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Abstract

Several approaches exist for handling missing covariates in the Cox proportional hazards model.

The multiple imputation (MI) is relatively easy to implement with various software available and

results in consistent estimates if the imputation model is correct. On the other hand, the fully

augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and

have the doubly robust property. In this paper, we compare the FAWEs and the MI through a

comprehensive simulation study. For the MI, we consider the multiple imputation by chained

equation (MICE) and focus on two imputation methods: Bayesian linear regression imputation and

predictive mean matching. Simulation results show that the imputation methods can be rather

sensitive to model misspecification and may have large bias when the censoring time depends on

the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing

covariates and are remarkably robust as long as getting either the conditional expectations or the

selection probability correct due to the doubly robust property. The comparison suggests that the

FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of

survival data with missing covariates.
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1. Introduction

Missing covariate problems are very common in epidemiologic studies and clinical trials

with survival outcomes, where the Cox proportional hazards (PH) model [1] is usually used

for analysis. In many situations, some covariates are always observed while others are only

available for a subset of the study subjects by design or happenstance. Using only complete
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data, known as the complete-case (CC) analysis, may not only lose efficiency but also yield

biased estimates when the missing mechanism depends on the outcome [2]. When the

missing covariates are missing at random (MAR), i.e. the probability of missingness

depends only on the observed data [3], several methods have been developed to handle the

missing data problem in the Cox PH model. In this paper, we review and compare two

approaches: the augmented inverse probability weighted (AIPW) and multiple imputation

methods.

The AIPW estimation of the Cox PH model with missing covariates was first proposed by

Robins, Rotnitzky and Zhao [4], also described by Nan, Emond and Wellner [5] and further

developed by Wang and Chen [6]. The AIPW estimation improves the efficiency of the non-

augmented inverse probability weighted (IPW) method by adding an augmented term to the

original IPW estimating functions. And the resulting estimators are doubly robust: they are

consistent if either the selection probability model or the conditional distribution of the

missing covariates given the observed data is correctly specified. Recently, Qi et al. [7]

proposed the FAWEs in which the selection probability and the conditional expectations are

estimated by the nonparametric Nadaraya-Watson kernel method. The FAWEs are more

efficient than the IPW estimators with true selection probability, and they require neither a

parametric model for the selection probability nor parametric specification of the conditional

distribution of the missing covariates given the observed data [7].

On the other hand, multiple imputation (MI) [3] is widely used to handle missing data in

practice because the concept is relatively simple and various software including SAS and R

are available for implementation [8]. The main idea of this approach is to first generate

multiply complete data sets by imputing missing values, then analyze these imputed data

sets with standard complete-data analysis procedures and combine the multiple analysis

results to yield a single inference using the “Rubin's rules” [3]. From a Bayesian perspective,

the imputed values are generated from an imputation model which characterizes the

posterior predictive distribution of the missing values given observed data [3]. The choice of

variables in the imputation model is critical. When missing covariates are to be imputed, it is

essential to include the outcome variable of the data analysis in the imputation models [9].

Otherwise, the outcome-covariate association might be biased towards null using the

imputed data [10]. Little [11] has discussed general strategies for dealing with missing

covariates. Applications of MI for the Cox PH model with missing covariates can be found

in Paik [12], van Buuren et al. [13], Barzi and Woodward [14] and White and Royston [15].

The comparison of the AIPW and the MI methods with missing covariates has been

conducted for linear models [16] and generalized linear models [17]. Results suggest that the

AIPW estimators generally are more robust than the MI method when the covariate

distributions are mis-specified. However, there is a lack of relevant literature in survival

analysis. In this paper, we compare the two approaches for the Cox PH model with missing

covariates through an extensive simulation study. We assume throughout that the data are

MAR, and that censoring is non-informative. For the AIPW approach, we adopt the FAWEs

by Qi et al. [7]. For MI, there are two widely available methods of model-based imputation,

multiple imputation based on the multivariate normal distribution (MVNI), originally

implemented by Schafer [18], and the multiple imputation by chained equation (MICE) [13,

Qi et al. Page 2

Stat Med. Author manuscript; available in PMC 2014 May 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



19]. We consider MICE in the simulation study since the Cox PH model is semiparametric

while implementing MVNI through a fully Bayesian modeling approach requires

specification of the baseline hazard function [12]. With MICE, we focus on two imputation

models for continuous missing covariates: Bayesian linear regression imputation [3] and

predictive mean matching [20], and the Bayesian logistic regression imputation for binary

data [3, 13, 21], supported by the MICE package in R. We intend to assess the performance

of the FAWEs and the MI methods in the following scenarios:

1. when the missing and the observed covariates are correlated and mis-specification

exists on models for either selection probability or covariate distributions,

2. when the censoring time depends on missing covariates,

3. when the correlation between missing and observed covariates and the amount of

missing data vary over a range of values,

4. when the PH assumption does not hold, motivated by the fact that it is not

uncommon applying the Cox PH model to data from other distributions in practice

[22].

The rest of the paper is organized as follows: in Section 2, we review the FAWEs and the

MI methods used for comparison. Section 3 describes the simulation study and presents the

results. In Section 4, we will present a data example from the on-going Childhood Autism

Risk from Genetics and the Environment (CHARGE) study. And discussion follows in

Section 5.

2. Methods

2.1. Notation

We consider the Cox PH model [1] specified by the hazard function λ (t ∣Z) = λ0 (t)

exp(βTZ), where λ0 (t) is an arbitrary and unspecified baseline function and Z denotes a set

of time-independent covariates. Let T, C and X = min(T, C) be the failure, censoring and

observed time for a subject, respectively. The failure indicator δ = I(T ≤ C) is 1 if the subject

experiences an event and δ = 0 if censored. We assume that given Z, T and C are

independent. Suppose some elements of Z are missing, and write Z = (Zm, Zo), where Zo

denotes the covariates that are always observed (the observed covariates), and Zm denotes

the covariates that are sometimes missing (the missing covariates). Let the selection

indicator V equal 1 if Zm is available, and V = 0 if Zm is missing. Under MAR, the missing-

data mechanism is determined by the conditional distribution of V given (X, δ, Zo), which is

Bernoulli with selection probability π = Pr(V = 1 ∣X, δ, Zo). Let , i = 1,

…, n be i.i.d copies of (X, δ, Zo, Zm, V), then the observed data available for analysis are

 if Vi = 1 and  if Vi = 0.

2.2. Fully Augmented Weighted Estimators

The FAWEs are doubly robust AIPW estimators, which generalized the non-augmented

IPW estimators. The fully augmented weighted estimating function include two terms. The

first term is an IPW estimating function based on the idea of Horvitz and Thompson [23]
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and the second term is a mean zero augmentation term including incomplete observations.

Specifically, the fully augmented weighted estimating function by Qi et al. has the form [7]:

(1)

where

and for k = 0, 1,

(2)

where N(t) = δI(X ≤ t) and Y(t) = I(X ≥ t) are the counting process and the at-risk process,

respectively, corresponding to (X, δ), and a⊗0 = 1, a⊗1 = a. This fully augmented weighted

estimating function uses inverse probability weighting in both the augmentation term

 and the augmented averages  (k = 0, 1). The augmentation term

 is essentially the weighted (by 1 − Vi/πi) conditional expectation of the summand

in the first term, i.e. , given the observed data.

This term makes use of both complete and incomplete data, allowing incomplete

observations to contribute to parameter estimation directly. Similarly, the augmented

averages  (k = 0, 1) also include contributions from the incomplete observations.

The conditional expectations  and  (k

= 0, 1) in (1) and (2) depend on the unknown cumulative baseline hazard function and the

conditional distribution of Zm given Zo. To estimate these conditional expectations, Qi et al.

[7] implemented nonparametric kernel smoothing techniques, specifically, the Nadaraya-

Watson estimator [24, 25]. When π is unknown, the Nadaraya-Watson estimator can also be

used to estimate it based on all available data. Details of these estimations can be found in

Appendix I. The advantage of adopting nonparametric estimations is that it does not impose

parametric assumptions on π or the association between Zm and Zo. To obtain estimates, the

Newton-Raphson algorithm can be used to solve the fully augmented weighted estimating

equations. And the resultant FAWEs have the doubly robust property: they are consistent if

either the selection probability or the conditional expectations are correctly estimated.

Under certain conditions (refer to [7]), the FAWEs are asymptotically consistent for the true

parameter β and normally distributed with mean 0 and variance matrix which consists of

two terms: the variance pertaining to the Cox partial likelihood estimator based on full

cohort data and a term quantifying the efficiency loss due to missing covariates. This
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asymptotic variance is smaller than that of the non-augmented IPW estimator (termed

simple weighted estimator in [7]) with true selection probability, indicating improved

efficiency of the FAWEs over the IPW estimator [7]. More over, when Zm can be exactly

specified by (X, δ, Zo), the FAWEs achieve the efficiency of the Cox partial likelihood

estimator based on the full cohort data [7]. Detailed expression of the asymptotic variance

and its consistent estimator can be found in Appendix II.

2.3. Multiple Imputation

MI is a simulation based approach to deal with incomplete data, developed from a Bayesian

perspective. The main idea is to replace each missing value with several imputed values and

produce multiply imputed data sets. Generally for a univariate Zm under MAR, and given the

observed data (X, δ, Zo), several sets of plausible values for Zm can be drawn from an

appropriate imputation model p(Zm ∣X, δ, Zo). When there are multiple missing covariates,

multiple imputation by chained equations (MICE) [13, 19] can be used. MICE starts by

filling in missing values arbitrarily, then the aforementioned univariate method can be

applied to each missing covariate Zm in turn, using the current imputed values of the other

missing covariates when drawing new values of Zm. This procedure is iterated until

convergence, often achieved in less than 10 cycles [26].

After obtaining imputed data sets, a complete data method (Cox regression in our case) is

performed on each data set separately. Then analysis results from the multiply imputed data

sets are combined to yield an overall inference that incorporates the within- and between-

imputation variation using “Rubin's rules” [3]. Let β̂k be the coefficient estimate obtained

from the imputed data set k (for k = 1, …, M) and Vk be the estimated variance of β̂k. Then

the combined estimate equals , and the overall variance is given by Var(β̄) =

W̄ + (1 + M−1)B, where , and 

[18].

An appropriate imputation model for missing covariates hinges on a valid characterization

of the conditional distribution of the missing covariates given the observed data. Under the

Cox PH regression model, however, such conditional distribution does not have standard

and closed forms [15]. A practical strategy is to use some common regression models to

approximate the covariate distribution. Following an influential paper on the practical use of

MI [13] and a recent paper of MI for the Cox PH model [15], linear regression and logistic

regression models can be used to impute continuous and binary missing covariates,

respectively. For example, results from these studies suggested the following model can be

an appropriate imputation model for a continuous . This

model includes all available variables, the survival outcome X, δ, and the observed

covariates Zo, as predictors, and is referred as “full imputation model” in our simulation

study (Section 3). To investigate the robustness of the MI under model misspecification, we

also consider the imputation model excluding some or all elements of Zo, eg. Zm ∼ θ0 + θ1X

+ θ2δ, called the “reduced imputation model”.
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The MI methods is supported by many software packages such as SAS [27] (www.sas.com),

STATA [28] (www.stata.com) and R [21] (www.r-project.org). A good summary of

software packages for the MI can be found in Harel and Zhou [8]. The MICE packge in R

supplies a number of built-in elementary imputation models [29], and we primarily use the

impute.norm and impute.pmm methods for continuous missing covariates and impute.logreg

for binary missing covariates from this package to carry out our simulation study. Below we

briefly describe these methods for a univariate Zm:

impute.norm uses Bayesian linear regression imputation [3], assuming that Zm given the

observed data follows a normal distribution and noninformative priors for the

parameters.

impute.pmm implements predictive mean matching [20], a general purpose semi-

parametric imputation method. It is a modification to impute.norm that may help to

preserve subtle deviations from normality of the residuals. The method uses the

predictive mean to define a match between  (the missing components of Zm) and

 (the observed components of Zm). And the imputed value of each  will be the

 whose predicted value is closest to that of the  [30].

impute.logreg imputes binary data by the Bayesian logistic regression model [3, 13, 21].

3. Simulation

3.1. General Description

A comprehensive simulation study was conducted to examine and compare the moderate

sample size (n = 250) performance of the FAWEs and MI methods, as well as to compare

their performance with that of the full-cohort (Cox regression based on full cohort data) and

the CC analyses. The simulation study focused on the case for a single missing covariate,

but the comparison would be similar for situations with multiple missing covariates. We

designed four simulation settings to assess the performance of the FAWEs and the MI

methods respectively corresponding to the four scenarios discussed in the Introduction. The

first three settings considered survival outcomes generated by the Cox PH model and the

fourth setting used survival outcomes generated by a lognormal accelerated failure time

(AFT) model. The Cox PH model was used as the analytic model in all settings, and one

thousand data sets were generated in each simulation setting. For implementation of the

imputation methods, five imputed data sets were generated and five iterations were

employed to impute each data set.

The performances of the FAWEs and the MI estimators were evaluated based on the

following quantities [31]:

Percentage bias (PB): the relative magnitude of the raw bias to the true value of the

parameter, calculated by (E(β̂) − β)/β. A bias is considered large if the percentage bias

exceeds 5% in either direction.

Coverage rate (CR): percentage of times that the true parameter value is covered in the

95% confidence interval. It is calculated based on the theoretical standard errors (SEs)

of the point estimates.
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Average length of confidence interval (AL): the average of the 1000 lengths of the 95%

confidence intervals (CIs). It is used as a measure of precision of the estimates for

comparison between the FAWEs and the MI estimators. We compare the length of CIs,

not SEs because the former takes into account that inference is based on a t-distribution

for MI while the FAWEs are asymptotically normal. A high coverage rate together with

narrow, calibrated CIs suggests greater accuracy and higher power.

We present the four simulation settings and simulation results one by one below. We use MI

norm, MI pmm and MI logreg to denote impute.norm, impute.pmm and impute.logreg

methods respectively when describing results.

3.2. Simulation Scenario 1

Simulation setting 1 was designed to compare the robustness of the FAWEs and the MI

methods with either selection probability or covariate distributions specified wrong when the

missing and the observed covariates are correlated. The hazard function was specified by λ(t

∣Z) = exp(βTZ), where β = (−ln(2), ln(2), ln(2)) and Z contained one missing covariate Zm

and two observed covariates  and  with pairwise correlation coefficient of 0.3. The

missing covariate Zm followed a standard normal distribution, and  and  were both

binary variables taking values 0 and 1 with probability 0.5. A uniform censoring time was

used with the upper limit selected to give 40% cases (uncensored observations). The

selection probability was associated with X, δ,  and , causing 40% of cohort members

to have missing Zm.

We assess the robustness of the FAWEs by considering four situations: (a) both π and E's

(the conditional expectations in Equations (1) and (2)) were correctly estimated, i.e. their

Nadaraya-Watson estimators used X, δ,  and ; (b) π was estimated wrong because its

Nadaraya-Watson estimator used X, δ and  or only X and δ, but E's were correctly

estimated; (c) π was estimated correctly, but E's were wrongly estimated because their

Nadaraya-Watson estimators used X, δ and  or only X and δ; (d) both π and E's were

wrongly estimated because their Nadaraya-Watson estimators used X, δ and  or only X

and δ.

We assess the robustness of MI norm and MI pmm by considering both the “full imputation

model” (the imputation model with X, δ,  and ), and the “reduced imputation model”

(the imputation model with X, δ and  or only X and δ).

Simulation results are presented at the top of Table 1. The CC analysis produced large bias

because the selection probability depended on the outcome variables. The biases and

coverages for the FAWEs were within reasonable limits as long as either the conditional

expectations or the selection probability was correctly estimated, confirming the double-

robustness property. When both π̂ and the estimated conditional expectations Ê were wrong,

the FAWEs yielded slightly large bias for the parameter estimates of  and . For the

FAWE with π̂ and Ê based on (X, δ), both  and  had negative biases, indicating that the

estimates might be biased towards null when  and  were not used in estimating π̂ and

Ê. Similarly, for the FAWE with π̂ and Ê based on (X, δ, ) without  had negative
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bias, which implies that the estimate for  might attenuate to 0 and tend to be smaller than

its true parameter value when  was not used in obtaining π̂ and Ê. On the other hand,

since  was correlated with Zm and , the estimate of  might tend to be larger than its

true parameter value when including  in the estimation of π and E besides (X, δ), resulting

in positive bias for . The same pattern remained when including  in and excluding 

from the estimation of π and E in that  had positive bias while  had negative bias. The

FAWEs with wrong Ê also had larger AL than those with correct Ê, implying that the

precision of FAWEs may be suffered by not including all the variables in estimating the

conditional expectations.

For the MI estimators, both biases and coverages were within reasonable limits when using

the full imputation model. MI pmm had similar AL to those of the FAWEs with correct Ê

while MI norm had larger AL than the FAWEs with correct Ê, suggesting these FAWEs

may have better efficiency than MI norm. When using the reduced imputation models, i.e.

excluding  or both  and  from the imputation models, both MI norm and MI pmm

generated large biases and low coverage rates. This indicates that the MI estimators may be

rather sensitive to exclusion of certain relevant variables from the imputation models.

In the same setting, we also replicated the simulation using Zm as a binary variable taking

values 0 and 1 with probability 0.5. Logistic regression models were used to impute Zm in

the MI method. Simulation results are presented at the bottom of Table 1. In general, the

results show similar patterns as those in the case where Zm was continuous. The FAWEs

were doubly robust and had smaller AL for β̂m than MI logreg. When both π̂ and Ê were

wrong, the FAWEs yielded slightly large bias for the parameter estimate of Zm, and MI

logreg had large bias for most of the parameter estimates when using the reduced imputation

models.

In Simulation Scenarios 2 - 4, the FAWE with both π and E's correctly estimated and the MI

using the full imputation model were considered.

3.3. Simulation Scenario 2

The focus of the second setting was to investigate how association between the censoring

time and the missing covariate would affect the performance of the FAWE and the MI

methods. The hazard function was specified by λ(t ∣Z) = λ0(t) exp(βTZ), with a Weibull

baseline hazard λ0(t) = 0.8(0.6)0.8t−0.2, β = (−ln(2), ln(2)) and Z = (Zm, Zo). The missing

covariate Zm followed N(1/2, 1/12), and Zo was a binary variable taking values 0 and 1 with

probability 0.5. Censoring times were generated using exponential distributions depending

on Zo only and on both Zm and Zo, respectively, both yielding about 70% censoring rate. The

selection probability was associated with X, δ and Zo, allowing about 35% of cohort

members to have missing Zm.

Results are presented in Table 2. When the censoring time depended on Zo but not on Zm,

the FAWE and both imputation methods performed well. When the censoring time

depended on both Zm and Zo, the performance of the FAWE changed little. However, both
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MI estimators, especially MI norm had large bias for βm. This suggests that the FAWE may

outperform both imputation methods when censoring times depend on missing covariates.

3.4. Simulation Scenario 3

The third simulation setting was designed to study the effect of the strength of correlations

between the missing and the observed covariates, and the amount of missing data on the

performance of the two approaches. The hazard function was specified by λ(t ∣Z) =

exp(βTZ), with β = (−ln(2), ln(2)) and Z = (Zm, Zo). The covariates Zm and Zo followed

bivariate normal distributions with the correlation coefficient varying from 0 to 0.7. A

uniform censoring time was used with the upper limit selected to give 35% cases. The

selection probability was determined by X, δ, and Zo, resulting in 30% to 80% missing data.

Simulation results show the general trend of decreasing bias and increasing precision for all

estimators over increasing selection probability (e.g. Figure 1.), and slightly increasing bias

and decreasing precision over increasing correlation coefficients (e.g. Figure 2.). Figure 1

displays the plots of PB and AL versus selection probability when the correlation coefficient

was 0.6. For βm, the FAWE showed slightly larger bias (PB was still close to 5%) than the

MI estimators when the selection probability was below 50%; all estimators performed

similarly when the selection probability was above 50%. For βo, the bias was similar among

the FAWE and the MI estimators. The plots of AL vs the selection probability (Figure 1)

show that for both βm and βo the FAWE had noticeable smaller AL than the MI estimators,

especially when the selection probability was below 50%. This suggests that the FAWE may

have better efficiency than the two imputation methods under large amount of missing data.

Figure 2 presents the plots of PB and AL versus the correlation coefficient between Zm and

Zo when the selection probability was 50%. For βm, the FAWE showed slightly larger bias

(PB was still close to 5%) and smaller AL than the MI estimators across the range of various

correlations, while they performed similarly for βo.

3.5. Simulation Scenario 4

In this scenario, we explored the performance of the FAWE and the MI methods when the

PH assumption was violated. Specifically, the failure time was generated from a lognormal

AFT model: log(T) = βTZ + σε, where β = (−ln(2), ln(2)), Z = (Zm, Zo), σ = 1 and ε ∼
normal(0,1). Both Zm and Zo followed a standard normal distribution and they were

independent. Exponential censoring time was considered with rate selected to generate 60%

cases. The selection probability depended on X, δ, and Zo, resulting in 20% missing data.

Table 3 presents the results. Since the Cox PH model and the AFT model are on different

scales, describe different quantities and there is not direct transformation between the two

models in general, it is not proper to calculate the bias and precision quantities based on the

parameter values used in generating the survival data [32]. Instead, we used the average

parameter estimates from the full-cohort analysis as the “true” parameter values in

simulation assessment. Comparing to estimates from the full-cohort analysis, the FAWE had

reasonable bias and close to reasonable coverage. But the MI estimators had larger biases,

especially for βm. This implies that the FAWEs can yield results close to those of the full-
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cohort data analysis even when the PH regression assumption is violated, while the MI

estimators may not.

3.6. Result Summary

In summary, the results from the simulation study suggest the following:

1. The FAWEs are consistent as long as either the selection probability or the

conditional expectations are estimated correctly while the MI estimators can be

biased when the imputation models exclude some relevant variables.

2. The performance of the FAWEs are not affected when the censoring time depends

on the missing covariates while the MI estimators may have large bias in such

situations.

3. The FAWEs may have better precision than the MI estimators in some situations,

eg. under large amount of missing data.

4. When the PH assumption is violated, the FAWEs produce results closer to those of

the full-cohort analysis than the MI methods.

4. Data Example: the CHARGE Study

The research reported here was partially motivated by a particular missing data problem in

the Childhood Autism Risk from Genetics and the Environment (CHARGE) study. The

CHARGE study is an ongoing population-based case-control study being conducted in the

M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute of University

of California Davis [33]. The overall goal of the study is to uncover environmental and

genetic factors that increase the risk and severity of autism, a complex developmental

disorder with symptoms encompassing a range of deficits in social interaction, language and

repetitive or stereotyped behaviors manifested by the age of three.

In this specific analysis, we attempt to study the association between language development

(characterized by verbal or non-verbal and time to first real words) and polybrominated

diphenyl ether 85 (PBDE-85) using 440 boys from the CHARGE study. PBDE-85 is a flame

retardent with potential neurodevelopmental toxicity used widely in homes such as

construction materials, foam seats and furniture. To save cost, the concentrations of

PBDE-85 in serum was measured only for a random sample of 43 cases (autistic children)

and 19 controls (typically developing children). So about 86% of the boys had missing

PBDE-85 (378/440). The missing data mechanism is related to children's diagnosis status

(case or control) by design and hence it is reasonable to assume MAR in the data analysis.

For data analysis, we used a Cox PH regression model. The survival outcomes were verbal

status and time to first real words, and the covariates included PBDE-85 (log-transformed)

and two fully observed covariates: diagnosis status and child's age. About 9% boys had a

censored outcome (402 verbal boys). We applied the CC analysis, the FAWE, MI norm, and

MI pmm to the CHARGE data. Child's age, diagnosis status, time to first real words and

verbal status were used in the imputation models for the MI estimators and the Nadaraya-

Watson estimators of the selection probability and the conditional expectations for the
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FAWE. Due to the high missing rate, 1000 imputed data sets were generated and 1000

iterations were employed to impute each data set in the MI methods.

The analysis results in Table 4 showed that PBDE-85 was not significantly associated with

language development after adjusting for diagnosis status and child's age. The CC analysis

usually had the largest coefficient estimate and length of CI for all three covariates probably

due to excluding all the incomplete data. The FAWE had slightly larger coefficient estimate

for PBDE-85 and smaller coefficient estimate for diagnosis than the MI estimators while all

the FAWE and MI estimators had similar estimates for child's age. Estimate from the FAWE

had the smallest length of CI for PBDE-85, and the lengths of CI were similar for diagnosis

status and child's age among all the FAWE and MI estimators, consistent with the pattern

seen in our simulation study.

5. Discussion

In this article, we have compared the FAWE and the MI methods for the Cox PH model

when the primary covariates of interest are only observed for a subset of the study sample.

Both methods make use of incomplete observations as well as complete observations to

obtain estimates, but in different ways. The FAWEs directly use the incomplete data

nonparametrically in the estimating equations, and have the doubly robust property. Their

bias and coverages are within reasonable limits as long as either the selection probability or

the conditional expectations are estimated correctly. The efficiency of the FAWEs estimates

appear relatively insensitive to misspecification of the selection probability in the simulation

study, though more sensitive to misspecification of the conditional expectations. When the

true selection probability is known, it can be used directly in the FAWEs to produce similar

estimates [7]. On the other hand, the MI methods use the incomplete data when generating

imputed data sets. It is crucial that the imputation model include all relevant variables to

yield valid results. Omitting one or more relevant observed covariates may result in poor

estimates with severe bias and low coverage rate. In addition, simulation results show the

general trend of increasing bias and decreasing precision for both methods over increasing

level of missingness. When the amount of missing data is greater than 75 - 80%, the FAWEs

and the MI may have large bias or worse precision, especially for the parameter estimates of

the missing covariates. However, the performance of these methods may also depend on

other factors such as sample size, effect size and the correlation among covariates and

outcome variables. So these methods might still yield useful results in certain situations with

high missingness rates.

In our simulation study, we find that MI methods yield estimates with large bias when the

censoring time depends on missing covariates (see Table 2). This indicates that the MI

estimators may require independence between censoring times and missing covariates to

produce consistent estimates, like the nonparametric maximum likelihood (NPML) method

[34]. But the FAWEs perform well when the censoring time depends on the missing

covariates, and similarly to the case when the censoring time and the missing covariates are

independent. Thus, compared to the MI methods, the FAWEs have the advantage of

allowing censoring times to depend on missing covariates.
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Using the Cox PH model to analyze data appears to be a common practice even when the

PH assumption is violated. Our simulation study shows that the FAWE performs much more

similarly to the full-cohort analysis than the MI methods when fitting a Cox model to data

generated by a lognormal AFT model. Hence the former approach might be more desirable

if treating the full-cohort analysis results as the “gold standard”. On the other hand, to obtain

more reasonable results, it needs to extend both approaches to missing covariate problems

under other survival models such as AFT models including the lognormal AFT model and

the parametric Weibull PH model. In addition, we focused on comparing the two approaches

for time-independent covariates in this paper since the FAWEs have not been developed for

time-dependent covariates yet. It will be interesting and important to extend the FAWEs to

time-dependent covariates and compare it with the MI. We plan to further investigate these

topics in the future.

In practice, when handling survival data with missing covariates, it is important to examine

the data closely before conducting analysis, and try to understand the reasons for missing

observations. Variables related to the missing data mechanism need to be included in the

analysis, in one way or another, whichever method is used. Multiple imputations are

relatively easy to implement with various software available but they can be sensitive to

model misspecification. In contrast, the FAWEs recover a substantial proportion of the

efficiency and are also remarkably robust as long as getting either the conditional

expectations or the selection probability correct. They also require less restrictive

assumptions on censoring mechanism. Hence, we believe that the FAWEs show the

potential for being a competitive and attractive tool for tackling the analysis of survival data

with missing covariates. Further computational and software development is needed for this

method to be available to many practitioners.
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Appendix I: Nadaraya-Watson estimators for the conditional expectations

and the selection probability

Let W = (X, δ, Zo), and let φ(w) = E{f ∣w} denote the conditional expectation of f given W.

Assuming φ(w) is a smooth function with r continuous and bounded partial derivatives with

respect to the continuous components of W a.e., then a Nadaraya-Watson estimator of φ(w)

in (1) is given by

(3)
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where K is an rth-order kernel function and h is a smoothing parameter. The Nadaraya-

Watson [24, 25] estimator can be also used to estimate the selection probability π based on

all available data:

(4)

When both selection probabilities and conditional expectations are estimated

nonparametrically, different kernel functions could be employed in the two places. For

simplicity we used the same kernel function in our simulations. To obtain these Nadaraya-

Watson estimators, the R function ksmooth was employed with normal kernel and

smoothing parameter h = 4σWn−1/3 when W contained one continuous element; the

sm.regression in the sm library of A.W.Bowman and A.Azzalini was used when W
contained two continuous elements.

Appendix II: Asymptotic distribution of the FAWEs and the consistent

estimator of Σf aw(π)

Under certain conditions (refer to [7]), the FAWEs are asymptotically consistent for the true

parameter β and normally distributed with mean 0 and variance matrix Σ−1Σf aw(π)Σ−1 with

, where

, and

 is the martingale

transformation with mean E{MZ̃} = 0 and variance Σ [7].

Consistent estimators of the variances for the FAWEs can be obtained as shown in Qi et al.

[7]. Specifically, to estimate the variance Σf aw(π) for β̂f aw(π̂, Ê), let

to be the estimators of dΛ0(t) and MZ̃, respectively. Then Σ and  are estimated

respectively by
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and

where  is obtained using the Nadaraya-Watson estimator given in (3).
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Figure 1.
Percentage bias (PB) and average length (AL) vs. selection probability for the FAWE and

the MI methods of the Cox Model. Baseline hazard function is 1, β = (−ln(2), ln(2)), where

Zm, Zo ∼ N(0, 1), with correlation coefficient of 0.6; uniform censoring time with censoring

rate 65%; and selection probability π(X, δ, Zo) = (1 + exp(a + bδ + cX + dZo))−1, where

a,b,c,d were selected to generate 30% to 80% of cohort members to have missing Zm; the

cohort size is 250. For FAWE, both π and E were obtained based on (X, δ, Zo) using the

Nadaraya-Watson estimator with normal kernel and bandwidth h = 4σWn−1/3. For MI,

imputation models contained (X, δ, Zo).
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Figure 2.
Percentage bias (PB) and average length (AL) vs. correlation for the FAWE and the MI

methods of the Cox Model. Baseline hazard function is 1, β = (−ln(2), ln(2)), where Zm, Zo

∼ N(0, 1), with correlation coefficients ranging from 0 to 0.7; uniform censoring time with

censoring rate 65%; and selection probability π(X, δ, Zo) = (1 + exp(a + bδ + cX + dZo))−1,

where a,b,c,d are selected to generate 50% of cohort members to have missing Zm; the

cohort size is 250. For FAWE, both π and E were obtained based on (X, δ, Zo) using the

Nadaraya-Watson estimator with normal kernel and bandwidth h = 4σWn−1/3. For MI,

imputation models contained (X, δ, Zo).
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