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Abstract

There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to

estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter).

With their broad spatial coverage, satellite data can increase the spatial–temporal availability of air

quality data beyond ground monitoring measurements and potentially improve exposure

assessment for population-based health studies. This paper describes a statistical downscaling

approach that brings together (1) recent advances in PM2.5 land use regression models utilizing

AOD and (2) statistical data fusion techniques for combining air quality data sets that have

different spatial resolutions. Statistical downscaling assumes the associations between AOD and

PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages.

First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point

locations. Second, the unified hierarchical framework provides straightforward uncertainty

quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a

data set of daily AOD values in southeastern United States during the period 2003–2005. Via

cross-validation experiments, our model had an out-of-sample prediction R2 of 0.78 and a root

mean-squared error (RMSE) of 3.61 μg/m3 between observed and predicted daily PM2.5

concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use

regression model without AOD as a predictor. Prediction performances of spatial–temporal

interpolations to locations and on days without monitoring PM2.5 measurements were also

examined.
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INTRODUCTION

Remotely sensed aerosol optical depth (AOD) is a satellite-retrieved parameter that

measures light extinction due to airborne particles in the atmospheric column. AOD

retrieved using visible and near IR wavelengths are particularly sensitive to fine particles.

Previous studies have found positive associations between AOD and ambient concentration

of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter) at different spatial and

temporal scales.1–7 PM2.5 represents a complex mixture of solid and liquid particles that

mainly arise from anthropogenic sources, such as vehicle emission and power generation.

High levels of ambient PM2.5 have been consistently associated with increased risks of

various adverse health outcomes, including premature deaths,8,9 emergency department

visits, hospital admissions due to cardio-pulmonary diseases,10,11 and adverse birth

outcomes.12,13

Population-based health studies routinely use measurements from ground monitoring

stations to characterize short-term and long-term PM2.5 exposures. However, these

monitoring stations are spatially sparse, preferentially located in urban communities, and

often without complete daily measurements. Reliance on central monitors not only restricts a

study’s geographical region but can also lead to exposure measurement error due to

unobserved spatial variations in pollutant concentrations. Consequently, there is a growing

interest in supplementing monitor measurements with AOD data to increase the availability

of air quality data across space and time. Epidemiological studies that involve geocoded

health data can especially benefit from improved exposure assessment.14 AOD data are also

useful for risk assessment on a global scale, particularly in regions where air pollution

monitoring networks are not well established.15–17 Several statistical models that utilize

AOD data for predicting PM2.5 concentrations have been proposed.1–7 Previous approaches

predominantly view AOD as a predictor of PM2.5 concentration in a linear regression model

that also includes meteorology and land use variables. The intercept and the slope

coefficient between AOD and PM2.5 are often assumed to exhibit spatial–temporal trends.

For example, penalized cubic spline and thin-plate spline have been used to model,

respectively, temporal trends,3 and spatial trends.5 Recently, studies have demonstrated that

prediction performance for daily PM2.5 concentrations improves when the regression

coefficients are modeled as random effects that vary between days under a linear mixed

model framework.6,7

The main objective of this paper is to develop a new statistical model that utilizes AOD data

for predicting daily spatially resolved PM2.5 concentrations. We bring together recent

advances in AOD land use regression models for PM2.5 and statistical downscaling

techniques to address several limitations associated with previous models. The proposed

approach is applied to a data set of daily AOD values from the Moderate Resolution

Imaging Spectro-radiometer (MODIS) over southeastern United States during the period

2003–2005. Given its high sampling frequency and relative high accuracy over land,

MODIS is the major satellite instrument used in air quality studies that require daily to

weekly temporal coverage.
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The statistical downscaling methodology was first introduced for calibrating daily PM2.5 and

ozone concentration simulations from the Models-3/Community Multiscale Air Quality

model (CMAQ).18,19 It has also been applied to examine discrepancies between climate

model outputs and observations.20 Statistical downscaling treats the intercept and the slope

between AOD and PM2.5 as spatially and temporally correlated random effects under a

hierarchical modeling framework. This overcomes the challenge of spatial misalignment

between the point-referenced monitoring measurements and the gridded areal AOD data.

Specifically, by modeling the intercepts and slopes as smooth spatial surfaces, one can

predict PM2.5 concentrations at any point location within a grid cell. Statistical downscaling

is also less computationally demanding compared with other statistical approaches that

directly model the unobserved PM2.5 spatio-temporal fields.21,22

The proposed model extends previous approaches and offers two important advantages.

First, our model relaxes the normality assumption associated with independent random

effects in a linear mixed model by allowing temporal dependence. This is motivated by the

skewness in the estimated AOD random slopes reported by Kloog et al.6 Moreover, AOD

data exhibit considerable missing values primarily due to cloud cover or high surface

reflection caused by snow cover. By borrowing information across neighboring days,

temporal dependence enables us to estimate random effects on days without AOD and

monitoring observation pairs. Second, previous work often employs a multi-stage regression

approach to handle the complex spatial–temporal model structure. Although a multi-stage

approach is analytically straightforward, quantifying the uncertainties associated with the

resulting predictions remains a challenge. It is well recognized that directly using predicted

concentrations in epidemiological studies without considering the associated prediction

uncertainties can lead to biased risk estimates and incorrect SEs.23–26 Our modeling

approach is carried out under a unified Bayesian hierarchical framework such that

uncertainties in parameter estimation are fully accounted for. Most importantly, Bayesian

inference allows uncertainty propagation in the form of prediction intervals and prediction

SDs that can be readily used in health effect or health impact analyses.

MATERIALS AND METHODS

Data Collection

MODIS is an aerosol remote sensor launched aboard the National Aeronautics and Space

Administration (NASA)’s Terra and Aqua satellites, providing nearly two measurements of

AOD per day (at 1030 and 1330 hours local time). The operational MODIS “dark target”

aerosol retrieval algorithm uses the consistent spectral relationships between two visible

(0.47 and 0.65 μm) and one shortwave IR (2.1 μm) bands that separate aerosol signal from

the land surface reflection. AOD is retrieved by minimizing the fitting errors between the

observed aerosol reflectance and pre-computed theoretical values. Detailed description of

MODIS “dark target” AOD retrieval and validation are provided elsewhere.27,28

Collection 5 MODIS AOD data were obtained from the Earth Observing System Data

Gateway at the Goddard Space Flight Center for the period 2003–2005. MODIS AOD pixels

shift in space and pixel size can change as a function of scan angle. We used a nearest

neighbor approach to spatially assign each daily MODIS AOD value to a base grid of 12 km
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× 12 km resolution in order to perform spatio-temporal predictions consistently over a

common grid. We chose our base grid to be identical to the 12 km × 12 km CMAQ

simulations that have been utilized in previous data fusion applications (http://

www.epa.gov/esd/land-sci/lcb/lcb_faqsd.html). This will facilitate future studies that

compare the use of AOD versus CMAQ simulations for predicting daily PM2.5

concentrations.

The study domain consisted of 2400 AOD grid cells and is shown in Figure 1. The following

land use and meteorological variables were assembled for each MODIS grid cell: elevation

(US Geological Survey, http://ned.usgs.gov), meteorology (North American Land Data

Assimilation Systems, http://ldas.gsfc.nasa.gov/nldas/), major roadway length and

percentage of forest cover (2001 National Land Cover database, http://www.epa.gov/mrlc/

nlcd-2001), and PM2.5 primary emission sources (2002 USEPA National Emissions

Inventory Facility Emissions report, http://www.epa.gov/ttnchie1/net/2002inventory.html).

Air quality measurements were obtained from 85 monitors in the USEPA Air Quality

System (http://www.epa.gov/ttn/airs/airsaqs/). The monitors had three different sampling

schemes: daily (13 monitors), every third day (56 monitors), and every sixth day (16

monitors).

Spatial–temporal Statistical Downscaler

We linked AOD values and PM2.5 concentrations in space and time by treating AOD as a

predictor of PM2.5 in a linear regression setting. Let PM(s,t) denote PM2.5 concentration

from an air quality ground monitor at location s and on day t. Here we treat s as a point-

referenced geo-location. Each monitor was linked to an AOD measurement denoted by

AOD(s,t) at the grid cell containing monitor s. The downscaler is given by the following

statistical model:

(1)

where α0(s,t) and α1(s,t) are the intercept (additive bias) and slope (multiplicative bias) that

are assumed to be location-specific and day-specific, respectively. The residual errors ε(s,t)

are assumed to be independently normal with mean zero and variance σ2. Model (1) can also

be viewed as a statistical calibration of AOD data to observed monitoring measurements.

We wish to model the additive and multiplicative biases with spatial and temporal

dependence structures. This enables us to estimate α0(s,t) and α1(s,t) for calibrating AOD

values at locations and on days without PM2.5 monitoring measurements via spatial–

temporal interpolation.

The spatial–temporal regression coefficients are specified by two second-level linear

regression models given by

(2)

(3)
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where βi(s) and βi(t) denote the unobserved correlated random effects that capture,

respectively, the purely spatial and purely temporal trends in the intercepts (for i = 0) and the

slopes (for i = 1). Parameter vectors γ0 and γ1 are fixed-effect regression coefficients

associated with land use and meteorological variables Z0 and Z1, respectively. By

substituting equations (2) and (3) into equation (1), vector γ1 can be interpreted as the

interaction effects between AOD and covariates Z1 on PM2.5 concentrations. Based on

findings from previous studies and preliminary analyses, Z0 included elevation, wind speed,

average daily temperature, major roadway length, percentage of forest cover, and the

presence of PM2.5 source emissions; and Z1 included elevation and average daily

temperature.

The above model assumes linear relationships between PM(s,t) and the covariates. This

assumption was examined and validated using partial regression plots. However, the above

model formulation can easily accommodate non-linear relationships using parametric

splines. Following Kloog et al.,6 we also examined whether random slopes are needed for

the effects of temperature but found that it did not improve prediction performance, and

none of the random effects for temperature were statistically significant. Logarithmic and

square root transformation of the PM2.5 concentration also did not improve prediction

performance.

Spatial Random Effects Specification

Following Berrocal et al.,18 the spatial random effects’ equations (2) and (3) are correlated

and have the form

where W1(s) and W2(s) are two spatially varying random effects with zero means and unit-

variance; and c1, c2, and c3 are unknown constants. We assume W1(s) and W2(s) to be

independent but induce correlation between the intercept β0(s) and slope β1(s) through a

common random effect W1(s). Specifically, at a given location s, the strength of correlation

between the intercept and slope depends on the constant c2, and independence is achieved if

c2 = 0. Constants c1 and c3 control the variability in the spatial random effects.

In our analysis, we assumed W1(s) and W2(s) to have a tapered exponential covariance

structure, and the strength of spatial dependence depends only on the distance between two

locations.29 Let d(s, s′) denote the Euclidean distance between location s and s′. The

covariance between Wi(s) and Wi(s′) i = 1,2 is given by an exponential function multiplied

by a tapering function:

Parameter θi controls the rate of exponential decay in correlation, and T{d(s, s′); δi } is the

Wendland tapering function that forces the spatial correlation between two locations to be
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zero beyond a threshold distance δi.30 Tapered covariance provides significant

computational advantage for large spatial data sets, because one can utilize sparse matrix

algorithms. In our application, tapered covariance is especially useful for predicting PM(s,t)

at a large number of spatial locations simultaneously. The Bayesian spatial kriging process

involves inverting a high-dimensional covariance matrix for a large number of iterations. In

our analysis, we chose the threshold distance δ1 = 100 km and δ2 = 250 km based on an

initial analysis using exponential covariance functions without tapering (δi = ∞). We then

set δi to be the approximate distance such that correlations fall <0.01. Fixed effect estimates

and spatial random effects were nearly identical between the models fitted with and without

tapering.

Temporal Random Effects Specification

The temporal random effects β0(t) and β1(t) in equations (2) and (3) are modeled as two

independent daily time series using a first-order random walk. This model is often defined

through the conditional distribution of a particular day given all other days. Let T be the total

number of study days. The conditional distribution of βi(t),i = 0,1 is normal with mean and

variance given by

where ρi is an unknown constant between 0 and 1. Therefore the mean of each βi(t) on each

day is proportional to the average of its neighboring days, and the conditional variance 

controls the degree of smoothness.

Estimation and Prediction

Statistical inference was carried out under a Bayesian framework by assigning prior

distributions to all unknown parameters. The variances of the prior distributions were chosen

such that they should contribute negligibly to estimates given the large amount of data.

Priors for γ0 and γ1 were assumed to be proportional to 1 with infinite variance (improper

flat priors). Spatial range parameters log θi followed Gamma (5, 0.05) with mean 100 and

variance 2000. Variance components σ2, , and  followed Inverse-Gamma (0.001,

0.001). Parameter c2 followed a normal distribution with mean zero and variance 10002.

Finally, we discretized the priors of ρi to 1000 equally spaced points spanning [0, 1].

Estimation was carried out using Markov Chain Monte Carlo (MCMC) techniques that

provide samples from the parameters’ conditional (posterior) distributions given the

observed data. We generated 50,000 posterior samples and discarded the first 25,000

samples as pre-convergence burn-in. At each MCMC iteration, each parameter was sampled

given the values of all other parameters. Details of the MCMC algorithm are provided in the

Online Supplementary Materials. Metropolis–Hastings algorithm31 was used to obtain
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posterior samples of c2 and θi. All other parameters had conditional distributions that are in

closed form and were updated using the Gibbs sampler.32 All analyses were carried out in R

version 2.15.0.33 The proposed model cannot be fitted by existing packages for spatio-

temporal models, and we developed analytic code that is available upon request from the

authors.

Overall prediction performance was evaluated via cross-validation experiments. First, we

divided the complete data set into 10 parts of equal sample size. Each part was then treated

as a test data set while the other nine parts were used for model fitting. Predicted daily

PM2.5 concentrations were obtained using samples from the posterior predictive

distributions of the model parameters. Specifically, for each kth sample of the model

parameters, we calculated the corresponding  and  for each AOD(s,t) for

location s and day t. A realization of PM(s,t) was then drawn from a normal distribution

with mean given by equation (1) and variance σ2,(k). The above algorithm provides a sample

distribution of the predicted concentrations where point estimate and interval estimate (e.g.,

95% quantile intervals) can be calculated. The following prediction statistics were examined

by comparing the predicted PM2.5 concentrations to the left-out observed PM2.5

concentrations: root mean squared error (RMSE), mean absolute error (MAE), 90%

posterior interval (PI) length and its empirical coverage probability, and linear coefficient of

determination R2 value.

We carried out two additional cross-validation experiments to examine the predictive

performance: (1) on days without any AOD–PM2.5 linked observation pair and (2) at

locations without PM2.5 monitors. This allows us to quantify the uncertainties in temporal

and spatial extrapolation when the downscaler model is applied to the full AOD data set in

practice. This also examines the advantages of spatial–temporal random effect models that

borrow information across days and across monitoring locations. To evaluate temporal

interpolation performance, 10 cross-validation test data sets were created by randomly

dropping all observations for 100 days at each cross-validation iteration. To evaluate spatial

interpolation performance, we left out all observations from a particular monitor at each

cross-validation iteration and used the remaining monitors for model fitting and prediction.

RESULTS

The study included 85 PM2.5 monitors linked to 77 unique AOD grid cells in our

southeastern US spatial domain. Six grid cells contained more than one monitor.

Approximately 11% of the study days had no AOD–PM2.5 linked pairs. On days with at

least one PM2.5 measurements, the median number of monitor observations was 9 (25th

quantile of 5, and 75th quantile of 22). The small number of observations per day was due to

two factors. First, among AOD grid cells linked to a PM2.5 monitor, about 43% of the daily

AOD values were missing. Second, PM2.5 monitoring measurements also contained missing

values with a median of 16% (range: 1–90%) across monitors.

Figure 2 shows the estimated daily random effects β0(t) and β1(t) from equations (2) and (3)

and 95% PIs are indicated by the grey areas. These parameters represent daily additive and

multiplicative biases that are not explained by land use and meteorology variables. Daily
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random effects showed strong temporal dependence with a 1-day lag correlation of 0.75 for

the intercepts and 0.84 for the slopes. Random effects for days without AOD–PM2.5 linked

measurements are indicated by the blue dots. By borrowing information across neighboring

days, we obtained estimates that adhere to the temporal trends of days with PM2.5

measurements. In a standard mixed model that assumes independent normal random effects,

the estimated random effects on these days will be zeros with large uncertainties.

The estimated spatial random effects β0(s) and β1(s), as well as the SD, at each spatial

location are given in the online Supplementary Materials. These parameters reflect long-

term spatial residual additive and multiplicative biases. Both β0(s) and β1(s) exhibit

moderate spatial dependence. In our study, the magnitudes of the residual spatial random

effects are considerably smaller compared with the residual temporal random effects. We

found greater positive residual bias in the intercepts over the Atlanta GA, Ashville NC, and

Birmingham AL metropolitan areas, indicating that predictions based on only land use

variables may underestimate long-term PM2.5 levels in these regions. We also found

evidence that the residual spatial variation in the AOD–PM2.5 association was consistently

higher in urban locations. Factors that can contribute to heterogeneous AOD–PM2.5

associations warrant further investigation.

Table 1 gives the 10-fold cross-validation results comparing the prediction power of

different spatial–temporal downscalers that included different combinations of AOD,

meteorology, and land use variables as predictors. Overall, the full model and the model

without land use variables performed the best, achieving the smallest RMSE and MAE.

Predictions were also well calibrated with the 90% PI intervals, including the left-out

observations 91% of the time. The overall R2 value was 0.78, comparable to other studies.3,6

Compared with the full model, the model without AOD had an 10% increase in RMSE and a

larger PI length that indicates lower prediction precision. We found that daily meteorology

variables are more useful than land use variables to improve prediction power. This may be

attributed to our interest in predicting daily PM2.5 concentrations. Moreover, the flexible

spatial random effect specification allows monitor-specific intercepts and slopes that will

capture the effect of land use when they are not included in the model. We also note that the

inclusion of AOD as a predictor resulted the greatest increase in prediction performance

when compared with the model without AOD. The AOD-only model also performed

similarly to the full model. This may again be due to the use of flexible random effects that

can explain spatial variability due to land use and temporal variability due to meteorology.

Table 2 summarizes the cross-validation results for predicting PM2.5 concentrations on days

without AOD–PM2.5 linked pairs or at locations without PM2.5 monitors. To evaluate the

potential advantages of modeling spatial and temporal dependence, we compared our model

with those with the random effects assumed to be independent normal. As expected, we

observed overall poorer prediction performance compared with those given in Table 1 as the

prediction involved interpolation of the random effects across space and time. Our results

also highlight the advantage of capturing residual temporal correlation in the random

intercepts and slopes. Compared with a standard mixed model framework, the temporal

dependence reduced RMSE by 23% and the 95% PI length by 22%. We also found very

minor improvement in prediction performance associated with the inclusion of spatial
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random effects. This may be due to the use of a large number of spatially varying land use

covariates.

Figure 3 shows the predicted annual average PM2.5 concentrations and their prediction SEs

estimated at the center of each AOD grid cell. Annual levels were calculated by averaging

predicted daily PM2.5 concentrations when AOD observations were available. Similar

spatial patterns are also evident for average PM2.5 concentrations by seasons (Figure 4). The

above analyses assume that AOD values were missing completely at random. However,

because missing AOD values were mainly due to cloud cover in our study region, this

assumption may be violated if days with missing AOD values were associated with higher

or lower PM2.5 levels, possibly due to differences in meteorology. To address this issue, we

also estimated long-term averages by filling in days without AOD observations with PM2.5

concentration predictions obtained from a statistical downscaler without AOD as a

covariate. The resulting annual and seasonal maps show similar spatial patterns and are

included in the online Supplementary Materials.

We found the highest level of long-term PM2.5 concentrations in the urban centers, as well

as higher levels, along major interstate highways. Lower levels of PM2.5 appeared over the

Appalachian mountain range. Seasonally, summer showed the highest concentrations and

winter the lowest following the temperature dependence of secondary fine particle

production. The elevated PM2.5 levels in southern Georgia could be attributed to prescribed

burns in southern Georgia and Florida in the spring, as well as transport of polluted air mass

from coastal regions of the Gulf of Mexico and Florida. Limited by the size of our modeling

domain, we were not able to more explicitly examine any potential transport pathways from

south and southwest of the domain. As expected, lower prediction uncertainties were

associated at locations with monitoring stations. Interpolating annual PM2.5 averages

concentrations at locations without monitoring stations is associated with an approximately

three-fold increase in prediction SE.

DISCUSSION

We describe a Bayesian spatial–temporal hierarchical model that combines previous data

fusion work for calibrating numerical model outputs and satellite-retrieved data. The main

advantage of the proposed downscaler is the ability to quantify prediction uncertainty in a

unified framework and to fully exploit spatial–temporal dependence in the daily AOD and

PM2.5 concentration associations. Through out-of-sample cross-validation experiments, our

results highlight the utility of supplementing land use regression model with AOD data in

our study region of southeastern US. Similar to the findings by Kloog et al.,6 we also found

that effort in modeling temporal random effects provides more significant improvement in

prediction power compared with modeling spatial random effects. Our results do not suggest

excluding land use variables in the model, because they are important for predicting PM2.5

concentrations at locations without monitors.

Several complex spatio-temporal calibration models have been developed for estimating

daily PM2.5 concentrations using AOD values; however, there has been limited work in

examining calibration precision in terms of prediction SEs. The Bayesian inference provides
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simulations (realizations) from the predictive distribution that incorporate uncertainties

arising from (1) model parameter estimation, (2) spatio-temporal residual errors, and (3)

unstructured residual errors. More importantly, exposure simulations allow us to propagate

prediction uncertainties in subsequent health effect and health impact analysis. For example,

one can perform a Monte Carlo sensitivity analysis by repeatedly fitting the health model

with different realizations of the predicted daily PM2.5 concentration fields.13 The resulting

risk estimates can then be combined under a multiple imputation framework. Alternatively,

the realizations can be used as previous information of PM2.5 exposure in a second-stage

Bayesian analysis.34,35 Finally, uncertainty quantification is accomplished via posterior

simulations of point-referenced daily PM2.5 concentrations. Therefore uncertainties

associated with metrics of different spatial or temporal aggregation can be easily obtained by

transforming the original exposure samples.

There are additional challenges in calibrating AOD data that our model does not address and

warrant further investigation. First, AOD data contain a large number of missing values

where PM2.5 predications cannot be obtained. It is straightforward to adopt the statistical

downscaler to incorporate recent approaches for the missing data problem. For example, Liu

et al.5 consider predicting PM2.5 concentrations with a non-AOD model using only land use

and meteorology. Our results from Table 1 indicate that predictions from a non-AOD

downscaler still achieve an R2 of 0.7, and the model is well calibrated in terms of posterior

prediction intervals. Also, Kloog et al.6 and Kumar et al.36 describe a multiple-stage

approach where the statistical downscaler can first be fitted to obtain calibrated AOD values

in the first stage. The predictions and their uncertainties can then be used in a second

spatial–temporal model for predicting PM2.5 concentrations. We also did not consider

interactions between the spatial and temporal random effects. This is due to our study region

and the small number of same-day AOD–PM2.5 observation pairs. Although previous

studies have found the benefits of space–time interaction to be limited,5,18 these interactions

should be carefully examined for larger spatial study domain.

CONCLUSION

This study demonstrated that the publicly available satellite-retrieved AOD data can be

considered as an additional covariate in land use and meteorological regression model for

predicting daily PM2.5 concentrations. Prediction performance can also be improved by

incorporating spatial–temporal regression coefficients, especially for performing

interpolations on days and at locations without linked AOD values and monitoring

measurements. When predicted ambient concentrations are used for exposure assessment,

quantitative evaluation of prediction uncertainties, for example, using prediction SEs, should

be considered to ensure the accuracy, reliability, and reproducibility of health study results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Chang et al. Page 10

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Acknowledgments

This study was partially supported by the USEPA grant R834799, NIH grant R01ES019897, and NASA grant
NNX09AT52G. Its contents are solely the responsibility of the grantee and do not necessarily represent the official
views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services
mentioned in the publication.

References

1. Liu Y, Park R, Li Q, Kilaru V, Sarnat J. Mapping annual mean ground-level PM2.5 concentrations
using Multiangle Imaging Spectroradiometer aerosol opitcal thickness over the contiguous United
States. J Geophys Res. 2004; 109:3269–3278.

2. Liu Y, Sarnat J, Kilaru V, Jacob D, Koutrakis P. Estimating ground-level PM2.5 in the eastern
United States using satellite remote sensing. Environ Sci Technol. 2005; 39:3269–3278. [PubMed:
15926578]

3. Paciorek CJ, Liu Y, Moreno-Marcias H, Kondragunta S. Spatiotemporal associations between
GOES aerosol optical depth retrievals and ground-level PM2.5. Environ Sci Technol. 2008;
42:5800–5806. [PubMed: 18754512]

4. Paciorek CJ, Liu Y. Limitations of remotely sensed aerosol as a spatial proxy for fine particulate
matter. Environ Health Persp. 2009; 117:904–909.

5. Liu Y, Paciorek CJ, Koutrakis P. Estimating regional spatial and temporal variability of PM2.5
concentrations using satellite data, meteorology, and land use information. Environ Health Persp.
2009; 117:886–892.

6. Kloog I, Koutrakis P, Coull BA, Lee HJ, Schwartz J. Assessing temporally and spatially resolved
PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements.
Atmos Environ. 2011; 45:6267–6275.

7. Lee HJ, Liu Y, Coull BA, Schwartz J, Koutrakis P. A novel calibration approach of MODIS AOD
data to predict PM2.5 concentrations. Atmos Chem Phys. 2011; 11:7911–8002.

8. Franklin M, Zeka A, Schwartz J. Association between and all-cause and specific-cause mortality in
27 US communities. J Expo Sci Environ Epidemiol. 2007; 17:279–287. [PubMed: 17006435]

9. Samet JM, Dominici F, Curriero F, Coursac I, Zeger SL. Particulate air Pollution and mortality in 20
U.S. cities: 1987–1994. New Engl J Med. 2000; 343:1742–1757. [PubMed: 11114312]

10. Dominici F, Peng D, Bell M, Pham M, McDermott A, Zeger SL, et al. Fine particulates air
pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006;
295:1127–1135. [PubMed: 16522832]

11. Sarnat SE, Klein M, Sarnat JA, Mulholland J, Russell AG, Flanders WD, et al. An examination of
exposure measurement error from air pollutant spatial variability in time-series studies. J Expo Sci
Environ Epidemiol. 2010; 20:135–146. [PubMed: 19277071]

12. Darrow LA, Klein M, Strickland MJ, Mulholland JA, Tolbert PE. Ambient air pollution and birth
weight in full-term infants in Atlanta, 1994–2004. Environ Health Persp. 2011; 119:731–737.

13. Chang HH, Reich BJ, Miranda ML. Time-to-event analysis of fine particle air pollution and
preterm birth: results from North Carolina, 2001–2005. Am J Epidemiol. 2012; 175:91–98.
[PubMed: 22167746]

14. Kloog I, Coull BA, Zanobetti A, Koutrakis P, Schwartz JD. Acute and chronic effects of particles
on hospital admissions in New-England. PLoS One. 2012; 7:e34664. [PubMed: 22529923]

15. Koelemeijer R, Homan C, Mattijsen J. Comparison of spatial and temporal variations of aerosol
optical thickness and particulate matter over Europe. Atmos Environ. 2006; 40:5304–5315.

16. Gupta P, Christopher S, Wang J, Gehrig R, Lee Y, Kumar N. Satellite remote sensing of particulate
matter and air quality assessment over global cities. Atmos Environ. 2006; 40:5880–5892.

17. Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, et al. Exposure assessment for
estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci
Technol. 2012; 46:652–660. [PubMed: 22148428]

18. Berrocal VJ, Gelfand AE, Holland DM. A spatio-temporal downscaler for output from numerical
models. J Agric Biol Environ Stat. 2010; 15:176–197. [PubMed: 21113385]

Chang et al. Page 11

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



19. Berrocal VJ, Gelfand AE, Holland DM. A bivariate space-time downscaler under space and time
misalignment. Ann Appl Stat. 2010; 4:1942–1975. [PubMed: 21853015]

20. Berrocal VJ, Craigmile PF, Guttorp P. Regional climate model assessment using statistical
upscaling and downscaling techniques. Environmetrics. 2012; 23:482–492.

21. Fuentes M, Raftery AE. Model evaluation and spatial interpolation by Bayesian combination of
observations with outputs from numerical models. Biometrics. 2005; 61:36–45. [PubMed:
15737076]

22. Paciorek CJ. Combining spatial information sources while accounting for systematic errors in
proxies. J Roy Stat Soc C. 2012; 61:429–451.

23. Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA. Measurement error caused by spatial
misalignment in environmental epidemiology. Biostatistics. 2009; 10:258–274. [PubMed:
18927119]

24. Lee D, Shaddick G. Spatial modeling of air pollution in studies of its short-term health effects.
Biometrics. 2010; 66:1238–1246. [PubMed: 20070295]

25. Szpiro AA, Sheppard L, Lumley T. Efficient measurement error correction with spatially
misaligned data. Biostatistics. 2011; 12:610–623. [PubMed: 21252080]

26. Szpiro AA, Paciorek CJ, Sheppard L. Does more accurate exposure prediction necessarily improve
health effect estimates? Epidemiology. 2011; 22:680–685. [PubMed: 21716114]

27. Levy RC, Remer LA, Dubovik O. Global aerosol optical properties and application to Moderate
Resolution Imaging Spectroradiometer aerosol retrieval over land. J Geophys Res Atmos. 2007;
112:D13210.10.1029/2006JD007815

28. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, et al. Global evaluation of the
Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys. 2010; 10:10399–
10420.

29. Kaufman CG, Schervish MJ, Nychka DW. Covariance tapering for likelihood-based estimation in
large spatial datasets. J Am Stat Assoc. 2008; 103:1545–1555.

30. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of
minimal degrees. Adv Comput Math. 1995; 4:389–396.

31. Chib S, Greenberg E. Understanding the Metropolis-Hastings algorithm. Am Stat. 1995; 49:327–
335.

32. Casella G, George EI. Explaining the Gibbs sampler. Am Stat. 1992; 46:167–174.

33. R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing; Vienna, Austria: 2012.

34. Peng RD, Bell ML. Spatial misalignment in time series studies of air pollution and health data.
Biostatistics. 2010; 11:393–304. [PubMed: 20538876]

35. Chang HH, Peng RD, Dominici F. Estimating the acute health effects of coarse particulate matter
accounting for exposure measurement error. Biostatistics. 2011; 12 :637–652. [PubMed:
21297159]

36. Kumar N, Chu AD, Foster AD, Peters T, Willis R. Satellite remote sensing for developing time
and space resolved estimates of ambient particulate in Cleveland, OH. Aerosol Sci Technol. 2011;
45:1090–1108. [PubMed: 22238503]

Chang et al. Page 12

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Southeastern US study area with remotely sensed aerosol optical density grid cells and the

EPA PM2.5 monitoring locations.
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Figure 2.
Estimated residual temporal random intercepts β0(t) (a) and slopes β1(t) (b). 95% Posterior

intervals (PI) are indicated by the grey areas. Days with and without AOD–monitor

observation pairs are indicated by black and blue dots, respectively.
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Figure 3.
Predicted annual average PM2.5 concentrations (left panel) at AOD grid cell centers and

their prediction SEs (right panel).
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Figure 4.
Predicted seasonal average PM2.5 concentrations at AOD grid cell centers.
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