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Summary

Public health researchers often estimate health effects of exposures (e.g., pollution, diet, lifestyle)

that cannot be directly measured for study subjects. A common strategy in environmental

epidemiology is to use a first-stage (exposure) model to estimate the exposure based on covariates

and/or spatio-temporal proximity and to use predictions from the exposure model as the covariate

of interest in the second-stage (health) model. This induces a complex form of measurement error.

We propose an analytical framework and methodology that is robust to misspecification of the

first-stage model and provides valid inference for the second-stage model parameter of interest.

We decompose the measurement error into components analogous to classical and Berkson error

and characterize properties of the estimator in the second-stage model if the first-stage model

predictions are plugged in without correction. Specifically, we derive conditions for compatibility

between the first- and second-stage models that guarantee consistency (and have direct and

important real-world design implications), and we derive an asymptotic estimate of finite-sample

bias when the compatibility conditions are satisfied. We propose a methodology that (1) corrects

for finite-sample bias and (2) correctly estimates standard errors. We demonstrate the utility of our

methodology in simulations and an example from air pollution epidemiology.
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1. INTRODUCTION

We consider measurement error that results from using predictions from a first-stage

statistical model as the covariate of interest (the exposure) in a second-stage association

study. Regardless of the exposure prediction model, there will be measurement error from

the difference between predictions and the unmeasured true values. In contrast with standard

measurement error models and the usual classification into classical and Berkson error, such

predictions induce a complicated form of measurement error that is heteroscedastic and
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correlated across study subjects (Gryparis et al. 2009; Szpiro et al. 2011b). Our objectives

are to characterize the effects of this error, to give guidelines for study design to minimize

the impact, and to provide a correction method that reduces bias and gives valid confidence

intervals.

In this section, we review the literature on measurement error correction for air pollution

cohort studies and describe how our approach advances the state of the art (Section 1.1),

comment on connections between our work and fundamental statistical issues concerning

the interpretation of random effects models and the interplay between random vs. fixed

covariate regression and misspecified mean models (Section 1.2), and outline the main

sections of the paper (Section 1.3).

1.1. Measurement error

There has been extensive research on exposure measurement error in regression models

(Carroll et al. 2006). The categories of classical error (random noise added to a correctly

measured exposure, assumed to be independent of the true exposure and the outcome) and

Berkson error (part of the true exposure variability that is not captured by the measurement

process, assumed to be independent of the measured exposure but not of the outcome) are

extremely useful in many settings. In linear regression, classical error generally induces bias

toward the null, while Berkson error does not introduce any bias but does inflate standard

errors.

However, the statistical literature has only recently begun to deal with the problem presented

here. For spatial exposure contrasts, we have generalized the standard categories by

decomposing the measurement error into a Berkson-like component from smoothing the

exposure surface and a classical-like component from variability in estimating exposure

model parameters (Gryparis et al. 2009; Szpiro et al. 2011b; Sheppard et al. 2011). We and

others have also shown that the parametric bootstrap (or a computationally e cient

approximation to the parametric bootstrap) can be used to correct for the effects of

measurement error (Madsen et al. 2008; Lopiano et al. 2011; Szpiro et al. 2011b). However,

validity of these results depends crucially on having a correctly specified exposure model. In

practice such models are developed for predictive performance and often use predictors

based on convenience, so we believe misspecification is ubiquitous. A distinguishing feature

of our methodology in this paper is that it is robust to misspecification of the mean and/or

variance in the exposure model and still provides valid second-stage inference.

We focus on two-stage analysis, as this is a common and practical approach when exposure

is not directly measured. An alternative is a unified analysis in which the exposure model is

a component of a joint model for the exposure and health data (e.g., Sinha et al. (2010) in

nutritional epidemiology and Gryparis et al. (2009) in air pollution epidemiology), but this

type of joint model has several difficulties. First, it presupposes that one has a correct (or at

least nearly correct) exposure model; we argue that an exposure model can generally only

capture of portion of the variability in the full exposure and should be treated in this light.

Second, outlying second-stage data may influence estimation of the exposure model in

unexpected ways, especially when the second-stage model is misspecified (noting at the

same time that this feedback is an essential aspect of a coherent joint model and leads to
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increased efficiency). Third, the same exposure data are often used with multiple second-

stage outcome data, and it is scientifically desirable to use the same predicted exposures

across studies. Finally, exposure modeling can be computationally demanding, involving

spatial and spatio-temporal prediction, so pursuing a two-stage strategy has practical appeal.

For further elaboration of these points, see Bennett and Wakefield (2001), Wakefield and

Shaddick (2006), Gryparis et al. (2009), Lunn et al. (2009), and Szpiro et al. (2011b).

We and others have also evaluated standard correction methods such as regression

calibration, including using personal measurements as validation data (Gryparis et al. 2009;

Spiegelman 2010; Szpiro et al. 2011b). Performance in the spatial setting is mixed, most

likely because the error structure differs substantially from classical measurement error. The

methodology we describe here directly accounts for the spatial characteristics of

measurement error and relies on statistical estimates of uncertainty from the exposure model

rather than validation data.

A key application, and the one that motivates this work, is studying the health effects of

chronic exposure to ambient air pollution. Long-term air pollution exposure has been linked

with increased cardiovascular morbidity and mortality in prominent studies that form part of

the basis for regulations with broad economic impact (Dockery et al. 1993; Pope et al. 2002;

Peters and Pope 2002). Early air pollution cohort studies focused on mortality (Dockery et

al. 1993; Pope et al. 2002), while more recent work has shown associations with non-fatal

cardiovascular events (Miller et al. 2007) and sub-clinical indicators of disease (Künzli et al.

2005; Van Hee et al. 2009; Adar et al. 2010; Van Hee et al. 2011). In general, the health risk

of air pollution to any single individual is thought to be small, but there are important public

health implications because of the large number of people exposed and the ability of

governments to mitigate exposure through regulatory action (Pope et al. 2006).

In air pollution studies, exposure modeling is motivated by the desire to estimate intra-urban

(i.e., within a metropolitan area) variation in exposure, which is more difficult to quantify

than inter-urban pollution contrasts. There are significant advantages to exploiting intra-

urban contrasts, as this can increase statistical power to detect health effects, help rule out

unmeasured confounding by city or region, and improve our ability to differentiate between

the effects of different pollutants or pollutant components. Pollution data are typically

available from regulatory and research monitoring networks but not from long-term

residential or personal monitoring of individuals participating in observational health

studies, leading to a spatial misalignment problem. Typical exposure prediction models rely

on monitoring data in a regression with geographically-varying covariates and smoothing by

splines or kriging (Fanshawe et al. 2008; Jerrett et al. 2005a; Hoek et al. 2008; Su et al.

2009; Yanosky et al. 2009; Szpiro et al. 2010b; Brauer 2010). Standard practice is to select

an exposure model with good prediction accuracy, treat the predicted exposures as known,

and plug them into a health model to estimate the association of interest without accounting

for measurement error (Jerrett et al. 2005b; Künzli et al. 2005; Kim et al. 2009; Puett et al.

2009; Adar et al. 2010; Eckel et al. 2011; Gan et al. 2011; Van Hee et al. 2011; Raaschou-

Nielsen et al. 2013). We note that our work does not consider the use of deterministic

numerical models to predict exposure, but we comment on implications of our work in that

context in the discussion.
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While motivated by air pollution epidemiology, the core measurement error ideas in this

paper have much broader relevance. Indeed, Prentice (2010) (in the 2008 RA Fisher lecture

at the Joint Statistical Meetings) states that “measurement error in exposure assessment may

be a potentially dominating source of bias in such important prevention research areas as

nutrition and physical activity epidemiology.” It is essential to better understand the

implications of measurement error in a wide variety of applications in which one must first

estimate exposure. These applications include (1) nutritional epidemiology, (2) physical

activity epidemiology, (3) a environmental and occupational epidemiology, (4) exposure to

disease vectors or infectious agents, and (5) two-stage analyses in functional data contexts.

Statistical exposure models are commonly used in environmental and occupational

epidemiology (Dement et al. 1983; Preller et al. 1995; Stram et al. 1999; Ryan et al. 2007;

Slama et al. 2007), with kriging and land use regression particularly popular in air pollution

research. More generally, proxy data are becoming increasingly available and a natural idea

in many contexts is to model an exposure of interest given publicly available data. Such data

could include remote sensing from satellites or large networks of inexpensive sensors

deployed to measure physical phenomena.

1.2. Connections to other fundamental statistical issues

In addition to advancing measurement error research, our development emphasizes the

relationships between certain foundational issues in applied statistics that are of current

interest in the field, specifically the interpretation of random effects models and the interplay

between random vs. fixed covariate regression and misspecified mean models.

As discussed in Section 2.1, we have chosen to condition on a fixed but unknown spatial air

pollution surface, rather than taking the more conventional geostatistical approach of

modeling an unknown spatial surface as a random effect or spatial random field (Cressie

1993; Banerjee et al. 2004). The repercussions of this decision are related to the more

general question of how to interpret random effects models in light of reasonable

assumptions about the true data-generating mechanism, and whether this terminology is

even adequate for describing the range of problems to which random effects-based

algorithms are currently applied (Gelman 2005; Hodges and Reich 2010). Indeed, in a new

book on richly parameterized models, Hodges (2013) points out that our particular modeling

framework illustrates an important practical difference in inferential methodology between

what he calls ‘old’ and ‘new’ style random effects.

As discussed in Sections 2.1–2.2, we regard the entire unknown exposure surface as part of

the mean in a finite rank regression, rather than allocating the spatial component to the

variance by means of a random effect, so we must address the consequences of a

misspecified mean model. In addition, we regard the exposure monitor locations as random

rather than fixed (since they could presumably vary between hypothetical repeated

experiments), so we are in the setting of random covariate regression with a misspecified

mean model. Buja et al. (2013) and Szpiro et al. (2010a) have recently discussed some

implications of the distinction between fixed and random covariates when the mean model is

misspecified. In fact, the seminal paper by White (1980) on sandwich covariance estimators

includes the case of a misspecified mean model, but perhaps in part because the title focuses
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on heteroscedasticity, applications of the sandwich estimator tend to focus only on the

importance of non-constant variance. One often neglected consequence of the “conspiracy

of model violation and random X” (Buja et al. 2013) that is important in our development is

that regression parameter estimates are not quite unbiased. We provide an approach to

characterizing and estimating the asymptotic bias (see equation (B.2) and the surrounding

discussion) that is, as far as we know, novel.

1.3. Outline of paper

Section 2 presents our basic framework, a key feature of which is that it avoids the

assumption that the exposure model is correct and instead projects exposure data into a

lower dimensional space. We present conditions on the compatibility of the first and second

stage designs that have important real-world design and analysis implications. Section 3

decomposes the resulting measurement error into Berkson-like and classical-like

components. Under the compatibility conditions, we show that there is essentially no bias

from the Berkson-like error, although this component of the error still increases variability

of second-stage effect estimates. We then derive asymptotic estimates of the bias and

variance caused by the classical-like error. Section 4 describes our measurement error

correction approach, wherein we correct for bias from the classical-like error using our

asymptotic results and estimate the uncertainty, including that from both sources of

measurement error, using a form of the nonparametric bootstrap. Sections 5 and 6 present

simulations and an example application to the Multi-Ethnic Study of Atherosclerosis and Air

Pollution (MESA Air).

2. ANALYTICAL FRAMEWORK

2.1. Data-generating mechanism

We develop an analytic framework for air pollution cohort study data that also more

generally illustrates how one can use a measurement error paradigm to formalize two-stage

analysis with a misspecified first-stage model. While previous work has modeled the spatial

variation in air pollution as a random field (Gryparis et al. 2009; Szpiro et al. 2010b, 2011b),

we regard the spatial surface itself as fixed and treat the data locations as stochastic. This

avoids the philosophical difficulties inherent in attributing spatial structure of long-term

average air pollution to a stochastic spatial process that would be different in a hypothetical

repeated experiment. Long-term average air pollution concentrations over one or more years

are predominately determined by fixed but complex climatological, economic, and

geographic systems, so it is scientifically preferable to regard the unknown surface as

deterministic. Thus, we condition on the fixed physical world in the time period of the study

and consider a repeated sampling framework in which observations might have been

collected at different locations according to a (not necessarily known) study design. In

Section 7, we discuss the implications of this approach when considering shorter-term air

pollution exposures.

More formally, consider an association study with health outcomes yi and corresponding

exposures xi for subjects i = 1, . . . , n at geographic locations , with additional health

model covariates , including an intercept. Consider a linear model,
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(2.1)

where conditional on covariates the εi are independent but not necessarily identically

distributed, satisfying E(εi) = 0. Our target of inference is the health effect parameter, β. If

the xi and zi were observed without error, inference for β would be routine by ordinary least

squares (OLS) and sandwich-based standard error estimates (White 1980). We are interested

in the situation where the yi and zi are observed for all subjects, but instead of the actual

subject exposures we observe monitoring data, , for j = 1, . . . , n*, at different locations .

Nonlinear health models are of course important and are the subject of ongoing research, but

the linear setting is helpful for developing the general framework and our specific

asymptotic results.

We emphasize that we regard the spatial locations si and  of study subjects and monitors as

realizations of spatial random variables. The locations are chosen at the time of the study

design, and it is natural to regard them as stochastic in order to address the statistical

question of how the estimates of β would vary if different locations were selected according

to similar criteria. Thus, in our development we assume the si and  are distributed in 

with unknown densities g(s) and h(s), respectively, and corresponding distribution functions

G(s) and H(s). Throughout, we assume the subject locations are chosen independently of the

monitoring locations. To simplify the exposition, we further assume in Sections 3 and 4 that

both sets of locations are i.i.d. It is straightforward to account for clustering of subject or

monitor locations; see, for example, the simulation study in Section 5.2 and the data analysis

in Section 6.

Conditional on the si, we assume the xi satisfy

with i.i.d. mean zero ηi. The function Φ(s) is a deterministic spatial surface that is

potentially predictable by covariates and spatial smoothing, and the ηi represent variability

between exposures for subjects at the same physical location. We assume an analogous

model for the monitoring data at locations , with the same deterministic spatial field 

and with instrument error represented by  having variance .

Finally, we assume the additional health model covariates zi satisfy

where Θ(s) = (θ1(s), . . . , θp(s)) is a p-dimensional vector-valued function representing the

spatial component of the additional covariates, and which includes the intercept, and the ζi =

(ζi1, . . . , ζip) are random p-vectors independent between subjects and independent of the ηi.

Each component of ζi has mean zero, but the components of ζi are not necessarily

independent of each other. To illustrate, one additional health model covariate might be
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household income, decomposed into spatial variation representing the socioeconomic status

of the neighborhood and the residual variation between residences.

2.2. Exposure estimation

Standard practice is to derive a spatial estimator of exposure ŵ(s) based on the monitoring

data and then to use the ŵ(si) in place of the xi in (2.1) to estimate β. We consider a hybrid

regression (on geographically-defined covariates) and regression spline exposure model.

Thus, we let R(s) be a known function from  to  that incorporates q covariates and r –

q spline basis functions. If we knew the least-squares fit of the exposure surface with respect

to the density of subject locations g(s),

(2.2)

it would be natural to approximate xi by w(si) = R(si)γ. Notice that we do not assume the

spatial basis is sufficiently rich to represent all of the structure in Φ(s), so we allow for

misspecification in the sense that Φ(s) ≠ = w(s) for some , for any choice of γ.

We do not know γ, so we will estimate it from the monitoring data by  and then use the

estimated exposure, , in place of xi. In particular, we derive  by OLS

(2.3)

Under standard regularity conditions (White 1980),  is asymptotically normal and

converges a.s. to γ* as n* → ∞, where γ* is the solution to (2.2) with H(s) in place of

G(s). In Section 2.3, we discuss the implications of distinct reference distributions in (2.2)

and (2.3).

2.3. Exposure model choice

So far we have taken R(s) to be a known function from  to , encoding a set of decisions

about which covariates and spline basis functions to include in the exposure model. Indeed,

model selection is a complex task that involves trading o flexibility (advantageous for

modeling as much of the true exposure surface as possible) and parsimony (advantageous

for reducing estimation error). We begin by specifying compatibility conditions for the first-

stage exposure model that are needed to guarantee consistent estimation of β in the second-

stage health model. The following two conditions are sufficient, and we will discuss their

motivation further in Section 3.

Condition 1 The probability distribution of R(s) is the same if s is sampled from G(s) or

H(s).

Condition 2 The span of R(s) includes the elements of Θ(s), θk(s), k = 1, . . . , p, the spatially

structured components of the additional health model covariates.
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Note that Condition 1 is satisfied if the probability distributions of subject and monitor

locations are identical, i.e., g(s) = h(s) for all s. Visual inspection on a map can be useful for

verifying that g(s) and h(s) represent similar spatial patterns that are relevant for spline

functions, but individual geographic covariates may have very fine spatial structure, so it is

also useful to examine the values of these geographic covariates at subject and monitor

locations. If a particular covariate has noticeably different distributions in the two

populations, then it should not be included in R(s) (see, for example, the discussion of the

MESA data analysis in Section 6).

Selecting R(s) to satisfy Condition 2 implicitly requires that Θ(s) be defined at all locations

in the supports of g(s) and h(s). If g(s) = h(s) for all s, then this is automatically true since

Θ(s) is defined at all locations where it is possible for study subjects to be located.

Beyond the compatibility conditions above, there is a sizable and relevant statistical

literature on methods for maximizing out-of-sample prediction accuracy, which for spline

models amounts to selecting the number of basis functions and locations of knots or

selecting a penalty parameter (Hastie et al. 2001; Ruppert et al. 2003). In our setting,

improved accuracy of exposure model predictions will often correspond to improved

efficiency in estimating β, although this is not always the case (Szpiro et al. 2011a). We

comment further on the tradeoff between exposure model complexity and parsimony in

Section 7, but a specific algorithm for selecting geographic covariates or spline basis

functions is beyond the scope of this paper.

3. MEASUREMENT ERROR

Let  be the health effect estimate obtained from the OLS solution to (2.1) using ŵ(si)

estimated from n* monitoring locations in place of xi, for study subjects i = 1, . . . , n. This

estimator is affected by two fundamentally different types of measurement error: Berkson-

like and classical-like components (Szpiro et al. 2011b). Defining w*(si) = R(si)γ*, we can

express the measurement error, ui = xi – ŵ(si), as

(3.1)

The Berkson-like component, ui,BL, is the information lost from smoothing even with

unlimited monitoring data (a form of exposure model misspecification), and the classical-

like component, ui,CL, is variability that arises from estimating the parameters of the

exposure model based on monitoring data at n* locations.

The designation of ui,BL as Berkson-like error refers to the fact that this is part of the true

exposure surface that our model is unable to predict, even in an idealized situation with

unlimited monitoring data. As such, it results in predictions that are less variable than truth.

In Section 3.1 we consider the impact of the Berkson-like error alone and demonstrate

asymptotic unbiasedness for large n in Lemma 1, assuming the compatibility conditions of

Section 2.3 are satisfied. This result motivates the need for the compatibility conditions, but

it is not used directly in our measurement error methodology in Section 4. Our consistency
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result in Lemma 1 is analogous to Lemma 1 in White (1980), indicating that finite sample

bias occurs in generic random covariate regression even in the absence of measurement

error. Here we regard this bias as negligible, because in public health contexts n is often

relatively large, particularly compared to n*. Although ui,BL alone does not induce important

bias, it does inflate the variability of health effect estimates, and we account for this with the

nonparametric bootstrap in our proposed measurement error methodology in Section 4.

Classical-like measurement error, ui,CL, results from the finite n* variability of  as an

estimator of γ*. As discussed by Szpiro et al. (2011b), it is similar to classical measurement

error in the sense that it contributes additional variability to exposure estimates that is not

related to the outcome. Like classical measurement error, ui,CL introduces bias in estimating

β and affects the standard error, but it is not the same as classical measurement error because

it is heteroscedastic and shared between subjects. In Section 3.2 we estimate the bias from

classical-like measurement error (still under the the compatibility conditions of Section 2.3).

This estimate will provide a means to correct for bias as part of our measurement error

methodology in Section 4.

3.1. Berkson-like error (ui,BL)

Considering our estimator, , we isolate the impact of ui,BL by operating in the n* = ∞

limit with w*(si) = R(si)γ* and analyzing the behavior of . The following lemma holds

under sufficient regularity of g(s), h(s), Φ(s), and R(s). We include the proof here because it

is helpful for understanding the importance of the compatibility conditions in Section 2.3.

Lemma 1 Assuming Conditions 1 and 2,  converges a.s. to β as n → ∞.

Proof. It is easy to see that  is the OLS solution to (2.1) using w*(si) = R(si)γ* in place

of xi. Condition 1 implies γ* = γ, so we consider the impact of using w(si) = R(si)γ as the

exposure. We write

(3.2)

where the three terms grouped in parentheses are regarded as unobserved error terms. To

apply Lemma 1 from White (1980), it is sufficient that

(3.3)

and for each k = 1, . . . , p

(3.4)

where the random sampling of si is according to the density of subject locations, g(s).

Orthogonality of residuals in the least squares optimization for γ in (2.2) implies (3.3), and

Condition 2 implies (3.4) since each θk(s) can be represented as a linear combination of

elements of R(s). We actually need (3.4) with zik = θk(si) + ζik in place of θk(si) for Lemma

1 of White (1980), but this follows from (3.4) since ζki has mean zero and is independent of

si.
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We comment on the necessity of Conditions 1 and 2. The proof of Lemma 1 depends on γ*

= γ. This will always hold if Φ(s) is spanned by the R(s), but otherwise we rely on

Condition 1. If γ* ≠ γ, then (3.2) becomes

(3.5)

We cannot expect that R(si)γ* is orthogonal to (Φ(si) – R(si)γ*) when si is drawn according

to the probability density g(s), since γ* is the least squares fit from (2.2) with H(s) in place

of G(s). Therefore, treating (Φ(si) – R(si)γ*) as part of the random variation in (3.5) results

in the equivalent of omitted variable bias when estimating β.

Condition 2 is needed to guarantee (3.4) in the proof of Lemma 1. The difficulty if (3.4)

does not hold is that (Φ(si) – R(si)γ) in (3.2) may be correlated with one or more elements

of the Θ(si) component of zi. Intuitively, this can introduce bias because estimation of β
relies on the variation in R(si) that is unrelated to the covariates zi, i.e., the residual variation

after projecting onto the span of the elements of zi, which is equivalent to the span of Θ(si).

Without (3.4), the residual term (Φ(si) – R(si)γ) in (3.2) need not be orthogonal to this

variation. Note that the need to include the covariates from the health model in the exposure

model is analogous to the inclusion of covariates in standard regression calibration (Carroll

et al. 2006).

3.2. Classical-like error (ui,CL)

We will isolate the impact of ui,CL on  by operating in the n = ∞ limit, corresponding to

the entire superpopulation of study subjects, and analyzing the asymptotic properties of

 as n* → ∞. The exposure model parameter vector, , is asymptotically normal (as

discussed in Section 2.2) with dimension fixed at r, and  is a deterministic function of

, so under the conditions of Lemma 1 a standard delta-method argument can be used to

establish that  is asymptotically normal with mean β. In particular, this implies that

bias from classical-like error is asymptotically negligible in the sense that it is of comparable

magnitude to the variance. This situation contrasts with classical measurement error where

there are as many random error terms as observations and there is large-sample bias (Carroll

et al. 2006).

Even though the bias term is asymptotically negligible, our simulation studies suggest that it

can still be important for moderate size n*, so we will derive a bias correction. Since only

the variability in the exposure estimate that is orthogonal to covariates from the health

model plays a role in deriving , it is helpful in the following analysis to define Rc(s)

with elements , where .

Analogous to ŵ(s) and w(s), we define  and wc(s) = Rc(s)γ.

Note that the expectation of  need not be defined for finite n* because it is a function

of , and the denominator in the OLS solution for  is not bounded away from zero.

Therefore, in Appendix A we adapt the definition of asymptotic expectation for a sequence
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of random variables from Shao (2010, page 135). The following lemma quantifies the bias

and variance induced by the classical-like error.

Lemma 2 Assume sufficient regularity of g(s), h(s), Φ(s), and R(s) and Conditions 1 and 2.

If we set

(3.6)

and

(3.7)

then  is an asymptotic expectation of  and

 is an asymptotic variance of  (both of order n*–1), where

asymptotic expectation and variance are defined in Definition 1 in Appendix A. We outline

the proof in Appendix A, where we express  as a function of  and do a second order

Taylor expansion around γ.

The practical import of Lemma 2 is that we can use (3.6) to correct for the bias from

classical-like error. The variance estimate in (3.7) is not directly useful as a standard error

because it does not include variability from Berkson-like error or from having n < ∞ study

subjects, but it provides insight into the relative magnitudes of bias and variance from

classical-like error.

To estimate (3.6), we can estimate wc(s) by , noting that Rc(s) is

approximated from the observed exposure covariates for the health observations,

orthogonalizing with respect to the health model covariates, which is the finite sample

approximation to the construction of Rc(s) stated earlier in this section. To estimate the

variances and covariances of ŵc(s), we use a robust estimator for  (White 1980;

Carroll et al. 2006). We use the sandwich estimator to avoid the assumption of having a

correctly-specified model, as required for the standard model-based estimator. Given these

estimators, all the integrals in the last two terms of (3.6) can be estimated as averages with

respect to the discrete measure with equal weight on each health observation, the standard

plug-in estimator for G(s).

Finally, in the first term of (3.6), we need to estimate

, and therefore the asymptotic expectation of .

Since we have assumed Condition 1, which implies γ = γ*, the expectation of  is

approximately equal to γ. However,  is derived by means of a random covariate regression
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with a misspecified mean model, so its standard expectation is not defined. An estimate of

its asymptotic expectation is developed in Appendix B.

Finally, we can gain additional insight into the bias and variance contributions from

classical-like error by considering the simplified situation in which the exposure model is

correctly specified so that w(s) = R(s)γ for all s, the subject and monitor location densities,

g(s) and h(s), are the same, and there are no additional covariates or intercept in the health

model. In that case it is easy to show that the asymptotic expectation simplifies to

(3.8)

and the asymptotic variance simplifies to

(3.9)

The r – 2 term in (3.8) illustrates the fact that the bias is away from the null in the case of a

one-dimensional exposure model and that more typically it is toward the null and becomes

larger with higher-dimensional exposure models, for a given true exposure surface. This is

what occurs empirically in our simulations and examples.

In addition, the ratio of the squared bias to the variance is

(3.10)

which demonstrates that the importance of the bias depends on the dimensionality of the

exposure model relative to the sample size and the ratio of the noise to the signal in the

exposure data.

4. MEASUREMENT ERROR CORRECTION

We correct for measurement error by means of an optional asymptotic bias correction based

on (3.6) followed by a design-based nonparametric bootstrap standard error calculation

(incorporating the asymptotic bias correction in the bootstrap, if appropriate).

Given a bias estimate b̂ from (3.6) the bias-corrected  is . Bias correction is

optional since the asymptotic results of Section 3 show that the naive health effect estimator

is consistent, with variance dominating the bias in the limit as the number of exposure

observations increases. We explore the magnitude of bias and utility of including the

asymptotic correction via simulation in the next section and comment further on this topic in

Section 7.

We need to estimate the uncertainty in either  or  in a way that accounts for all the

components of the measurement error and the sampling variability in the health model. Note

that the asymptotic variance (3.7) accounts only for the variance from the classical-like
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measurement error. Since we have assumed that the locations of health and exposure data

are randomly drawn according to the densities g(s) and h(s), respectively, a simple design-

based nonparametric bootstrap is a suitable approximation to the data-generating

mechanism. To obtain each bootstrap dataset, we separately resample with replacement n*

exposure measurements and n health observations. We fit the exposure model to the

bootstrapped exposure measurements and use the results to predict exposures at the

locations of the bootstrapped health observations. We then obtain bootstrap health effect

estimates (with or without bias correction) and estimate the standard error of  or  by

means of the empirical standard deviation of these values.

In principle, we could avoid the asymptotic calculations in (3.6) by employing a bootstrap

procedure to estimate bias followed by a second round of bootstrapping for standard error

estimation. Such a nested bootstrap is computationally demanding. Furthermore, our

strategy of using the bootstrap after addressing the bias is consistent with the comments of

(Efron et al. 1993, Chapter 10) who caution that bias correction with the bootstrap is more

difficult than variance estimation. Along similar lines, (Buonaccorsi 2010, p. 216) notes the

need for additional assumptions when developing a two-stage bootstrap that includes bias

correction.

5. SIMULATIONS

5.1. One dimensional exposure surface

Our first set of simulations is in the simplified setting of a one dimensional exposure

surface. In this setting, we illustrate the bias from Berkson-like error for very large n* when

either Condition 1 or 2 is violated, and we illustrate the finite n* measurement error

correction methods from Section 4 when both compatibility conditions are satisfied. We

simulate 1,000 Monte Carlo datasets and use 100 bootstrap samples, where applicable.

The true health model is linear regression with β = 1, with i.i.d. ε ~ N(0, 1) and an intercept

but no additional health model covariates. We use n = 500 subjects. The true exposure

surface on (0, 10) is a combination of low frequency and high frequency sinusoidal

components

and we set . The density of monitor locations is

(5.1)

and we use an exposure model R(s) comprised of a B-spline basis with 5 to 25 degrees of

freedom (Hastie et al. 2001).

To illustrate the bias from the Berkson-like error when either of the compatibility conditions

is violated, we set n* = 1000 so that the classical-like error is negligible. The results of these
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simulations are shown in Figure 1. In panels (a) and (b), the health model is fit with an

intercept but no additional health model covariates, so Condition 2 is automatically satisfied.

In panel (a) the density of subject locations g(s) is the same as h(s), and there is no evidence

of bias in . In panel (b), g(s) is uniform on the interval (0, 10) so that Condition 1 is

violated. There is clear evidence of bias away from the null for 5 and 9 df exposure models.

There is no evidence of bias with 13 df, which can be attributed to the fact that the exposure

model with 13 df is sufficiently rich to account for almost all of the spatial structure in Φ(s),

meaning that the Berkson-like error behaves like pure Berkson error.

In panels (c) and (d) of Figure 1, g(s) is the same as h(s), but we fit the health model

including an additional covariate zi = sin(si). In panel (c), this covariate is also included in

the exposure model, and as expected we see no evidence of bias in . In panel (d), the

additional covariate is not included in the exposure model, so Condition 2 is violated. There

is noticeable bias of  toward the null, especially for the 5 and 9 df spline models.

In Figure 2, we show results from a separate set of simulations with n* = 200 in order to

illustrate the measurement error correction methods from Section 4. In these simulations,

g(s) is the same as h(s) and the health model is fit without additional covariates, so

Conditions 1 and 2 are satisfied. The mean out-of-sample R2 ranges from 0.25 for 5 df to

0.35 for 13 df, corresponding to the challenging situation of an exposure model with

marginal performance that can lead to substantial bias in estimating β. In panel (a), we see

that the uncorrected health effect estimates have notable bias, especially for larger df

exposure models, and our correction successfully removes most of the bias. Panel (b) shows

the coverage of nominal 95% confidence intervals. In the uncorrected analyses, coverage

ranges from 45% to 80%, depending on the df in the exposure model. Confidence intervals

that incorporate either the bias correction or bootstrap standard errors improve the coverage.

We obtain nearly perfect 95% coverage when we incorporate the bias correction and

bootstrap standard errors.

5.2. Spatial exposure surface

Our second set of simulations is based on the MESA Air study design in the Baltimore

region (Section 6), using 1,000 simulated datasets and 100 bootstrap samples. We enforce

Conditions 1 and 2 and focus on illustrating the value of the correction methods described in

Section 4 in a realistic spatial setting. The spatial domain is a 257 × 257 discrete grid scaled

to be a square 30 units on a side. There are n* = 125 monitor locations, sampled in clusters

by first choosing 25 locations i.i.d. uniformly on S and then also including the four nearest

neighbors for each such location. Our bootstrap for these simulations resamples clusters of

five monitors. A total of n = 600 subject locations are selected uniformly and independently

from S.

The predictable part of the exposure surface is
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Each γi = 4.9, and each Rk(s) is constructed by drawing i.i.d. realizations from N(0, 1/3) at

each s ∈ S. Φ1(s) is a fixed realization from a spectral approximation to a Gaussian field

with Matérn covariance (Paciorek 2007) with range 20 and unit differentiability parameter,

normalized such that the variance of Φ1(s) on S is 30. Thus the total variance of Φ(s) on S is

approximately 54. In the true exposure surface and monitoring data, there is also a nugget

with variance . We consider two spatial scenarios, corresponding to different

fixed realizations of Φ1(s). These surfaces are shown in Figure 3.

The spatial exposure model has R(s) comprised of Rk(s) for k = 1, 2, 3 and a thin-plate spline

basis derived by fitting a GAM from the MGCV package in R (Wood 2006) to the observed

monitoring data with fixed degrees of freedom (df). Thus the spatial basis is actually

different for each simulated dataset since it depends on the monitor locations, but we keep

the same basis functions for the bootstrap analysis within each simulation run. We estimate

the standard error of  using a sandwich estimator for clustered data implemented in the R

package geepack (Hojsgaard et al. 2006).

The true and fitted health models have an intercept but no additional covariates. We set β =

0.1 and consider i.i.d. normally distributed  with  equal to 200 or 10. The

larger value of  is consistent with what we see in the MESA Air data with left

ventricular mass index (LVMI) as the outcome, where the air pollution exposure explains

approximately 0.3% of the variance after adjustment for known risk factors. We also

consider  such that air pollution exposure explains approximately 5% of the health

outcome variance in order to see more clearly the potential impact of exposure measurement

error.

The two spatial surfaces, while generated at random, represent different deterministic

scenarios in which we could find ourselves (e.g., different metropolitan areas). In scenario 1

the spatially structured part of the air pollution surface Φ1(s) can be represented fairly well

using thin-plate splines with either 5 or 10 df, while the spatial surface in scenario 2 cannot

be represented well with 5 df but can be reasonably well modeled with 10 df. This is

reflected in the R2 values in Figure 3, which represent the best thin-plate spline fits to the

surfaces, assuming essentially unlimited monitoring data is available. The cross-validated

and out-of-sample R2 values for predicting the full air pollution surface (s) (including non-

spatially structured covariates) based on monitoring data reported in Table 1 exhibit a

similar pattern. For leave-one-out cross-validation, the clusters of five adjacent monitors are

treated as a single unit.

We focus our discussion on the scenarios with  because this is where the impact of

exposure measurement error is most prominent. The measurement error impact is

qualitatively similar for , but it is less important because the unmodeled variability

in the health outcome dominates. Our theory dictates that the relative biases for  and

 are identical, which we verified in simulations out to four significant digits, so we

only report one value.
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When we fit the exposure model with a 5 df thin-plate spline, there is modest bias toward

the null of 3% in scenario 1 and more substantial bias of 12% in scenario 2. Our asymptotic

correction reduces the magnitude of bias in both instances. The bias correction followed by

bootstrap standard errors consistently gives valid inference, including accurate standard

error estimates and nominal coverage of 95% confidence intervals. In scenario 1, we also get

valid inference with bootstrap standard errors and no bias correction.

When we increase the complexity of the spatial model to 10 df, prediction accuracy

improves in both scenarios, but inference about the health effect parameter is degraded. The

magnitude of bias is approximately the same as with 5 df, but our asymptotic correction is

less effective. Furthermore, the bootstrap standard error estimates tend to be too large,

resulting in over-coverage of 95% confidence intervals. These findings are not surprising,

because while each simulated dataset has 125 monitor locations, they are clustered in groups

of 5 so that there are effectively only 25 unique locations for estimating the smooth

component of the spatial surface, so a thin-plate spline model with 10 df overfits these data

in the sense that we do not expect to be able to rely on large n* asymptotic approximations

such as (3.6) or the nonparametric bootstrap.

6. DATA ANALYSIS

The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) is an ongoing

cohort study designed to investigate the relationship between air pollution exposure and

progression of subclinical atherosclerosis (Bild et al. 2002; Kaufman et al. 2012). The

MESA Air cohort includes over 6,000 subjects in six U.S. metropolitan areas (Baltimore

City and Baltimore County, MD; Chicago, IL; Forsyth County (Winston-Salem), NC; Los

Angeles and Riverside Counties, CA; New York and Rockland County, NY; and St Paul,

MN). Four ethnic/racial groups were targeted, white, African American, Hispanic, and

Chinese American, and all study participants (46 to 87 years of age) were without clinical

cardiovascular disease at the baseline examination (2000-2002). An early cross-sectional

finding from MESA Air is that an elevated left-ventricular mass index (LVMI) is associated

with exposure to tra c related air pollution, specifically outdoor residential concentrations of

gaseous oxides of nitrogen (NOx) (Van Hee et al. 2009, 2012). Van Hee et al. (2012) found

that an increase in NOx concentration of 10 parts per billion (ppb) is associated with a 0.36

g/m2 increase in LVMI (95% CI: 0.02 - 0.7 g/m2).

Van Hee et al. (2012) utilized predictions from a spatio-temporal exposure model that

incorporates regulatory and study-specific monitoring data in all six regions (Szpiro et al.

2010b). To illustrate our methodology for a purely spatial exposure model, we re-analyze

the data restricted to subjects in the Baltimore region, and we construct an exposure model

based on data from three community snapshot monitoring campaigns conducted by MESA

Air. In brief, the community snapshot campaign consisted of three separate rounds of

spatially rich sampling during single two-week periods in different seasons. In the Baltimore

area, approximately 100 measurements were made in each of three two-week periods in

May 2006, November 2006, and February 2007. In each round of snapshot monitoring, the

majority of monitors were arranged in clusters of six, with three on either side of a major

road at distances of approximately 50, 100, and 300 meters (Cohen et al. 2009). In addition,
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the locations were chosen to characterize different land use categories and to cover the

geographic region as broadly as possible. To help with satisfying Condition 1, we exclude

one cluster from our analysis because it is far from any of the study subjects, and we

approximate long-term average concentrations by averaging the three available

measurements at locations that were monitored in all three seasons. The 93 monitor

locations and 625 subject locations in our analysis are shown in Figure 4.

Our exposure model incorporates five geographic covariates: (i) distance to a major road,

(ii) local-source tra c pollution from a dispersion model (Wilton et al. 2010), (iii) population

density in a 1 km buffer, (iv) distance to downtown, and (v) transportation land use in a 1

km buffer. The first three of these geographic covariates are log-transformed. An additional

covariate describing the density of high-intensity land-use (commercial, industrial,

residential, etc.) was also incorporated in the original spatio-temporal model predictions

used by (Van Hee et al. 2012), but we exclude this covariate from our model because it has

very different distributions across subject and monitor locations, a clear violation of

Condition 1. To account for unmodeled spatial structure, we use a thin-plate spline basis

with 0, 5, or 10 df, constructed as in the simulations. We estimate the standard error of 

using a sandwich estimator for clustered data implemented in the R package geepack

(Hojsgaard et al. 2006). We estimate the association between NOx and LVMI by fitting a

multivariate linear regression, including an exhaustive set of additional health model

covariates that could be potential confounders (Van Hee et al. 2009).

The results of our analysis are shown in Table 2, with 10,000 bootstrap replicates

(resampling clusters of monitors, where applicable). Our findings are very similar for an

exposure model that is purely land-use regression and one that includes splines with 5 df.

We estimate that an increase in NOx concentration of 10 parts per billion (ppb) is associated

with approximately a 0.7 g/m2 increase in LVMI. Our standard error estimates for these

models in Table 2 range from 0.55 to 0.68 g/m2, so the difference in effect size from that

found by Van Hee et al. (2012) is very likely due to our more limited dataset. The exposure

model that includes 5 df splines has a larger cross-validated R2, suggesting that it captures

more variability in the exposure. This translates into a smaller model-based standard error,

but this apparent advantage is attenuated when we correct for exposure measurement error

with bootstrap standard error estimates, and it goes away entirely when we also incorporate

the bias correction.

The exposure model with 10 df gives slightly larger effect estimates and standard errors.

There is also more evidence of bias from classical-like error than for the lower dimensional

exposure models. However, our simulation results in Table 1 suggest that a 10 df spline is

too rich of a model for the available monitoring data and that these results should be

considered less reliable than those based on 5 df splines.

7. DISCUSSION

We have developed a statistical framework for characterizing and correcting measurement

error in two-stage analyses, focusing particularly on problems where a first-stage spatial

model is used to predict exposure that is measured at different locations than are needed in a
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second-stage health analysis. Our methodology is robust to misspecification of the exposure

model, treating it as a device to explain some portion of the variability in exposure. We

adopt a design-based perspective in which the process of selecting exposure measurement

and subject locations is the primary source of spatial randomness, leading naturally to

nonparametric bootstrap resampling for standard errors. A major contribution of our work is

that we delineate the potential sources of bias from Berkson-like and classical-like

measurement error and provide strategies for reducing bias and variance at the design and

analysis stages. Bias from classical-like error can be corrected using an asymptotic

approximation, whereas bias from Berkson-like error should be addressed at the design stage

or when selecting an exposure model.

While our research is primarily motivated by epidemiologic analysis of long-term air

pollution health effects, we note that the spatial prediction problem can be interpreted as a

linear model. Thus, our measurement error decomposition, asymptotic results, and bias

correction hold equally well in non-spatial settings.

Our theory and simulations demonstrate that bias from the classical-like error is small when

the exposure model is not overfit in the sense that there are sufficient observations relative to

the dimension of the exposure model for the large n* asymptotics to be relevant. The limited

magnitude of the bias suggests that measurement error correction e orts should focus on

avoiding overfitting the exposure model and satisfying the conditions needed to ensure that

Berkson-like error does not induce important bias (at least in a linear health model).

Nonetheless, in several simulation scenarios our asymptotic correction for bias from

classical-like error results in improved estimation and inference, even at the expense of

increased variance. Indeed, in our analyses and simulations the increased variance caused by

estimating the bias is modest.

Our theoretical development motivates the use of a nonparametric bootstrap to account for

variability induced by measurement error. When the bias correction is not used, simulations

suggest that the underestimation of uncertainty from ignoring the measurement error (using

a sandwich variance estimator) is modest, but even so there are cases in which accounting

for the effect of measurement error is necessary. When we include the asymptotic bias

correction, the bootstrap is more generally necessary for valid confidence intervals.

As we remarked in Section 2.3, exposure model selection is a broad topic and a specific

algorithm for selecting geographic covariates or spline basis functions is beyond the scope

of this paper. However, we discuss below several practical approaches that can be

considered in designing a study to approximately satisfy the compatibility conditions from

Section 2.3, so as to minimize the bias from Berkson-like error. We will explore these

options and related tradeoffs further in future work.

First, to satisfy Condition 1, as much care as possible should be taken at the design stage to

ensure the sampling densities of locations and exposure covariates are as similar as possible

in the first-stage exposure observations and the second-stage outcome observations. While

this criterion is overly abstract in the context of a specific study, the practical implication is

that first-stage and second-stage locations should be chosen to be similar in terms of location
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and pertinent covariates. If exposure data have already been collected, it may be necessary

to consider excluding exposure or outcome data or deleting one or more covariates from

R(s) in order to minimize the mismatch.

If we are particularly concerned about Condition 2, we can add terms to R(s) to span Θ(s).

We generally will not know Θ(s) directly, but if we do (e.g., if household income were

known and monitors were located at homes) then supplementing R(s) with Θ(s) or

projecting R(s) to make it orthogonal to Θ(s) are equivalent. In most realistic settings, we

will assume that Θ(s) is a set of smooth functions of space that can be modeled by spline

terms, but we will not know the minimal spanning spline basis. In this case it is preferable to

supplement R(s) with as rich of a basis as possible without introducing substantial classical-

like error. Projecting R(s) to make it orthogonal to a similarly rich spline basis would likely

result in a significant diminution of exposure variability beyond what is needed to eliminate

bias from not satisfying Condition 2.

The possibility of adding dimensions to R(s) highlights the critical tradeoff between

Berkson-like and classical-like error. Augmenting R(s) reduces Berkson-like error by

accounting for more of the variability in w(s). Since eliminating Berkson-like error also

eliminates the need to satisfy the compatibility conditions, we generally expect that adding

such terms will limit bias from the Berkson-like error. A side effect of augmenting R(s) is to

change the sampling variability of , which impacts the classical-like error. This could be

beneficial if the additional terms in R(s) account for a substantial amount of variability in

w(s), since the result will be to reduce the variance of the original components of . On the

other hand, if the coefficients for the new terms are difficult to estimate, the result will be a

substantial new contribution to the classical-like error, leading to additional bias and

variance in the second-stage estimation. In fact, in order to reduce classical-like error, one

might choose to remove selected dimensions from R(s) if their coefficients are particularly

difficult to estimate.

There are some key assumptions in our model that may not be strictly satisfied in air

pollution epidemiology studies. First, we regard the sets of locations of exposure and health

observations to be independent, or at least independent clusters. This assumption can be

questioned, particularly in the case of air pollution monitors, as one would not expect a

government agency to select two sites that are very close together. In addition, sometimes

monitors are placed at a subset of study subject addresses, suggesting correlation between

the sets of monitor and subject locations. Various mechanisms along these lines can be

posited, including the possibility that three sets of locations are selected independently of

each other, i.e., monitor locations, subject locations, and joint monitor/subject locations. The

resampling procedure in our nonparametric bootstrap could be easily modified to reflect this

type of data-generating mechanism. Second, a major source of exposure heterogeneity that

we do not consider is the difference between exposure at a residence and the exposure

experienced by individuals when they are not home. Mobility may be less important in

studies of small children and the elderly, but this remains an open issue in the epidemiologic

literature.
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Finally, as described in Section 2.1, we condition on the unobserved but deterministic spatial

variation in exposure during the time period of the study. This avoids having to postulate

that one could meaningfully repeat the experiment in other time periods. This is particularly

important when the averaging period of interest is one or more years since secular trends in

the nature and sources of air pollution limit the number of years during which air pollution

studies can be regarded as answering analogous scientific questions. For shorter-term

studies, there is additional variability associated with the choice of time period, and it would

be reasonable to regard the different air pollution surfaces at different times as arising from a

random spatial process. However, with data from only a single time period and a

misspecified mean model, it is impossible to identify both the fixed and random components

of the spatial residuals, so we do not incorporate a random effect in our formulation.

Our measurement error correction is based on asymptotic approximations derived for linear

regression for the exposure and health models. Real world applications often involve

additional complications, suggesting further research directions. On the exposure model

side, our methods can be extended to penalized models and full-rank models such as

universal kriging and related spatio-temporal models that are often used in environmental

studies. Nonlinear models such as logistic regression and Cox regression are commonly used

for the second stage in health studies, and it is also important to consider the implications of

misspecification in the second-stage model, in addition to the exposure model. A referee

asked about the use of numerical models to estimate exposure. Without any uncertainty

estimates for the resulting exposures, our framework cannot accomodate such an exposure

model, and the use of such a model carries the potential for serious classical-like error. One

path forward would be to make use of numerical model predictions within the context of a

statistical model fit to exposure data.

Two-stage analyses to date have taken the approach of optimizing the exposure model for

exposure prediction accuracy, based on the implicit assumption that this will also lead to

optimal second-stage health effect inference. In previous work we have shown that

optimizing the exposure model for prediction accuracy can be sub-optimal for health effects

estimation (Szpiro et al. 2011a). An interesting avenue for future research involves

developing methods to optimize the exposure model for estimation of the health effect of

interest in the second-stage model. A final direction for additional research that is of great

interest in air pollution epidemiology is to extend these methods for measurement error

correction when assessing health effects of multiple exposures or mixtures of exposures.

When predictions for more than one exposure are used in a health model, there is the

possibility of a form of omitted variable bias from components of variability that are missing

from the predictions of the exposures.
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APPENDIX

A. PROOF OF LEMMA 2

First note that the expectation of  need not be defined for finite n* because it is a

function of , and the denominator in the OLS solution for  is not bounded away from zero.

Therefore, we adapt the definition of asymptotic expectation for a sequence of random

variables from Shao (2010, page 135). The basic idea is to identify the highest order term in

a power series expansion that has non-zero expectation as the asymptotic expectation. See a

related discussion of concepts of asymptotic bias in Lumley (2010, Appendix A.1.2).

Definition 1 Let υ1, υ2, . . . be a sequence of vector-valued random variables and let a1,

a2, . . . be a sequence of positive numbers such that limn→∞ an = ∞. (i) Suppose υ is such

that E|υ| < ∞ and we can write  with  and . Then we

denote E[an](υn) = E(υ) and call E[an](υn)/an an order  asymptotic expectation of υn. (ii)

Suppose υ is such that Cov(υ) < ∞ and . Then we denote Cov[an](υn)

= Cov(υ) and call Cov[an](υn)/an an order  asymptotic covariance of υn.

Definition 1 is required to define the order n*–1 asymptotic expectation in the first term of

(3.6), which is a linear function of . The first order terms in a Taylor expansion 

are of order n*–1/2 and do not converge when multiplied by n*. However, they have

expectation zero, so they play the role of  and do not contribute to the asymptotic

expectation. See (B.2) and the surrounding discussion in Appendix B.

We can now prove Lemma 2.

Proof of Lemma 2. By definition,  is the ‘true’ parameter value in a linear model for y

on ŵ(s) and covariates, z, so we can express

for some  and an error term, νi, that is orthogonal to ŵ(si) and to the elements of zi

with respect to the density g(s). We can rewrite this expression as

( A.1)

and note that each of the last three terms is orthogonal to ŵc(si). Given this orthogonality,

we can view the last three terms as a single error term. The OLS solution for this no-

intercept linear model,
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(A.2)

converges a.s. to  for any fixed n* based on Lemma 1 of White (1980). We can express

each observation as

(A.3)

and plug in for yi in (A.2). Taking the limit as n → ∞ shows that the a.s. limit of (A.2) can

be expressed as

(A.4)

where the limiting value on the right hand side is found by dividing the numerator and

denominator of (A.2) by n and invoking the law of large numbers. In the numerator, only the

first summand in the expression for yi gives a non-zero contribution. The contribution from

the second summand is zero because (w(si) – wc(si)) is a linear combination of elements of

Θ(s) while wc(s) is orthogonal to each component of Θ(s). For the third summand, we use

our assumption that Condition 2 is satisfied. Namely, wc(s) is a linear combination of

elements of Θ(s) and R(s), so it is sufficient for (Φ(si) – w(si)) to be orthogonal to each of

the elements of Θ(s) and R(s), and this is guaranteed if the elements of Θ(s) are in the span

of R(s) as required by Condition 2.

We now define the p × p matrix  and set

so that . The gradient of  is

and its Hessian is

A second order Taylor expansion of  can be written
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We require sufficient regularity such that the higher order terms converge in distribution to

zero sufficiently fast as n* → ∞. Equations (3.6) and (3.7) are then derived by taking the

asymptotic expectation and asymptotic variance of the expression above (for the asymptotic

variance, we can restrict our attention to the first non-constant term above). This requires

interchanging asymptotic expectations with respect to  with integrals in s. A sufficient

condition to do this is that R(s) is bounded as a function of s. The interchange is

accomplished by expressing asymptotic expectations as standard expectations of the

appropriate limiting distributions of functions of  using Definition 1, invoking

the continuous mapping theorem to express these limiting distributions as functions of the

limiting distribution of , and then using the Fubini-Tonelli theorem (Folland

1999) to exchange the order of integration between  and of s. There is an additional step to

express asymptotic expectations as the asymptotic covariances in (3.6) and (3.7). We use

Definition 1 to express the asymptotic expectations as standard expectations of the

appropriate limiting distributions of functions of , again invoke the continuous

mapping theorem, express the resulting expectations as covariances of the limiting

distributions of functions of , and finally write the resulting expression as

asymptotic covariances using Definition 1.

B. ESTIMATING THE ASYMPTOTIC EXPECTATION OF 

Here we derive an estimate of the asymptotic expectation of , which is needed to estimate

the first term of (3.6). Let Θ* be the vector comprised of the  and R* the n* × r matrix

obtained by stacking the  for j = 1, . . . , n*. For arbitrary mj, denote by M the n* × n*

diagonal matrix with entries m1, . . . , mn*. If we set mj = 1/n* for j = 1, . . . , n* and define

(B.1)

then we notice . We are interested in the unconditional

expectation of . Heuristically, we assume that the true h(s) is supported on the observed

monitor locations and gives equal weight to each observation (i.e., we use the plug-in

estimator for h(s)). In that case, a realization of  can be expressed as a

multinomial draw, m1, . . . , mn*, where the mj are the fraction of times each location in the

support of h(s) is drawn. We can estimate the expectation of κ(m1, . . . , mn*) by means of a

Taylor series expansion of κ(·) around  for j = 1, . . . , n*. Using the first and second

moments of a multinomial distribution, we have
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(B.2)

It easy to see that the first order terms in the Taylor expansion of κ(·) (not shown) have

expectation zero, so they play the role of  in Definition 1 and do not contribute to the

asymptotic expectation. A more formal derivation that does not begin by assuming a discrete

distribution could be developed by a von Mises expansion with the empirical process of

monitor locations (van der Vaart 1998, Section 20.1). Note that although we do not observe

the , replacing them with  in (B.1) does not introduce bias since ,

and the  are independent of everything else and have mean zero.

To estimate the asymptotic bias based on (B.1), we require the second derivatives, .

Differentiating with respect to mj and mk gives us a long expression involving first and

second derivatives of M:

The first derivative with respect to mj is a matrix of zeros with a single one in the jth

diagonal position, while the second partial derivative is a matrix of zeros. The terms that

remain in the expression can be easily calculated based on the observed R* and using the

plug-in estimate, , for Θ* . Note that , where  is

the jth row of R*, and .
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Figure 1.

Density plots of  show bias from ui,BL in the one dimensional simulation scenario with n* = 1000 when the compatibility

conditions are not satisfied (1,000 Monte Carlo simulations for each scenario). (a) Conditions 1 and 2 are satisfied: subject and

monitor locations have the same density, and the health model is fit without subject specific covariates. (b) Condition 1 is

violated: same as (a) except that g(s) is uniform on (0, 10). (c) Conditions 1 and 2 are satisfied: subject and monitor locations

have the same density, the health model is fit with a sinusoidal covariate, and the additional covariate is included in the exposure

model. (d) Condition 2 is violated: same as (c) except that the sinusoidal covariate is not included in the exposure model.
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Figure 2.
The two-step measurement error correction method adjusts for bias and gives valid standard error estimates in the one

dimensional simulation scenario with n* = 200 (1,000 Monte Carlo simulations for each scenario and 100 bootstrap samples).

(a) Uncorrected health effect estimates have noticeable bias, especially for high dimensional exposure models. Our analytical

correction successfully adjust for the bias. (b) The combination of bias adjustment and bootstrap standard errors gives 95%

confidence intervals with nominal coverage properties. Neither bias adjustment alone nor bootstrap standard errors alone are

sufficient.
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Figure 3.
Spatial component of the exposure surface for each of two scenarios in the spatial simulation study based on MESA Air. Each

scenario corresponds to a different random draw of Φ1(·) from a Matérn-based Gaussian process with range 20, differentiability

parameter 1, and variance on  of 30. The first column is the true surface, and the second and third columns show

prediction surfaces and R2 from approximating Φ1(s) with thin-plate splines using the indicated degrees of freedom, based on

fitting a fixed degree-of-freedom spatial GAM model to Φ1(s) with observations at every location on the 257 × 257 grid S.
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Figure 4.
Subject and monitor locations in the Baltimore MESA Air dataset.
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Table 1

Results for spatial simulation (1,000 Monte Carlo simulations for each scenario and 100 bootstrap samples).

The average out-of-sample R2 is given in parentheses for each exposure model. The first column is the relative

bias in estimating β = 0.1. This is the same for σ2 = 200 and σ2 = 10 and is estimated from 100,000 Monte

Carlo samples, resulting in negligible Monte Carlo error. The final six columns show the standard deviation,

average estimated standard error, and 95% confidence interval coverage, separately for  and .

σ∊
2 = 200 σ∊

2 = 10

Rel Bias SD E(SE) Cov SD E(SE) Cov

Scenario 1

5 degrees of freedom (0.75)

    no correction –0.027 0.084 0.083 94% 0.02 0.019 93%

    bootstrap standard error only –0.027 0.084 0.084 95% 0.02 0.021 95%

    bias correction only –0.009 0.086 0.083 94% 0.021 0.019 93%

    bias correction + bootstrap –0.009 0.086 0.086 95% 0.021 0.021 96%

10 degrees of freedom (0.79)

    no correction –0.039 0.08 0.08 95% 0.019 0.018 93%

    bootstrap standard error only –0.039 0.08 0.082 96% 0.019 0.027 98%

    bias correction only –0.025 0.081 0.08 94% 0.019 0.018 93%

    bias correction + bootstrap –0.025 0.081 0.088 97% 0.019 0.03 99%

Scenario 2

5 degrees of freedom (0.42)

    no correction –0.125 0.099 0.096 94% 0.025 0.022 87%

    bootstrap standard error only –0.125 0.099 0.097 95% 0.025 0.026 90%

    bias correction only –0.049 0.108 0.096 93% 0.028 0.022 86%

    bias correction + bootstrap –0.049 0.108 0.107 95% 0.028 0.03 94%

10 degrees of freedom (0. 59)

    no correction –0.102 0.087 0.085 93% 0.021 0.019 88%

    bootstrap standard error only –0.102 0.087 0.085 94% 0.021 0.03 94%

    bias correction only –0.061 0.091 0.085 92% 0.023 0.019 88%

    bias correction + bootstrap –0.061 0.091 0.094 95% 0.023 0.036 97%
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Table 2

Results of analysis analyzing the association between elevated left ventricular mass index (LVMI) and

residential concentrations of NOx in the MESA Air cohort in Baltimore, based on exposure models with land-

use regression plus a thin-plate spline regression with varying degrees of freedom. The two columns display

estimates and standard errors for the increase in LVMI (g/m2) associated with a 10 ppb increase in NOx

concentration. Cross-validated R2 at snapshot monitor locations for each exposure model are given in

parentheses, based on leave-one-out cross-validation modified to leave out all members of a roadway gradient

cluster together.

β̂ SE

Land-use regression only (0.60)

    no correction 0.66 0.62

    bootstrap standard error 0.66 0.66

    bias correction + bootstrap 0.68 0.68

5 degrees of freedom (0.68)

    no correction 0 68 0.55

    bootstrap standard error 0.68 0.62

    bias correction + bootstrap 0.69 0.67

10 degrees of freedom (0.41)

    no correction 0.79 0.69

    bootstrap standard error 0.79 0.66

    bias correction + bootstrap 0.85 0.78
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