Infants that experienced maternal depression in-utero had decreased

promoter methylation of the serotonin receptor SLC6A4 in blood[42], but we did not find

associations between placental promoter methylation of SLC6A4 and infant neurobehavioral

outcomes within the RICHS cohort (unpublished data). Methylation of the serotonin

receptor HTR2A was positively associated with NNNS attention scores and negatively

associated with quality of movement [43]. This study provided evidence for epigenetics as a

potential regulator of components of the placental serotonin response pathway, which

influence behavioral outcomes. More research is needed to determine if other genes in this

pathway are epigenetically regulated.

Rodent studies have linked the adipokine leptin (LEP) with neurodevelopment; leptin

deficient mice (ob/ob) display brain abnormalities and decreased locomotor activity [44].

Leptin is epigenetically regulated and produced by the placenta [45, 46]. Recently, we

detected an associations between higher LEP promoter methylation and increased odds of

membership in a neurobehavioral profile characterized by lethargy and hypotonicity and

with reduced odds of membership in a profile with opposite characteristics [47]. These

observations were significant only in males and are consistent with a marked negative

correlation between methylation and LEP gene expression that was absent in placentas from

females. These are the first results that link an energy-homeostasis gene with human

neurobehavior and resemble the phenotype of ob/ob mice. Future research is needed to

assess if epigenetic marks in other metabolic genes can influence neurobehavior.

MicroRNAs (miRNAs) post-transcriptionally target mRNAs and induce gene silencing,

regulating a substantial amount of the mammalian genome[48]. miRNAs have been linked

to placental functions and pathology and to neuronal survival and differentiation during

development [49] [50]. We assessed placental expression of 6 miRNAs and their

relationship to neurobehavior in the RICHS study [51]. Increases in miR-16 were associated

with reduced attention scores, and increased miR-146a and miR-182 expression was

associated with increased quality of movement scores. Some of the targets of these miRNAs

are involved in regulation of the serotonin [52], NFκβ [53] and reward pathways [54], this

could help explain our observation regarding infant neurobehavior.

Imprinted gene expression is abundant in human placenta and is involved in growth and

neural development [13, 55]. We observed associations between expression profiles of 22

placental-imprinted genes and quality of movement and handling scores of RICHS infants

[56]. Quality of movement was associated with decreased expression of imprinted genes

involved in neurological and motor functions during development, including MEG3,

HOXA11, and HOXD10. We also observed a high-degree of correlation in expression of

adjacent imprinted genes, suggesting that in-utero exposures produce coordinated expression

changes and/or disrupt imprinting within control regions. Further research is required to

determine the role of epigenetic marks in imprinted genes and infant neurobehavior.

Future Directions

The field of neurobehavioral epigenetics is growing, with human studies complimenting

animal models. The human environment is multifaceted, and the fetus is exposed to
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nonspecific stressors, which are difficult to capture in laboratory conditions. The laboratory

environment may induce epigenetic alterations independently of experimental conditions,

confounding analysis. However, there are limitations to the observations made from human

population studies. Epigenetic changes are tissue-specific[57]; the placenta is a relevant and

accessible tissue for infant neurobehavioral studies [30], but we cannot definitely assess if

these epigenetic patterns are conserved in brain tissue. These studies are also limited by their

observational nature; we cannot establish mechanisms based on observed associations, and

we cannot presently assess the prognostic value of the neurobehavioral outcomes observed

at birth. Most studies have used candidate-gene approaches of targets known to be important

in the developing brain, and we encourage validation of findings from candidate-gene

studies in different populations. However, this has a limited scope in complex

neurobehavioral phenotypes, highlighting the need for epigenome-wide, agnostic analyses to

identify novel genes that contribute to infant neurobehavior.

A number of neurobehavioral diseases exhibit sex-differences in their prevalence and onset

including autism, ADHD, and affective disorders [58]. Placental epigenetic marks also

exhibit sexual-dimorphism [59-61] [47] which could influence these neurobehavioral

differences. More research is needed to define sexually-dimorphic epigenetic patterning in

autosomal loci and their potential role in infant neurobehavioral outcomes.

DNA sequence variation also exerts effects on epigenetic signatures across the genome [62].

Thus, it is important to consider possible contributions of single nucleotide polymorphisms

(SNPs) to epigenetic regulation of neurobehavior. It has been suggested that individuals may

be able to adapt to deleterious polymorphisms through epigenetic changes, which may

explain the inability of these polymorphisms alone to predict disease[63]. In particular,

monozygotic twins represent a desirable population to study because of reduced genetic

confounding. Differential epigenetic patterning in combination with genetic factors may

help explain differences in behavioral responses.

As our understanding of epigenetic changes and their role in newborn behavior increases,

they could serve as biomarkers of neurobehavioral risk, facilitating early screening. In

neurobehavioral diseases that manifest in early-childhood, such as autism and ADHD,

prompt interventions are important to improve long-term mental health [64, 65]. Future

advancements may move this field beyond risk-assessment to identification of prognostic

biomarkers to evaluate response to therapy. The brain epigenome exhibits plasticity

throughout life [66], and response to cognitive therapies alters gene expression [67, 68],

which may be driven by epigenetic changes. Tracking responses to cognitive interventions

through epigenetic markers could provide a quantitative assessment of therapeutic response.

Pharmacologic agents that alter gene expression through epigenetic changes are established

treatment of some psychiatric and neurologic conditions; this is the case of valproic acid,

and it has been proposed that this could be used to correct epigenetic changes in cognitive

disorders [69, 70]. Maternal cognitive intervention may induce epigenetic effects in

offspring, as epigenetic changes have been observed in children born to mothers who

underwent bariatric surgery [71]. More groundwork is needed to understand the normal

epigenome, the consequences of its deregulation and the connection with mental health

disorders before these tools can be used as functional biomarkers.
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Figure 1.
Diagram of principal factors influencing infant neurobehavior. Maternal and paternal

genetics influence neurological, cognitive and behavioral outcomes. The in-utero and early-

life environment can also influence these outcomes through epigenetic mechanisms. The

placenta regulates the in-utero environment, and its epigenetic profiles can also contribute to

infant neurobehavior.
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Table 1
Human Studies of Epigenetics and Neurobehavior

Gene(s) Epigenetic change Major Findings 1st author & year of
publication

Epigenetics and Neurobehavioral Disease

MECP2 DNA methylation MECP2 promoter hypermethylation in prefrontal cortex of male ASD cases.
Lower brain MECP2 expression in ASD cases.

Nagarajan et al 2006

MECP2 DNA methylation Increased methylation of a transition area (upstream of MECP2) in frontal
cerebral cortex of male ASD cases. Aberrant MECP2 promoter methylation
in ASD female brain. MECP2 methylation is locus-specific rather than
global X chromosome changes.

Nagarajan et al 2008

OXTR DNA methylation OXTR hypermethylation in blood and temporal cortex of ASD cases.
Decreased OXTR expression in temporal cortex of ASD cases.

Gregory et al 2009

RORA, BCL-2 DNA methylation Differentially methylated genes in blood of ASD cases enriched for
transcription, nervous system development and cell death/ survival. RORA
and BCL-2 exhibited decreased protein expression in tissue arrays
(cerebellum and frontal cortex) in ASD cases.
8.1K CpG-island Array (HCGI8.1K)

Nguyen et al 2010

Genome-wide-scan H3K4me3
Histone methylation

Subset of ASD cases exhibited H3K4me3 spreading into nucleosomes in
prefrontal cortex. Identification of 711 loci with altered H3K4me3 signal in
brain of ASD cases compared to controls.H3K4me3 peaks enriched in genes
implicated in neurodevelopmental disease.
Aberrant H3K4 methylation at a specific TSS is a predictor of transcriptional
dysregulation.

Shulha et al 2012

EN-2 DNA and histone methylation EN-2 promoter hypermethylation in cerebellar cortex associated with ASD,
methylation positively correlated with EN-2 expression -
Decreased histone H3K27 in the EN-2 promoter in ASD cases.

James et al 2013

PRRT1 TSPAN32/C11orf21 Near
ZFP57 SDHAP3 DNA methylation

3 DMRs Temporal cortex:
PRRT1 (3′ UTR) hypomethylation in ASD cases
TSPAN32/ C11orf21 hypomethylation in cases
Near ZFP57 hypermethylated in cases
1 DMR Cerebellum SDHAP3 hypermethylated in ASD cases

Ladd-Acosta et al 2013

SHANK3 DNA methylation SHANK3 hypermethylation in cerebellum and cerebral cortex of ASD cases
compared to controls. Altered expression an alternative splicing of SHANK3
isoforms in brain tissue.

Zhu et al 2013

DRD4 and 5-HTT DNA
methylation

Cord blood DNA methylation of DRD4 and 5-HTT regions negatively
associated with ADHD symptom score at age 6.

van Mil el al
2014

Placental Epigenetics and Newborn Neurobehavior

HSD11B2 DNA methylation Inverse association between placental HSD11B2 methylation
and quality of movement scores in RICHS newborns.
Pregnancy anxiety and placental HS11B2 methylation (CpG4)
interaction influences hypotonicity in RICHS infants

Marsit et al 2012 Conradt et al
2013

NR3C1 DNA methylation Higher NR3C1 placental promoter methylation associated with
higher quality of movement scores and lower infant attention
scores in RICHS newborns. Potential interaction between
methylation and genotype on infant attention score
Pregnancy depression and placental NR3C1 methylation
(CpG2) interaction influences self-regulation, hypotonicity, and
lethargy in RICHS infants.

Bromer et al 2012
Conradt et al 2013

HTR2A DNA methylation Higher HTR2A placental methylation associated with lower
quality of movement and higher infant attention scores in
RICHS newborns

Paquette at al 2013

LEP DNA methylation Higher LEP promoter placental methylation associated with
membership in a NNNS neurobehavioral profile marked by
increased lethargy and hypotonicity and reduced risk of
membership in a profile with opposite characteristics in RICHS
newborns.

Lesseur et al 2014
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Gene(s) Epigenetic change Major Findings 1st author & year of
publication

Expression of 22 imprinted genes Placental imprinted gene expression classes associated with
quality of movement and handling in RICHS newborns.

Marsit et al 2012

Expression of 6 placental miRNAs Increased miR-16 placental expression associated with reduced
attention, Increased miR-146a and miR-182 placental
expression associated with increased quality of movement in
RICHS newborns.

Maccani et al 2013

ASD, autism spectrum disorder; MECP2, methyl CpG binding protein 2; OXTR, oxytocin receptor; RORA, RAR-related orphan receptor A; BCL-2,
B-cell CLL/lymphoma 2; H3K4me3, trimethylation of lysine 4 of histone 3; EN-2, engrailed homeobox 2; DMR, differentially methylated region;
PRRT1, proline-rich transmembrane protein 1; TSPAN32, tetraspanin 32; C11orf21, chromosome 11 open reading frame 21; ZFP57, zinc finger
protein; SDHAP3, succinate dehydrogenase complex, subunit A, flavoprotein pseudogene 3; SHANK3, SH3 and multiple ankyrin repeat domains 3;
DRD4, dopamine receptor D4; SLC6A4 solute carrier family 6; HSD11B2, hydroxysteroid (11-beta) dehydrogenase 2; NR3C1, glucocorticoid
receptor; HTR2A 5-hydroxytryptamine (serotonin) receptor 2A; LEP, leptin.
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