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Abstract

Although nicotine accounts for a great deal of the neurodevelopmental damage associated with

maternal smoking or second-hand exposure, tobacco smoke contains thousands of potentially

neurotoxic compounds. We used PC12 cells, a standard in vitro model of neurodifferentiation, to

compare tobacco smoke extract (TSE) to nicotine, matching TSE exposure (with its inherent

nicotine content) to parallel concentrations of nicotine, or to benzo[a]pyrene, a tobacco

combustion product. TSE promoted the transition from cell replication to differentiation, resulting

in fewer, but larger cells with greater neurite extension. TSE also biased differentiation into the

dopaminergic versus the cholinergic phenotype, evidenced by an increase in tyrosine hydroxylase

activity but not choline acetyltransferase. Nicotine likewise promoted differentiation at the

expense of cell numbers, but its effect on growth and neurite extension was smaller than that of

TSE; furthermore, nicotine did not promote the dopaminergic phenotype. Benzo[a]pyrene had

effects opposite to those of TSE, retarding neurodifferentiation, which resulted in higher cell

numbers, smaller cells, reduced neurite information, and impaired emergence of both

dopaminergic and cholinergic phenotypes. Our studies show that the complex mixture of

compounds in tobacco smoke exerts direct effects on neural cell replication and differentiation that

resemble those of nicotine in some ways but not others, and most importantly, that are greater in

magnitude than can be accounted for from just the nicotine content of TSE. Thus, fetal tobacco
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smoke exposure, including lower levels associated with second-hand smoke, could be more

injurious than would be anticipated from measured levels of nicotine or its metabolites.

Keywords

Benzo[a]pyrene; Neurodifferentiation; Nicotine; PC12 cells; Tobacco smoke extract

1. INTRODUCTION

Maternal cigarette smoking during pregnancy remains the single, most preventable cause of

perinatal morbidity and mortality in developed countries (Abbott and Winzer-Serhan, 2012;

DiFranza and Lew, 1995; Pauly and Slotkin, 2008). An even larger population of babies is

impacted by second-hand tobacco smoke (DiFranza et al., 2004; Herrmann et al., 2008;

Polanska et al., 2006). Aside from adverse effects in the immediate perinatal period, the

long-term liability of prenatal tobacco exposure produces substantial increases in the risk of

neurodevelopmental disorders, including learning disabilities, attention deficit/hyperactivity

disorder and conduct disorders (Cornelius and Day, 2009; DiFranza and Lew, 1995; Gaysina

et al., 2013; Pauly and Slotkin, 2008; Wakschlag et al., 1997). To a great extent, these

outcomes reflect the adverse effect of nicotine itself on brain development (Pauly and

Slotkin, 2008; Slikker et al., 2005; Slotkin, 2004, 2008). As a nicotinic acetylcholine

receptor agonist, nicotine preempts normal cholinergic signals that are critical to the control

of neuronal cell replication and differentiation, to the formation of axons and synapses, and

to the development of neural circuits. A comparison of nicotine alone vs. tobacco smoke

exposure in a variety of models shows similar effects on neurogenesis (Bruijnzeel et al.,

2011; Gospe et al., 1996; Slotkin, 2004), oxidative stress (Lobo Torres et al., 2012; Qiao et

al., 2005), neural plasticity (Heath and Picciotto, 2009; Sekizawa et al., 2008; Shingo and

Kito, 2005), and on indices of cholinergic function, synaptic signaling, and neural cell

differentiation into specific neurotransmitter phenotypes (Slotkin, 2004; Slotkin et al., 2000,

2001, 2002, 2006a, b).

Notwithstanding the concordant effects of nicotine and tobacco smoke on brain

development, smoke contains many more compounds that cross the placenta and that are

potentially neurotoxic, few of which have been evaluated for their contributions to

developmental neurotoxicity. Indeed, combustion products such as benzo[a]pyrene (BaP)

and related polycyclic aromatic hydrocarbons, have also been shown to be associated with

developmental deficits in children (Perera et al., 2005), and animal studies confirm that

early-life exposure to BaP has adverse effects on neurodevelopment and synaptic function

(Brown et al., 2007; Hood et al., 2000; Slotkin et al., 2013; Slotkin and Seidler, 2009).

However, the effects of BaP on neuronal cell replication and differentiation are opposite to

those seen with nicotine: whereas nicotine tends to promote neurodifferentiation at the

expense of cell numbers, BaP slows neurodifferentiation and extends the period in which

neural cells proliferate (Abreu-Villaça et al., 2005; Slotkin et al., 2013; Slotkin and Seidler,

2009). In a recent study using PC12 cells (Slotkin et al., 2013), a neuronotypic cell line

commonly used to study neurodifferentiation (Costa, 1998; Teng and Greene, 1994), we

found synergistic interactions between nicotine and BaP, diverting cell fate away from the
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cholinergic phenotype (and toward the dopaminergic phenotype. This raises the possibility

that the complex mixture of compounds in tobacco smoke exposure could have effects on

neurodevelopment distinct from those evoked by individual agents. In the current study, we

show that the effects of tobacco smoke extract (TSE) on neurodifferentiation in PC12 cells

cannot be explained solely by the effects of nicotine, and further, that TSE effects are totally

unlike those obtained from exposure to BaP.

2. METHODS

TSE (Arista Laboratories, Richmond, VA) was prepared from Kentucky Reference

cigarettes (KY3R4F) on a Rotary Smoke Machine under ISO smoke conditions. The smoke

condensate was collected on 92 mm filter pads, which were then extracted by shaking for 20

min with dimethylsulfoxide, to obtain a solution of approximately 20 mg of condensate per

ml. Condensate aliquots were stored in amber vials at −80°C until used. Two cigarettes were

smoked to produce each ml of extract and the final product contained 0.8 mg/ml (5 mM)

nicotine.

2.1 Cell cultures

Because of the clonal instability of the PC12 cell line (Fujita et al., 1989), the experiments

were performed on cells that had undergone fewer than five passages. As described

previously (Qiao et al., 2003; Song et al., 1998), PC12 cells (American Type Culture

Collection CRL-1721, obtained from the Duke Comprehensive Cancer Center, Durham,

NC) were seeded onto poly-D-lysine-coated plates in RPMI-1640 medium (Sigma Chemical

Co., St. Louis, MO) supplemented with 10% horse serum (Sigma), 5% fetal bovine serum

(Sigma), and 50 (^g/ml penicillin streptomycin (In vitro gen, Carlsbad, CA). Incubations

were carried out with 5% CO2 at 37°C, standard conditions for PC12 cells. To initiate

neurodifferentiation (Jameson et al., 2006b; Slotkin et al., 2007; Teng and Greene, 1994),

the medium was changed to include 50 ng/ml of 2.5 S murine nerve growth factor (Promega

Corporation, Madison, WI); each culture was examined under a microscope to verify the

outgrowth of neurites.

Toxicant exposures were all commenced simultaneously with the addition of nerve growth

factor, so as to be present throughout neurodifferentiation. As our positive controls for

comparison with TSE, we used nicotine bitartrate or BaP (both from Sigma) at a final

concentration of 10 µM, which is sufficient to produce significant effects of each agent on

neurodifferentiation in the PC12 model (Abreu-Villaça et al., 2005; Slotkin et al., 2013;

Slotkin and Seidler, 2009). The effects of TSE were evaluated at a low and high

concentration, calculated to produce a final concentration of 1 µM or 10 µM nicotine in the

culture medium, corresponding to a 1/1000 and 1/500 dilution of the condensate. All agents

were dissolved in dimethylsulfoxide (Sigma; final concentration 0.2%), which was also

added to all the samples regardless of treatment; this concentration of dimethylsulfoxide has

no effect on PC12 cell growth or differentiation (Qiao et al., 2001; Song et al., 1998). The

medium was changed every 48 hr with the continued inclusion of nerve growth factor and

test substances; assays were carried out after six days of exposure.
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2.2 Assays

Cells were harvested, washed, and the DNA and protein fractions were isolated and

analyzed as described previously (Slotkin et al., 2007). Measurements of DNA, total protein

and membrane protein were used as biomarkers for cell number, cell growth and neurite

growth (Qiao et al., 2003; Song et al., 1998). Since the DNA per cell is constant, cell growth

entails an obligatory increase in the total protein per cell (protein/DNA ratio) as well as

membrane protein per cell (membrane protein/DNA ratio). If cell growth represents simply

an increase in the perikaryal area, then membrane protein decreases less than total protein

because of the decline in the surface-to-volume ratio (volume increases with the cube of the

perikaryal radius, whereas surface area increases with the square of the radius); however,

when neurites are formed as a consequence of neurodifferentiation, this produces a increase

in membrane protein larger than that predicted from this simple 2/3-power geometric

relationship. Each of these biomarkers has been validated in prior studies by direct

measurement of cell number (Powers et al., 2010; Roy et al., 2005), perikaryal area (Roy et

al., 2005) and neurite formation (Das and Barone, 1999; Howard et al., 2005; Song et al.,

1998). To assess neurodifferentiation into dopamine and acetylcholine phenotypes, we

assayed the activities of tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT),

respectively, using established techniques (Jameson et al., 2006a, b).

2.3 Data analysis

Each study was performed using 2–5 separate batches of cells, with 3–4 independent

cultures for each treatment in each batch; each batch of cells comprised a separately

prepared, frozen and thawed passage. Results are presented as mean ± SE, with treatment

comparisons carried out by analysis of variance (ANOVA) followed by Fisher's Protected

Least Significant Difference Test for post-hoc comparisons of individual treatments. The

initial comparison involved a two-factor ANOVA: factor 1 = treatment; factor 2 = cell

batch. In each case, we found that the treatment effects were the same across the different

batches of cells, although the absolute values differed from batch to batch. Accordingly, we

normalized the results across batches prior to combining them for presentation. Significance

was assumed at p < 0.05 (two-tailed).

3. RESULTS

Exposure of differentiating PC12 cells to TSE produced a concentration-dependent

reduction in the total number of cells, as monitored by DNA content (Figure 1A). At the

high exposure level, TSE had an effect equivalent to that achieved with nicotine alone at the

same final concentration (10 µM) as that achieved from the nicotine contained in TSE. In

contrast, giving the same concentration of BaP produced a robust increase in DNA. Each

agent had corresponding effects on cell growth, assessed by the total protein/DNA ratio

(Figure 1B). TSE exposure produced a large increase that was significantly greater than that

achieved by the equivalent concentration of nicotine alone (p < 0.003). Again, BaP alone

had the opposite effect, reducing the ratio.

The pattern of effects on the membrane protein/DNA ratio resembled that seen for total

protein/DNA (Figure 1C). TSE evoked a large increase, whereas nicotine evoked a smaller,

Slotkin et al. Page 4

Neurotoxicol Teratol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



nonsignificant increase, and BaP produced a decrease. Notably, the changes in membrane

protein/DNA did not follow the 2/3-power rule that would pertain if the effects were

restricted to the cell body. For TSE, the 2/3-power rule applied to the 35% increase in total

protein/DNA ratio predicts an 11% increase in membrane protein/DNA, but the actual

increase was 38% (p < 0.0001 vs. the predicted value, one-group t-test). Likewise, for BaP,

the 40% decrease in total protein/DNA would predict a 12% decrease in membrane protein/

DNA, but the actual reduction was 45% (p < 0.0001 vs. predicted value). These differences

indicate that the changes in membrane protein reflect the formation of neuritic projections,

not just the diameter of the cell body.

TSE exposure had a profound effect on differentiation into dopaminergic and cholinergic

phenotypes. The high concentration of TSE evoked a large increase in TH activity, whereas

nicotine produced only minor (nonsignificant) changes; in contrast, BaP evoked a large

decrement (Figure 2A). For the cholinergic phenotype, neither TSE nor nicotine elicited

significant effects on ChAT (Figure 2B); again, BaP was different, causing an even greater

proportional decrease in ChAT (80%) compared to its effect on TH (65% decrease).

Accordingly, both TSE and BaP shifted the endpoint of neurodifferentiation to favor the

dopaminergic phenotype over the cholinergic phenotype, but by different mechanisms.

4. DISCUSSION

Results obtained in this study provide some of the first evidence showing that the cellular

effects of tobacco smoke on neurodevelopment are distinct from those of prominent

individual components such as nicotine or BaP. The net outcome of TSE exposure was

promotion of cell growth and neurite extension, achieved at the cost of suppressing cell

numbers, and with the additional effect of diverting neurodifferentiation toward the

dopaminergic phenotype. The reduction in cell numbers, characterized by a deficit in total

DNA, does not reflect cytotoxicity, which also would have suppressed cell growth. Instead,

we saw an increase in the protein/DNA ratio, connoting larger cells. The augmented cell

growth was accompanied by an increase in membrane protein that exceeded the values

predicted from simple enlargement of the cell body, thus pointing to growth associated

specifically with increased membrane complexity; in the case of differentiating PC12 cells,

this represents neurite extension (Song et al., 1998; Teng and Greene, 1994), as confirmed

here by qualitative microscopic observation. It is important to note that, in this study, the

toxicants were added simultaneously with nerve growth factor, a trophin which triggers a

gradual transition from cell replication to neurodifferentiation (Teng and Greene, 1994).

Accordingly, TSE-induced promotion of cell growth and neurite formation, along with

reduction of cell numbers, indicates accelerated neurodifferentiation. That conclusion is

reinforced by the observation that TSE promoted the emergence of the dopaminergic

phenotype, a highly specific effect in that we did not observe any change for differentiation

into the cholinergic phenotype.

The effects of TSE on neurodifferentiation stand out clearly from those of BaP, a known

toxic component of tobacco smoke. In agreement with earlier observations (Slotkin et al.,

2013; Slotkin and Seidler, 2009), BaP retarded neurodifferentiation, increasing cell numbers

while slowing cell growth and neurite formation, and reducing expression of both
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neurotransmitter phenotypes; these effects are entirely opposite to those for TSE. Although

BaP, like TSE, resulted in a preponderance of dopaminergic cells vs. cholinergic cells, it did

so by an different underlying mechanism, suppressing the cholinergic phenotype to a greater

extent than the dopaminergic phenotype.

The comparison with nicotine is more pertinent, given the prominent role of nicotine in

neurodevelopmental deficits associated with maternal smoking. The effects of TSE on cell

numbers, cell growth and neurite formation were in the same direction as those of nicotine

alone, differing primarily in the larger magnitude of TSE effects on growth and neurite

extension than for nicotine. Thus, TSE (which contains nicotine) and nicotine by itself share

the important characteristic of accelerating neurodifferentiation at the expense of cell

numbers, but TSE is more effective than would be expected simply from its nicotine

content. This points to clear contributions from other components of TSE besides nicotine, a

conclusion that is strengthened by our finding of differences between TSE and nicotine in

their effects on neurotransmitter phenotypes. Nicotine had relatively little effect, whereas

TSE strongly promoted the dopaminergic phenotype.

The limitations of an in vitro approach to developmental neurotoxicity have been delineated

previously (Coecke et al., 2007; Qiao et al., 2001; Song et al., 1998) but it is worth repeating

the major points. An in vitro model enables us to show that TSE is a directly-acting

developmental neurotoxicant, allowing for dissection of cause-and-effect relationships that

cannot readily be studied in vivo. However, cell cultures are incapable of detecting the

complex events involved in brain assembly, such as cell-to-cell interactions and architectural

modeling of brain regions; effects in animal models are thus likely to be considerably more

sensitive than seen here in vitro. Further, with in vitro exposures, adverse effects have to be

detected within a period of hours or days, as compared to weeks of in vivo exposure,

necessitating higher concentrations (Coecke et al., 2007). This is exacerbated in the case of

transformed cell lines, such as PC12 cells, which are generally less responsive to toxicants

than are primary neurons. On the other hand, primary neurons would be inappropriate to

study the effects seen here, which involve terminating the cell cycle and affecting specific

neurodifferentiation endpoints. Primary neurons do not divide in culture and are in

heterogeneous states of neurodifferentiation, whereas PC12 cells undergo mitosis and

differentiate uniformly upon addition of nerve growth factor. Thus, primary neurons are

problematic for these assessments, whereas the PC12 line is especially useful (Coecke et al.,

2007; Radio et al., 2008). PC12 cells are also problematic for quantitative morphologic

investigation of neurite formation because they grow in clumps, with only a minority of cells

separated sufficiently to permit accurate measurement. Although quantitative morphology

has been published using PC12 cells, these studies typically exclude cells that are in clumps

or in contact with each other, or use nonstandard PC12 subclones that do not clump, but

have not been widely used for toxicologic evaluations (Das et al., 1998; Leach et al., 2007;

Obin et al., 1999; Radio et al., 2008). Even so, where quantitative morphology has been

carried out, the results replicate the conclusions reached with biochemical approaches as

used here (Das and Barone,1999; Howard et al., 2005; Song et al., 1998). Finally, in the case

of TSE, pharmacokinetic considerations, which also cannot be modeled in cell cultures, are

also likely to be important. Whereas we studied TSE as obtained directly from tobacco

smoke condensate, placental transfer and metabolism will undoubtedly change the
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concentration that actually reaches the fetus, and there is little or no information for most of

the thousands of components of TSE. In that light, our studies point to the potential

neurodevelopmental outcomes of TSE exposure but do not obviate the need for parallel in

vivo studies, which are currently underway in our laboratory.

In summary, we found that TSE has direct effects on neuronal cell replication and

differentiation that resemble those of nicotine in some ways but not others, and most

importantly, that are greater in magnitude than can be accounted for from the nicotine

content of TSE. The exacerbation of nicotine's effects could represent direct actions of the

other TSE components on neurodifferentiation, or alternatively, cross-talk of these agents

with nicotinic receptor activation. Although it might seem appropriate to then pursue which

TSE component(s) contribute the additional effects, there are thousands of compounds in

TSE that would need to be examined; furthermore, we have already shown that a

combination of just two chemicals, nicotine and BaP, produces effects that could not have

been predicted from either agent alone or from simple summation of effects (Slotkin et al.,

2013). It is therefore likely that deconvoluting individual contributors in TSE may prove

fruitless, and that comparative analysis of complex TSE fractions may be a more efficient

way to identify the critical components underlying the developmental neurotoxicity of

tobacco smoke. The same constraints operate for delineation of specific mechanisms

underlying TSE's effects on neurodifferentiation: there are likely to be many different

contributory pathways to the outcome, involving complex interactions of the effects of

multiple compounds. Indeed, even for nicotine alone, although nicotinic receptor antagonists

block many of the effects on PC12 cells (Jonnala and Buccafusco, 2001; Qiao et al., 2003;

Reuben et al., 1998), there are additional contributions from oxidative stress (Guan et al.,

2003; Qiao et al., 2005). Notwithstanding these issues, the implications of our findings are

clear. If TSE elicits corresponding effects in the developing fetal brain, then we would

expect to see the same kinds of neural cell deficits and miswiring that are already

attributable to nicotine (Pauly and Slotkin, 2008; Slikker et al., 2005; Slotkin, 2004, 2008),

but to a greater extent and perhaps more directed toward specific neurotransmitter systems,

especially dopamine. In turn, a greater sensitivity to neurodevelopmental damage implies

that fetal tobacco smoke exposure, including the lower levels associated with second-hand

smoke, could be more injurious than would be anticipated from measured levels of nicotine

or its metabolites (DeLorenze et al., 2002; Koren et al., 1998; Luck et al., 1985).
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BaP benzo[a]pyrene

ChAT choline acetyltransferase

TH tyrosine hydroxylase

TSE tobacco smoke extract
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Highlights

• We compared effects of tobacco smoke extract (TSE) to nicotine or

benzo[a]pyrene on neurodifferentiation in PC12 cells

• TSE promoted the transition from cell replication to neurodifferentiation and

specifically enhanced emergence of the dopamine phenotype

• TSE effects on replication and neurodifferentiation were greater than those of

nicotine, nor did nicotine promote the dopaminergic phenotype

• Benzo[a]pyrene had opposite effects from TSE, retarding neurodifferentiation

• TSE effects on neurodifferentiation are distinct those of nicotine or

benzo[a]pyrene
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Figure 1.
Effects of TSE, nicotine and BaP on indices of cell number and cell growth: (A) DNA, (B)

total protein/DNA ratio, (C) membrane protein/DNA ratio. Data represent means and

standard errors of the number of determinations shown in parentheses. ANOVAs for the

main effects of treatment are shown at the top of each panel and asterisks denote groups that

are statistically significant from the control group.
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Figure 2.
Effects of TSE, nicotine and BaP on neurodifferentiation into dopaminergic and cholinergic

phenotypes: (A) tyrosine hydroxylase, (B) choline acetyltransferase. Data represent means

and standard errors of the number of determinations shown in parentheses. ANOVAs for the

main effects of treatment are shown at the top of each panel and asterisks denote groups that

are statistically significant from the control group.
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