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Abstract

Many epidemiologic studies of the health effects of exposure to ambient air pollution use
measurements from central-site monitors as their exposure estimate. However, measurements
from central-site monitors may lack the spatial and temporal resolution required to capture
exposure variability in a study population, thus resulting in exposure error and biased estimates.
Avrticles in this dedicated issue examine various approaches to predict or assign exposures to
ambient pollutants. These methods include: combining existing central-site pollution
measurements with local- and/or regional-scale air quality models to create new or “hybrid”
models for pollutant exposure estimates, and using exposure models to account for factors such as
infiltration of pollutants indoors and human activity patterns. Key findings from these articles are
summarized to provide lessons learned and recommendations for additional research on improving
exposure estimation approaches for future epidemiological studies. In summary, when compared
to use of central-site monitoring data, the enhanced spatial resolution of air quality or exposure
models can have an impact on resultant health effect estimates, especially for pollutants derived
from local sources such as traffic (e.g. EC, CO, and NOy). In addition, the optimal exposure
estimation approach also depends upon the epidemiological study design. We recommend that
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future research develop pollutant-specific infiltration data (including for PM species), and improve
existing data on human time-activity patterns, and exposure to local source (e.g. traffic), in order
to enhance human exposure modeling estimates. We also recommend comparing how various
approaches to exposure estimation characterize relationships between multiple pollutants in time
and space, and investigating the impact of improved exposure estimates in chronic health studies.
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Introduction

Given the limited spatial coverage of air pollution data, air pollution epidemiologic studies
largely rely on data from central-site monitors, such as those reported in the United States
(U.S.) Environmental Protection Agency’s (EPA’s) Air Quality System (AQS), to
characterize a population’s exposure to ambient air pollutants (e.g. all people living within
10 miles of a monitoring station) (1-3). However, measurements from central-site monitors
often do not adequately capture the spatial and temporal variability of pollutant
concentrations, which may result in an underestimation of the variability in the study
population exposures (4-10). Similarly, central-site monitors do not account for exposures in
different microenvironments (e.g. indoors and in-vehicle) where pollutant infiltration
(11-13) and indoor sources (14-16) can substantially impact total exposures. Consequently,
there is a potential for exposure error and a resulting bias (e.g. underestimation of relative
risks) when solely depending on ambient monitors to characterize exposure.

Exposure error in a study of the health effects of exposure to air pollution typically falls into
two categories: classical error and Berkson error. Classical error occurs when the average of
many replicate measurements of exposure does not equal the true exposure (17), for
example, if ambient air pollutant measurements taken over a week long period in different
seasons are used to represent the annual pollution level. Berkson error occurs when one
measure of exposure is used as a proxy for the exposure of many subjects (17), for example,
using measurements from one central-site monitor to represent the exposure of all
participants living within 10 km of the monitor. Under the classical error model, the health
effect estimate is biased with the degree of attenuation increasing as the variance of the
exposure error increases while Berkson error results in unbiased estimates, but the error
increases the variance of the coefficients resulting in wider confidence intervals (18). In
reality, exposure estimates in most air pollution epidemiological studies will include
elements of both types of error, which can complicate the interpretation of results (19, 20).

A number of refined exposure assessment approaches have recently been developed and
applied in the investigation of air pollution health effects. Many of the articles in this
dedicated issue of JESEE were presented at a symposium focused on issues of air pollution
exposure and health (“Estimating Air Pollution Exposures for Health Studies: Comparison
and Evaluation of Prediction Approaches”), held at the October 2011 International Society
of Exposure Science (ISES) annual conference in Baltimore, MD. These alternative
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exposure assessment approaches included using various models to estimate exposure to
ambient outdoor pollution with a finer degree of spatial and/or temporal resolution,
accounting for factors such as outdoor-to-indoor transport (infiltration) and time-activity
patterns, or combining existing models to create new, “hybrid” models for exposure. Many
of the studies included a comparison of exposure estimation techniques across multiple
pollutants. The studies were all conducted with a goal of comparing various approaches for
estimating exposure and assessing their impact in epidemiology studies. A brief description
of these articles is provided in Table 1 of Ozkaynak et al., 2013 (21). The shared goal for all
of these refined approaches is to reduce exposure error and its resulting bias, in order to
provide more power to detect potential epidemiologic associations of interest.

While the use of more refined exposure estimates may lead to reductions in some forms of
exposure error, it is possible that new errors may also be introduced leading to greater
uncertainty in observed health effect associations (20, 22). Improvements provided by these
more refined exposure estimation approaches will depend on factors such as the influence of
infiltration and human activity patterns on the pollutant concentration, the spatial and
temporal patterns of the pollutant of interest, and the epidemiological study design (i.e.,
timeseries or cross-sectional designs). This article summarizes the key findings from a
collection of papers and discusses the lessons learned in using alternative exposure
estimation approaches for epidemiological studies of the short-term health effects of
exposure to ambient air pollution. We then provide suggestions for future work to further
refine and extend these techniques.

Key Findings and Lessons Learned

A summary of the key findings and conclusions from exposure and epidemiological research
articles on this topic can be found in Tables 1 and 2. A variety of approaches were used as
alternative methods for exposure assessment, including the use of improved approaches for
predicting residential air exchange rates (an important predictor of indoor air concentrations
and thus exposure), and the use of air quality or exposure modeling to provide spatially
and/or temporally refined exposure estimates. The approaches attempted to quantify
exposure differences in the study population both within an urban area and between multiple
urban areas. The exposure estimates obtained had varying influences on the health effect
estimates when used in corresponding health studies. The health studies employed a variety
of analysis methods, including case-crossover, case-control, and time-series epidemiologic
studies, and Bayesian analysis, to examine associations between air pollution and respiratory
and/or cardiovascular morbidity.

Influence Air Exchange Rates and Human Activity Patterns

Individuals spend the majority of their time indoors (23), yet the use of an ambient pollutant
measurement from an outdoor monitor to approximate exposure is still the most common
exposure surrogate. Each individual’s exposure is likely to be different based on their time-
activity behaviors and home characteristics (24). Exposure models can provide insight into
the between-individual variability of exposure to ambient pollution not captured by the
central-site monitor by incorporating demographic differences, time-activity patterns, and air
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exchange rates (AERs) (25-28). As an example, AER is a contributor to home-to-home
variations in infiltration of outdoor pollution to the indoor environment which can in turn
influence the personal exposure to ambient concentration relationships. Higher AERs
suggest higher exposures to ambient air pollution indoors. Modeled estimates of AER can
vary both spatially and temporally based on meteorology and housing characteristics (25,
27). Personal activities such as commuting can also affect exposures. Ambient
concentrations for pollutants such as CO, EC, and NOy are higher close to roadways, thus
the amount of time spent in traffic can be a major contributor to personal exposures for these
pollutants.

Epidemiological results varied when human exposure models were used to obtain estimates
of exposure. In Mannshardt et al., 2013 (29), the investigators observed a reduction in the
uncertainty associated with the health effect estimates when utilizing human exposure
models with Hierarchical Bayesian methods. Other analyses did not observe a significant
difference in health effect estimates when utilizing human exposure models compared to air
quality models (30) or compared to ambient monitoring data (28, 31). In addition to
examining human exposure models which incorporate a variety of human exposure factors,
the effect of AER alone was analyzed. When used as an effect modifier, AER (or the
exposure-concentration ratio, another surrogate for infiltration) significantly changed the
health effect estimates of some pollutants (PM, 5, O3, NOy, and CO). Higher health effect
estimates were observed for some pollutants when AERs (or the exposure-concentration
ratios) were higher (28, 31, 32). These results suggest that accounting for a single well
characterized exposure factor such as AER may help to identify exposure variability in a
population that is not typically accounted for with current exposure estimation techniques,
and point to the importance of incorporating exposure factors in exposure estimation
approaches for air pollution epidemiology.

Spatial and Temporal Variability

The various air quality models applied appeared to increase the spatiotemporal variability of
ambient concentrations of pollutants compared to the use of central-site monitoring data
alone, especially for pollutants produced by local sources (i.e., EC, NOy, CO) (26, 27, 29).
For example, hybrid approaches (i.e. combining different modeling approaches) provided
full spatiotemporal coverage of study areas as opposed to the limited point locations
provided by the ambient monitoring network (27, 29, 33). The improved spatial resolution
of air quality models had noticeable impacts on some epidemiologic health effect estimates.
For traffic-related pollutants (e.g. EC, CO, and NOy), S.E. Sarnat et al., 2013 (30) showed
larger relative risks (RR) and/or narrower confidence intervals (Cls) using spatially refined,
modeled, ambient concentrations compared to central-site monitoring. However, the
epidemiological study results for regional pollutants (e.g. PMs 5, O3) were mixed, with some
studies seeing significant changes in health associations and/or narrower Cls (29, 33) when
using spatiotemporally-resolved air quality modeling output (e.g. AMS/EPA Regulatory
Model [AERMOD] - an atmospheric dispersion modeling system, Community Multiscale
Air Quality model [CMAQ)] - a regional scale multipollutant transport and transformation
model, remote sensing) compared to using central-site monitor measurements, while others
did not (28, 30, 31).
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Improved characterization of spatial variability using air quality models can also help to
better examine air pollution and socioeconomic status (SES) relationships. Depending on the
location of the monitors, the exposures of certain sub-populations may not be well
represented by the central-site monitor, leading to differential exposure error. S.E. Sarnat et
al., 2013 (30) showed significant effect modification by socioeconomic status (SES) for CO,
NOy, PM, 5, and EC using the more spatially refined exposure estimates (e.g. air quality
models estimates) but not when using the central-monitoring data. Relative risks were higher
for the low SES group compared to the high SES group. However, R.R. Jones et al., 2013
(28) only observed significant effect modifications with age (for O3) and ethnicity (for
PM5 5) using the central-site monitoring data and not with the exposure model estimates.

Characterization of spatiotemporal variability of ambient pollutant concentrations and
related exposures may also be improved by utilizing remote sensing (33) and sophisticated
air quality modeling techniques (i.e CMAQ)(29). Satellites have daily global coverage and
can be used to retrieve estimates of air quality at a given location and time in a cost-effective
manner. N. Kumar et al., 2013 (33) combined satellite data with the in-situ data at central
monitoring sites to develop robust estimates of daily exposure to PM, 5 at any given
location. K.L. Dionisio et al., 2013 (27) found that the temporal variability may differ
spatially across a metropolitan area when utilizing estimates combining regional background
and dispersion models. For example, the temporal pattern of daily elemental carbon (EC) in
the city center may be highly variable (likely due to traffic patterns), while there may be less
temporal variability outside of the city center where traffic volume is lower. However, it is
important to note that in the studies summarized here, the mean temporal variability for most
pollutants was adequately captured by the ambient monitor (25, 27).

Study Design

In studies of the health effects of exposure to ambient air pollution, the type of
epidemiologic study design has important implications for the study results and their
interpretation (28-31). Case-crossover and time-series studies take advantage of temporal
contrasts in exposures. Due to the above findings regarding temporal variability, the use of
refined exposure estimation approaches may have minimal effects when used in case-
crossover and time-series studies, especially for regional pollutants (e.g. PM, 5) that
exhibited greater spatial homogeneity (28, 30, 31). It is noteworthy, however, that S.E.
Sarnat et al., 2013 (30) observed modestly stronger associations with more refined exposure
estimates for local pollutants in a time-series study, when both the exposure estimates and
health outcome data were resolved at the ZIP code level in Atlanta.

The emphasis of the studies summarized here has been on the short-term health effects of
exposure to ambient air pollution. Cohort-based exposure and health studies are driven by
both temporal and spatial contrasts in exposures. Improvements in the spatial
characterization of exposures may be desirable in these studies as ambient monitors may not
adequately capture spatial variability (25-27, 33) depending on the pollutant of interest
(regional vs. local) and household factors (e.g. AER). In addition, personal exposure factors
such as time-activity patterns (e.g. commuting) may lead to greater exposure error and bias
of the health effect estimate obtained, and in some cases may even mask a true association.
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Recommendations for future work

We can draw from this collection of studies a number of lessons helpful in planning future
research to improve exposure estimates for use in health studies. The epidemiological study
designs and methodological considerations will determine whether exposure factors (e.g.
infiltration and time-activity patterns) can potentially modify the health effect estimates. A
number of the studies in this issue found that increases in infiltration, characterized by
residential AER (31, 32) or the ambient exposure-concentration ratio (28), were a source of
important effect modification in epidemiological studies of ambient air pollution health
effects. Consequently, improvements in the current prediction methods of AER, through
evaluation and refinement of existing tools, will be highly valuable. Epidemiological study
designs and methodological considerations (in particular, case-crossover vs. time series for
short-term effects studies) can make a difference in our ability to estimate the role of
infiltration on health effects (28, 30, 31). Researchers should test alternative model
specifications to ensure that the statistical methods employed do not diminish their ability to
study or estimate the role of building infiltration and other inter-subject ambient-exposure
related factors (as in the case of case-crossover studies).

In addition to AER, other factors related to both personal exposure and ambient pollution
(e.g. pollutant-specific residential infiltration rates, and time spent on or near roadways) may
also be effect modifiers in epidemiological studies of both local and regional pollutants (26,
30, 34-36). As epidemiological studies begin to focus more on PM, 5 components, relevant
residential infiltration models must be developed to account for component specific
penetration efficiencies and decay rates. Efforts should also be made to refine current tools
and information for modeling exposures to ambient pollutant species in key exposure
microenvironments (e.g., outdoors near home, commuting microenvironments, and non-
residential indoor environments). Recently developed light-weight global positioning system
(GPS) sensors used for continuous time-location data collection can greatly improve upon
the accuracy and spatiotemporal resolution of existing time activity surveys (e.g., EPA’s
Consolidated Human Activity Database (CHAD) or the American Time Use Survey
(ATUS)), which are integral to exposure models. The information from these sensors can be
combined with personal monitoring data in order to evaluate and/or modify our current
exposure models. More attention should also be given to examining potential confounding
due to correlation between SES related factors and predicted or measured AER values (32).

Increased spatial variability of ambient pollution exposure estimates was observed using
both air quality and exposure models, especially for gaseous pollutants and PM species
derived from local sources. Focusing on improvements in traffic/road proximity factors and
local source emissions, which differ in time and space, may provide additional information
related to exposure variability which is typically lost when average or population-level
exposures (e.g., county or ZIP code level) are used. We anticipate that current monitoring
systems and the aforementioned GPS based sensor technologies could provide a range of
new information that could help with refining exposure estimates. Further, combining
existing and new techniques for exposure estimation has shown value. Promising
approaches include combining CMAQ and AERMOD model results, or incorporating highly
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resolved satellite data (33) using a Hierarchical Bayesian framework to blend ambient
concentrations, and housing and exposure-related information (29).

Available health data typically have their own spatial or temporal limitations (e.g. hospital
admissions by county vs. ZIP code, or by month vs. day). If exposure estimates can be
produced at a fine spatiotemporal scale, these will only be useful if health data are also
available on the same scale. It is necessary to determine the relative importance of spatial vs.
temporal resolution in both exposure estimates and health data specification, for various
types of epidemiological study designs, in order to make best use of development efforts for
new or highly resolved exposure estimates, as well as for the planning of future studies. In
addition, combining exposure modeling and epidemiology with knowledge gained from
toxicological studies can help our understanding of which pollutant or group of pollutants
are likely to be linked with health effects.

Finally, two topics that were not addressed by the studies published in this issue were
multipollutant relationships and the differences between acute and chronic studies. As
epidemiological studies begin to incorporate multiple pollutants into their models it is
important to understand the relationships between the pollutants. These between-pollutant
relationships may not be accurately characterized by the existing central-site monitors.
Ambient pollutants can have different spatiotemporal patterns due to their sources,
chemical/physical properties, and pollutant-specific interactions with meteorology, all of
which may cause pollutant concentrations to not be correlated with each other. For example,
a pollutant such as O3 may be relatively homogeneous within an urban area, but the location
of roads may greatly affect the spatial pattern of pollutants such as CO or NO,. Because of
this, the O3-CO or NOy relationships may be different depending on which exposure
estimation approach (e.g. central-site monitors vs. air quality models) is selected. Additional
work is needed to better understand how the choice of exposure estimation approach affects
the observed relationships between pollutants. Finally, studies examining longer exposure
windows (e.g. 10 years or more) and related disease processes (e.g. cancer) were not
adequately addressed by this collection of papers. Therefore, a systematic evaluation of the
value of refined exposure characterization for both acute and chronic exposures, as they
apply to related epidemiological studies, is of keen interest for advancing the knowledge
base on air pollution exposures and associated health effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Rahway

Seasonal distributions of 24 hour Tier 2A (SHEDS) exposure-concentration ratio (ratio of
Tier 2A estimates over Tier concentrations) by monitoring area (solid line = median; boxes
= 25t and 75™ percentiles; whiskers = 10t and 90t percentiles; dots = 5% and 95t

percentiles)
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Figure2.
Seasonal distributions of 24 hour Tier 2B (APP) exposure-concentration ratio by monitoring

area (solid line = median; boxes = 25 and 75™ percentiles; whiskers = 10t and 90t
percentiles; dots = 51 and 95™ percentiles)
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monitoring area (solid line = median; boxes = 25! and 75™ percentiles; whiskers = 10t and

90t percentiles; dots = 51 and 95™ percentiles)
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b) Tier 2B

Summer differences between a) Tier 2A (SHEDS model) zip code-specific daily PM; 5
exposure estimates and overall average (all zip codes) daily PM, 5 exposure estimates, b)
Tier 2B (LBNL APP and Infiltration model) zip code-specific daily PM> 5 exposure
estimates and overall average (all zip codes) daily PM> 5 exposure estimates, c) Tier 3
(Hybrid model) zip code-specific daily PM, 5 exposure estimates and overall average (all
zip codes) daily PM5 5 exposure estimates, and d) zip code-specific daily air exchange rates
and overall average (all zip codes) air exchange rates used in Tier 2B and 3 exposure
estimates in Elizabeth, NJ (solid line = median; boxes = 251" and 75! percentiles; whiskers
= 10t and 90™ percentiles; dots = 5 and 95™ percentiles)
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