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Abstract
Tropospheric ozone is one of six criteria pollutants regulated by the US EPA, and has been linked
to respiratory and cardiovascular endpoints and adverse effects on vegetation and ecosystems.
Regional photochemical models have been developed to study the impacts of emission reductions
on ozone levels. The standard approach is to run the deterministic model under new emission
levels and attribute the change in ozone concentration to the emission control strategy. However,
running the deterministic model requires substantial computing time, and this approach does not
provide a measure of uncertainty for the change in ozone levels. Recently, a reduced form model
(RFM) has been proposed to approximate the complex model as a simple function of a few
relevant inputs. In this paper, we develop a new statistical approach to make full use of the RFM
to study the effects of various control strategies on the probability and magnitude of extreme
ozone events. We fuse the model output with monitoring data to calibrate the RFM by modeling
the conditional distribution of monitoring data given the RFM using a combination of flexible
semiparametric quantile regression for the center of the distribution where data are abundant and a
parametric extreme value distribution for the tail where data are sparse. Selected parameters in the
conditional distribution are allowed to vary by the RFM value and the spatial location. Also, due
to the simplicity of the RFM, we are able to embed the RFM in our Bayesian hierarchical
framework to obtain a full posterior for the model input parameters, and propagate this uncertainty
to the estimation of the effects of the control strategies. We use the new framework to evaluate
three potential control strategies, and find that reducing mobile-source emissions has a larger
impact than reducing point-source emissions or a combination of several emission sources.
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1 Introduction
Due to advances in emissions control technology and regulatory action, air quality has been
improving over the last several decades in the United States and Europe. However, areas
exist where significant populations are still exposed to elevated levels of tropospheric ozone
(O3). Epidemiological and controlled human exposure studies have shown an association
between O3 exposure and respiratory and cardiovascular endpoints, particularly in sensitive
populations (US EPA, 2006). Furthermore, ozone has been linked to a variety of adverse
effects on vegetation and ecosystems (US EPA, 2006).
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Ozone, together with other compounds, is formed downwind of its two main classes of
precursors, volatile organic compounds (VOCs) and nitrogen oxides (NOx = NO + NO2) in
the presence of sunlight. Due to the complexities of the formation processes of secondary
pollutants such as ozone and their dependence on various physical and chemical parameters,
as well as meteorological conditions, ozone is a highly non-linear function of its inputs, and
thus regional three-dimensional Eulerian photochemical models have been developed to
track the precursor emissions, transport, and chemical transformations of gases and particles
in the troposphere. Such models are used to study the formation and geographical
distribution of ozone and also to provide a test bed for possible control strategies. For
example, we use the Community Multiscale Air Quality (CMAQ) model (Byun and Schere,
2006) to study changes in ozone levels due to changes in mobile-source NOx emissions,
point-source NOx emissions, other NOx emissions, anthropogenic VOCs emissions, and
biogenic VOCs emissions. Due to the prevalence of ozone precursor emissions from a wide
range of sources, differing chemical reactivities of the various specific chemical compounds
that make up VOCs, and the varying cost of different control technologies, the processes of
control strategy evaluation is itself complex.

Control strategy evaluation seeks to understand the potential response in air quality levels
from various targeted reductions of source pollutants. By studying control strategies, we
understand how resources should be allocated to achieve the best results. Control strategies
must be studied via atmospheric chemistry models where it is possible to change emissions
scenarios. In the context of control strategy evaluation, it is the response of modeled
concentration that is desired as a surrogate for the response for actual atmospheric pollutant
levels. Such response can be obtained most basically by performing two modeling
simulations: one representing current conditions; and one representing conditions under a
specific emissions control scenario. The difference in predicted concentrations from the two
simulations could then be attributed to the control strategy. Currently, the computational
costs of running full regional photochemical models are still nontrivial, making such
evaluations potentially costly. To address this issue, various methods have been applied to
develop reduced form models (RFMs) that represent pollutant concentrations for a particular
episode of interest as a simple function of usually only the regulatory controllable
parameters. For example, in the RFM, ozone only may be a function of parameters for the
various anthropogenic sources NOx and VOCs for a particular place and time. One of the
various methods for developing RFMs to date is through calculating sensitivity coefficients
of a target pollutant to emissions of precursors from controllable sectors. These sensitivities
are subsequently used to make adjustments to pollutant concentrations predicted by a base
model simulation (Digar et al., 2011; Napelenok et al., 2011).

We propose a new approach for combining an RFM with monitored point-level ozone data
to study effects of various control strategies. Our approach is geared towards accurately
characterizing extreme ozone events under different scenarios. Extreme ozone is a concern
for health effects modeling and regulation. For example, the current EPA regulation of
ozone is based on the fourth highest daily eight-hour average ozone (i.e., the maximum
eight-hour average ozone concentrations for the day) of the year. Extreme value theory
(EVT) (see Coles, 2001, for an overview) provides an asymptotically-justified approach to
modeling the tails of wide classes of distributions. Our model employs a parametric form
suggested by extreme value theory in the tail, while utilizing a flexible quantile regression
approach to model the bulk of the distribution.

CMAQ output and monitor data are not directly comparable as CMAQ output is defined a
volume average within a three dimensional grid cell and we wish to make inference about
ozone at point locations. Thus we build a downscaler; that is, a statistical model that links
gridded numerical model output to point-level observational data (see Berrocal et al., 2010,
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and references therein). Most downscaling work employs a Gaussian process framework
(e.g, Berrocal et al., 2010), and focuses on modeling the conditional mean of the
observations given the numerical model output. For example, Foley et al. (2012) use this
approach for ozone control-strategy evaluation. Some recent work has sought to move
beyond the parametric Gaussian paradigm. For example, Reich et al. (2011) and Zhou et al.
(2012) propose separate models for the quantile process of the model output and the quantile
process of the point-located data, which provides a calibration function to link the two
sources of data. Mannshardt-Shamseldin et al. (2010) propose an EVT-based downscaling
method for extreme precipitation, relating the return levels (i.e., extreme quantiles, a
climatological quantity) of the model output to return levels at point-located sites. Unlike the
previous downscaling work for ozone which focused on calibration, our focus is prediction.
Specifically once our downscaler is constructed to relate monitor data to RFM output under
observed emissions, we use it to study the effect of alternative emission scenarios.

Other work which has appeared in the climate literature applies EVT to numerical model
output in order to produce maps summarizing the extreme behavior of the studied variable.
One approach (e.g., Kharin et al., 2007; Wehner, 2005; Wehner et al., 2010) is to fit extreme
value distributions separately to the output at individual grid cells, perhaps employing
spatial smoothing procedures after the pointwise fitting to produce the maps. Another
approach (e.g., Cooley and Sain, 2010; Schliep et al., 2010) constructs hierarchical Bayesian
models that pool information across space by incorporating spatial random effects. These
works differ fundamentally in both aim and approach from the present work. These previous
studies aim to describe the tail of the (unconditional) distribution and treat the numerical
model output as data, whereas we aim to model the conditional distribution of the point-
located measurements treating the model output as covariate information.

Our work is somewhat related to recent work which has sought to link extreme behavior to
large-scale climatological conditions. Sillman et al. (2011) model the connection between
extreme cold temperatures and atmospheric blocking conditions as produced by both
reanalysis models and climate models. Maraun et al. (2011) link extreme precipitation to
large-scale airflow. Similar to the model we present in Section 3, Sillman et al. (2011) and
Maraun et al. (2011) both condition the parameters of the extreme value distribution on the
covariate information. Both Sillman et al. (2011) and Maraun et al. (2011) model only the
maximum value over a block of time, e.g., monthly or yearly maximum of daily value. In
contrast, we use all observations to both flexibly model the center of the distribution and
model the upper tail using EVT given any level of the covariate.

Our approach is novel for several reasons. First, the aim of our analysis is to investigate
control strategies. The RFM model is simple enough to permit re-evaluation for a new set of
input parameters at negligible computing cost. As a result, we are able to embed the RFM
inside the Bayesian model to make inference on the input parameters based on the resulting
fit of the RFM to the monitor data, as in Kennedy and O'Hagan (2001), Higdon et al. (2004),
and Foley et al. (2012) for Gaussian data. Therefore, unlike previous downscaler methods
for extremes (Mannshardt-Shamseldin et al., 2010; Reich et al., 2011; Zhou et al., 2012)),
we do not estimate the densities of the model and monitor data separately. To make full use
of the RFM, we model the conditional distribution of the monitor data given the RFM.
Second, our model for the conditional distribution of the monitor data given the RFM has
attractive features. EVT tells us that observations which exceed a high threshold are well-
approximated by the generalized Pareto (GPD) distribution. Therefore, in contrast to most
previous methods for downscaling numerical model output, here we explicitly leverage EVT
by specifying that the conditional distribution of monitor data given the RFM has a GPD
tail. However, modeling only the extremes is not sufficient here, since even the center of the
conditional distribution of the monitor data given an extremely large value of the RFM may
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in fact be extreme. This requires that we construct a flexible model for the entire conditional
distribution which uses EVT to characterize the upper tail. Our overall model is a
combination of quantile regression and EVT, employing quantile regression at levels where
there is adequate information to fit a flexible model and EVT in the tail which allows one to
extrapolate beyond the range of the data. We assume that EVT is appropriate for the upper
tail of the conditional distribution given any value of the RFM (high or low) and allow the
GPD distribution to vary with the RFM and spatial location. Our work is similar in spirit
with a recent study by Bentzien and Friederichs (2012), who use a related strategy for
probabilistic quantitative precipitation forecasting. They estimate a conditional mixture with
a GPD tail, although without spatial variation in the parameters or a RFM with unknown
input parameters. Third, rather than using the standard diagnostic tools to select a threshold,
our model estimates the threshold above which EVT becomes appropriate. Prior work on
threshold estimation is limited; Frigessi et al. (2003) use a mixture of a parametric light-
tailed distribution and a GPD, and Behrens et al. (2004) use a semi-parametric center and
GPD tail and estimate the threshold in a Bayesian way.

2 Description of the air quality model and monitor data
2.1 Base CMAQ model

The Community Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006) version
4.7.1 (Foley et al., 2010) is chosen as the regional photochemical transport model used as
the base simulation, from which we later construct our RFM. Ozone was simulated hourly
with CMAQ in a domain centered on the southeastern United States for an episode between
July 1, 2005 and September 30, 2005, with the full month of June 2005 as a spin-up period.
Eight-hour average ozone is then computed using the hourly values. Standard model
configuration was used with a 12km by 12km horizontal grid spacing and 14 vertical layers
from the surface to 100 hPa, and the Statewide Air Pollution Research Center (SAPRC99)
gas-phase chemical mechanism (Carter, 2000). Meteorological fields were developed using
the fifth generation mesoscale model (MM5) version 3.6.3 (Grell et al., 1994) and chemical
emissions based on the 2001 National Emissions Inventory (http://www.epa.gov/ttn/chief/
emch/index.html#2001) were processed using the SMOKE processor, version 2.3.2 (http://
www.smoke-model.org), augmented with year 2005 specific emissions data for electric
generating units equipped with Continuous Emission Monitoring Systems (CEMS), mobile
emissions processed by MOBILE 6 (http://www.epa.gov/otaq/m6.htm), and
meteorologically adjusted biogenic emissions from the Biogenic Emission Inventory System
(BEIS) 3.13 (Schwede et al., 2005).

2.2 Reduced-form CMAQ model
When model runs are computationally intensive and many runs are required for a thorough
sensitivity analysis, an approximation to the model output can be used. One such technique
is the decoupled direct method in three dimensions (DDM-3D). This gives a reduced-form
CMAQ (RF-CMAQ) model described below. Eulerian photochemical models such as
CMAQ typically simulate the emissions, transport, and chemistry of gases and particles in
the atmosphere by numerically solving the Atmospheric Diffusion Equation (Seinfeld and
Pandis, 1998)

(1)

where Ci(t, s) is the concentration of species i = 1, 2, ..., N at time t and location s (with
notations for space and time dropped for simplicity), u is fluid velocity, K is the diffusivity
tensor, Ri is the net rate of chemical generation of species, and Ei is the species emissions
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rate. DDM-3D computes first-order semi-normalized sensitivity coefficients  to
perturbations in an input parameter pj as

(2)

where εj is a scaling variable with a nominal value of 1.0 applied to the unperturbed

parameter field, p̃j as . Differentiating (1) while using the above definitions leads to an
analogous equation governing the first-order sensitivity field

(3)

where Ẽi is the unperturbed emission rate, and Ji is the ith row vector in the Jacobian matrix
J (Jij = ∂Ri/∂Cj) representing the chemical interaction between species as the previously
undefined terms.

Calculations for second-order sensitivity coefficients are also possible and are defined as

(4)

For a given species, Taylor series expansion can be used to approximate the concentration
Ci(t, s) as a function of perturbations in a set of input parameters of interest using first- and
second-order sensitivity coefficients (Cohan et al., 2005). In this application we are
interested only in the concentration of a single species, ozone, and therefore the subscript i is
dropped. The RF-CMAQ model for d parameters including second-order and cross-
sensitivities is

(5)

where C(t, s|α) is the ozone concentration due to a specific set of perturbations α = (α1, ...,
αd) at time t and location s, C0(t, s) is unperturbed concentrations from the base CMAQ
simulation, and αj is the perturbation in input parameter pj. For example αj = –0.10
corresponds to 10% decrease in NOx emissions compared to the NOx emissions used for C0.
The sensitivity coefficients produced by DDM-3D vary in space and time, providing a
computationally efficient calculation of ozone under different perturbations in emissions
inputs through the RFM. For example, in urban centers NOx emissions frequently act as a
sink of ozone resulting in negative sensitivity to sectors involving NOx emissions (Figure
1c). In this analysis we consider sensitivity to d = 6 inputs: mobile-source NOx emissions
(e.g. traffic), point-source NOx emissions (e.g. power plants), other NOx emissions (e.g.
construction equipment), anthropogenic VOCs emissions (e.g. benzene emitted from fuel
combustion by motor vehicles), biogenic VOCs emissions (e.g. limonene emitted from pine
trees), and ozone boundary conditions (3-D hourly pollutant concentrations specified at the
grid cells surrounding the model domain).

This second-order RFM is used as an emulator for the full CMAQ model. That is, we use (5)
to approximate the spatiotemporal output that would result from an evaluation of the full
CMAQ model for a new set of perturbations α. This RFM has been shown to have
normalized mean error within 10% of reevaluating the full model for α perturbations up to
-100% (Cohan et al., 2005). An important caveat is that (Cohan et al., 2005) did not address
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differences between the full CMAQ and RFM for extreme values, which could potentially
have greater impact on projections of extremes.

Using the RF-CMAQ model provides substantial computational improvement. A single
month-long simulation using the full CMAQ model takes approximately 10 hours using 72
processors on an IBM system x iDataPlex. The DDM-3D model on the same system runs in
approximately 10 days but gives us the ability to estimate pollutant concentrations under
many different emissions levels. In the paper, the Bayesian framework allows us to evaluate
the reduced form model at thousands of different emissions perturbations to create posterior
distributions of the ozone concentration across space. In contrast, running the full model just
100 times in order to roughly approximate the uncertainty in the emissions inputs would
require more than a month of computational time. Therefore, RF-CMAQ is the only viable
way of exploring the effects of control strategies while accounting for uncertainty in the
emissions inputs.

2.3 AQS monitor data
Ozone predictions are also paired in time and space with hourly average ozone observations
obtained from EPAs Air Quality System (AQS; http://www.epa.gov/ttn/airs/airsaqs/). This
analysis focuses on the maximum eight-hour average ozone concentrations per day (MD8
O3) for July 1 to September 30 in 2005 at 307 monitoring stations in the southeastern US in
Figure 1c. The MD8 is the averaging metric of interest, because it is used for determining
compliance with the EPA's National Ambient Air Quality Standards for ozone.

3 Statistical Model for extreme ozone
Let y(t, s) be the AQS measurement for day t ∈ {1, ..., nT} at spatial location s. Our
objective is to estimate the conditional distribution of y(t, s) given RF-CMAQ output for the
grid cell containing location s, denoted C(t, s|α). As described in Section 2.2, the
perturbation vector α is treated as an unknown parameter in the hierarchical model to allow
the AQS data to determine the optimal adjustment to the initial emission levels. For
notational convenience, we temporarily suppress dependence on t, s, and α and simply
describe the model for y given C. We specify a flexible semiparametric model below a
threshold μ where data are abundant, and transition to a parametric GPD model above a
threshold where data are sparse. The models above and below the threshold are described in
Sections 3.1 and 3.2, respectively.

3.1 Parametric EVT model above the threshold
The parametric GPD distribution has three parameters: lower bound μ, scale σ > 0, and
shape ξ. The domain is (μ, ∞) if ξ > 0 and (μ, μ – σ/ξ) if ξ < 0, and the density and quantile
(inverse CDF) functions are

respectively, where x+ = max{0, x}. In practice, typically a threshold is selected to be the
GPD lower bound, μ. Unlike typical extreme value analysis, rather than choosing a
threshold, we instead treat it as a parameter in the model-fitting process.

As shown in Figure 1, the distribution of AQS values is highly dependent on the RF-CMAQ
output. Therefore, we assume that the semiparametric/parametric threshold depends on C.
Since the threshold will likely vary more on the data scale than the percentile scale, we
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model the threshold and conditional distribution via its quantile function. The conditional
quantile function q(τ|C) satisfies P[y < q(τ|C)] = τ ∈ [0, 1], and therefore the conditional
density function is dq–1(y|C)/dy. Utilizing the GPD, the full conditional quantile function is

(6)

In this model, T(C) ∈ [0, 1] is the quantile level that separates the semiparametric quantile
function q0 and the parametric qGPD. For τ above T(C), and thus y above q0[T(C)|C] =
μ(C), the quantile function takes the form of a GPD with lower bound μ(C), scale σ(C), and
shape ξ(C).

3.2 Semiparametric quantile regression below the threshold
We use the model of Reich (2012) for the quantile function below the threshold, q0. We
assume that

(7)

The quantile function is the sum of an overall location term β(C) and a linear combination of
known basis functions Bl with unknown coefficients θl(C) which determine the shape of the
quantile function given C. For the choice of basis functions below, β(C) is the median.
Although this model is quite flexible, it is centered on the heteroskedastic Gaussian model in
that if θ1(C) = ... = θL(C), then the quantile function reduces to the Gaussian quantile
function with mean β(C) and standard deviation θ1(C).

To lead to a valid statistical model, q0 must be increasing in τ for all C. To do this, we
define B1(τ) = Φ–1(τ) if L = 1, where Φ–1 is the standard normal quantile function. In this
case, the model below the threshold is Gaussian with mean β(C) and standard deviation
θ(C). For non-Gaussian data we generalize by allowing L ≥ 2, and specifying basis functions

(8)

for l with κl < 0.5 and

(9)

for l such that κl ≥ 0.5, where 0 = κ1 < ... < κL+1 = 1 be a grid of equally-spaced knots
covering [0, 1]. Then the quantile function is increasing if and only if θl(C) > 0 for all l and
C. We only consider even L in which case Bl(0.5) = 0 for all l, and the median is q0(0.5|C) =
β(C). Also, if θ1(C) = ... = θL(C) = θ(C), then for τ < μ(C), q(τ|C) = β(C)+θ(C)Φ–1(τ), and
the density below the threshold is Gaussian with mean β(C) and standard deviation θ(C). It
is also possible to use other basis function Bl. For example, taking Bl to be the gamma or
log-normal distribution function would ensure a lower bound q0(0|C) = 0.

These basis functions also permit a closed-form expression for the conditional density
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(10)

where N(·|a, b2) denotes the density of a normal with mean a and standard deviation b, and
al(C) = q(κl+1|C) – θl(C)Φ–1(κl+1) if κl < 0.5 and al(C) = q(κl|C) – θl(C)Φ–1(κl) if κl ≥ 0.5.
Therefore, the density is multiply-split normal with breakpoints (and points of discontinuity)
q(κl|C) and μ(C). However, our primary interest, the quantile function, is a continuous
function.

3.3 Modeling dependence on RF-CMAQ
The conditional density varies with C via β(C), θl(C), T(C), σ(C), and ξ(C). These
parameters could be allowed to have a complex dependence on C to capture subtle features
of the conditional distribution. For example, one could use a Gaussian process defined over
C. For simplicity, we assume that after a suitable transformation each parameter is an order–
M polynomial expansion of C. That is, β(C) = Xa(β), log[θl(C)] = Xa(θl), log[σ(C)] = Xa(σ),
ξ(C) = Xa(ξ), where X = (1, C̄, ..., C̄M) and C̄ = (C – 50)/15 is the standardized CMAQ
output (where 50 and 15 are the approximate mean and standard deviation, respectively).
Note that this polynomial model contains the linear regression model as a special case, and
that in this case the intercept can account for systematic bias between the AQS data and the
RF-CMAQ predictions. Higher-order polynomials or spline basis expansion would allow for
more complex relationships between RF-CMAQ and the AQS data.

The semi-parametric/parametric threshold T(C) must be modeled so that T(C) is confined to
[0, 1] for all C. In our analysis, we intend for T(C) to be an extreme quantile to theoretically
justify the GPD fit, so we restrict T(C) ∈ [l, u] where l and u are unknown parameters with l
~ Uniform(0.8,1.0) and u|l ~ Uniform(l, 1.0). The variability of T(C) within (l, u) is modeled
using the logistic link

(11)

As with the other parameters, d, and thus T, varies with C as d(C) = Xa(d).

3.4 Spatiotemporal modeling
There are two potential sources of spatial and temporal dependence in the data: spatial
variation in the conditional distribution of AQS given RF-CMAQ, and residual
spatiotemporal association in the observations given the conditional distribution. To account
for spatial variation in the conditional distribution, we allow the parameters that define the
semiparametric model below the threshold, a(β) and a(θl), as well as the GPD scale a(σ) to
vary by spatial location. These processes are then smoothed by Gaussian process priors. For

example, denote a(β) at location s as , and thus the

spatially-varying coefficients β(x, s) = Xa(β)(s). Then  has a Gaussian process prior

with mean , variance , and exponential spatial correlation

. The hyperparameters have priors

 and  for k ∈ {β, θ1, ..., θL, σ}. To borrow strength
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across processes we assume a common spatial range ρ, which is reasonable since all of these
spatially-varying parameters represent the change in response distribution across locations.

We find that while the threshold parameters a(d) and GPD shape parameters a(ξ) are well-
identified when allowed to vary by the value of RF-CMAQ, they are poorly-identified when
allowed to vary by RF-CMAQ and spatial location. This is not surprising since they are by
definition related only to the tail of the distribution, and thus there are only a few relevant
observations at each location. These parameters are thus held constant for all locations with

priors  for k ∈ {d, ξ}. We note that although the threshold is fixed at a
constant quantile level across space, the actual threshold on the ozone scale is μ[C(t, s|α)] =
qo{T[C(t, s|α)]|C(t, s|α), s}, which does vary spatially. Also, since the interpretation of the
GPD scale is dependent on the threshold, it seems a reasonable approach to not allow the
parameters dictating the threshold to vary spatially, and assume that the spatially varying
scale parameter can account for spatial variation. Combining these specifications gives the
final quantile model fit to the ozone data in Section 5

(12)

where .

Even after accounting for spatial variation in the conditional distributions, there is spatial
and temporal dependence in the residuals due to day-to-day variation in ozone. We account
for this dependence with a Gaussian copula (Nelsen, 1999). The copula is defined by a latent
Gaussian process z(t, s) with mean zero, variance one, and a spatiotemporal correlation
function. Then U(t, s) = Φ[z(t, s)] ~ Unif(0,1), and the latent process is related to the
response as y(t, s) = q[U(t, s)|C(t, s|α), s]. While the Gaussian copula induces some
spatiotemporal dependence, it is well known that the Gaussian copula gives asymptotic
independence. That is, assuming the same marginal distribution for y(t, s) and y(t′, s′), then
limu→U P [y(t, s) > u|y(t′, s′) > u] = 0, where U is the upper bound of y(t, s), which implies
that the Gaussian copula is equivalent to ignoring dependence between very extreme events.
Therefore the Gaussian copula may not be ideal for extreme data in all settings. However,
our exploratory analysis in Section 5 suggests that there is little extremal dependence in the
residuals and therefore that this model fits the AQS data well after accounting for RF-
CMAQ output. In other cases, copulas with asymptotic dependence may be desirable.
Examples of copulas with asymptotic dependence include the t-copula (Nelsen, 1999) or a
non-parametric copula (Fuentes et al., 2012). Another possibility is to specifically target
extremal dependence (for example, Davison and Smith, 1990; Chavez-Demoulin and
Davison, 2012; Eastoe and Tawn, 2012).

4 Computational approach to evaluating control strategies
The computing used for the ozone data analysis has two main steps: we first analyze the
AQS data to estimate the parameters in the conditional distribution of AQS given RF-
CMAQ, and then generate replications of the summer ozone process under different control
strategies. These two steps are described separately in the subsections below.

4.1 Parameter estimation
Because of the size of the dataset, we fit this model in two stages. We first estimate α and
the a(k) parameters for k ∈ {β, θl, σ, ξ, d} in one model fit assuming the observations are
independent conditioned on these parameters. In the second stage, we estimate the copula

Reich et al. Page 9

Ann Appl Stat. Author manuscript; available in PMC 2014 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parameters conditioned on the first-stage parameter estimates. Assuming independence of
the observations conditioned on Θ(s) = {α, a(β)(s), a(θl)(s), a(σ)(s), a(ξ), a(d), l, u}, the
likelihood is simply the product of terms of the form of (10). Denote p[y(s, t)|Θ(s)] as the
density of y(s, t). None of the parameters in the likelihood have conjugate full conditionals,
so we use Metropolis-Hastings sampling. Metropolis-Hastings sampling proceeds by
specifying initial values for all parameters, and then updating the parameters one-at-a-time,
conditioned on the current value of all other parameters. For example, to update αj, we draw

candidate , where  is the current value and the standard deviation c

is a tuning parameter. With probability R, αj is set to , and αj is set to  otherwise,
where

Θ(s)can includes , Θ(s)cur includes , and p(α) is the Gaussian prior. Evaluating p[y(s,
t)|Θ(s)] requires first computing RF-CMAQ given perturbation parameters α, C(s, t|α),
which is trivial for RF-CMAQ model following (5). All parameters are updated similarly
with Gaussian candidate distributions tuned to give acceptance rates near 0.4. We generate
25,000 samples from the posterior and discard the first 10,000 as burn-in. Convergence is
monitored using trace plots of several representative parameters.

To estimate the copula parameters, we compute the estimated Gaussian-transformed
residuals z(t, s) = Φ–1 {q̂–1[y(t, s)|C(t, s), s]}, where q̂ is the quantile function evaluated at
the posterior mean of all model parameters. There is of course spatial dependence in the
residuals, and sampling with spatial dependence would be crucial for statistics defined over
the spatial domain, for example, total precipitation in a watershed. However, our interest is
in projecting the change in ozone distribution at each site, and not for a collection of sites
simultaneously. Therefore, assessment of spatial dependence in the predictions is not a
concern and we assume the residuals are independent over space for computational
convenience. We then fit a first-order autoregressive model for the temporal dependence,
Cor[z(t, s), z(t′, s′)] = exp(–|t – t′|/ϕ)I(s = s′), with autocorrelation parameters held constant
over space and time. We fix ϕ to match the sample correlation of subsequent residuals at the
same location.

4.2 Generating samples from the posterior predictive distribution
To evaluate the effects of control strategies on the likelihood and magnitude of extreme
ozone events, we generate several replications of summer ozone at each spatial location. The
control strategies correspond to reductions of emissions in various sectors, and are
parameterized in terms of the RF-CMAQ model inputs α. In the RF-CMAQ model, αj
represents a 100αj% change in the initial estimate of the emissions in sector j. Therefore, the
posterior of α represents the calibrated emissions for the base case based on fitting to the
AQS data. To simulate RFM output that corresponds to an additional change of 100ηj%

after the calibration via αj, we use  as inputs to the RFM. By
simulating data for different values of ρ = (η1, ..., ηp), we simulate ozone data under
different control strategies. These control strategies assume a uniform reduction across the
entire region.
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For each control strategy we generate R = 10, 000 replicates of the summer ozone at each
CMAQ grid cell. Due to the computational burden, the grid cells are thinned by removing
every other column and row. For each replicate we randomly sample one of the posterior
draws for the parameters in the conditional distribution {a(β), a(θl), a(d), a(σ), a(ξ), α}. At
each iteration all spatially-varying parameters are interpolated from the AQS stations used
for model-fitting to the grid cell locations by sampling from their posterior predictive
distribution. We then compute the RF-CMAQ model corresponding to input

, and the conditional distribution of y(t, s) given C(t, s|α*) and {a(β), a(θl),
a(d), a(σ), a(ξ)}. We generate the responses for each simulated year for location s by
generating z(s) = [z(1, s), ..., z(nT, s)]T from a multivariate normal model with mean zero and
covariance Cov[z(t, s), z(t′, s)] = exp(–||t – t′||/ϕ) and transforming to y(t, s) = q(Φ{z(t, s)}|
C(t, s|α*, s)) so that y(t, s) has the quantile function in (12).

This method of simulation accounts for uncertainty in the AQS value given RFM output,
and uncertainty in the parameters in the conditional distribution of the AQS value given the
RFM output. It also partially accounts for randomness in the RF-CMAQ output by
marginalizing over the posterior of α. However, there are many additional inputs to RF-
CMAQ that are taken as fixed, and so not all the randomness in RF-CMAQ from year to
year is accounted for by this approach. Ideally we would have a larger sample of RF-CMAQ
output to better represent the sampling distribution of RF-CMAQ from year to year.
Therefore, the results should be interpreted cautiously as pertaining to the changes in the
ozone distribution for this particular simulated year, which may suppress some variability
for an arbitrary future year.

5 Constructing the downscaler between RFM output and AQS data
To display the results of fitting the conditional distribution of AQS given RF-CMAQ, we
first compare several models based on test set prediction in Section 5.1. We then illustrate
the fitted distribution of our final model in Section 5.2.

5.1 Model comparisons
We compare several models by varying the number of basis functions in the semiparametric
quantile process, L, the order of the polynomial for RF-CMAQ in the conditional
distribution, M, and with and without (i.e., T(C) = 1) the GPD tail. For comparison, we also
include the non-statistical forecast by simply taking the base CMAQ output C0(s, t) as the
prediction. For all fits, we use uninformative priors c1 = 100, c2 = c3 = 0.1, and log(ρ) ~ N(0,
10). To compare these models, we randomly (across space and time) split the data equally
into training (n=13,645) and testing data sets (n=13,645). We fit each model to the training
set, calculate the posterior mean of all model parameters, and then compute the predictive
distribution for each test set observation.

Models are compared in terms of their fit to the upper tail of the distribution using Brier
scores for exceedances and quantile scores for extreme quantiles (see, e.g., Gneiting and
Raftery, 2007). The quantile score for quantile level τ is 2 {I[y < q̂(τ)] – τ} (q̂ – y), where y
is the test set AQS value and q̂(τ) is its estimated τth quantile. The Brier score for evaluating
accuracy of predicting exceedance of threshold c is [e(c) – P(c)]2, where e(c) = I(y > c) is
the indicator that the test set AQS value exceeds c and P(c) is the predicted probability of an
exceedance. For the non-statistical predictions, we take q̂(τ) = C0 and P(c) = I(C0 > c). We
compare models using several extreme values of τ and c, and average these values over all
observations in the test set. For both quantile and Brier scores, small values are preferred.
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Table 1 gives the results. The non-stochastic bias-adjusted base CMAQ fit (“SLR”), i.e., a(s)
+ b(s)C0(s, t) where a(s) and b(s) are fit using separate linear regressions at each location,
has the highest scores, verifying the need for statistical calibration. We also fit simple linear
quantile regression (“QR”, using the quantreg package in R) and logistic regression (“LR”)
with base CMAQ as a linear predictor separate by site (for very extreme quantiles and
threshold these methods had some convergence problems, and we simply carried forward
the estimates from the next lowest quantile or threshold). Although these models do not
provide a means to generate ozone under different scenarios, they do provide improved fit
compared to linear regression.

The quantile scores clearly show the value of the GPD tail model. Although the score values
are hard to interpret, the scores for the 0.99 and 0.995 quantiles are universally lower than
those for the model without the GPD tail; the scores for the statistical models for the 0.99
quantile are 0.521, 0.518, 0.520, and 0.515 for the models without GPD tail, compared to
0.507, 0.498, 0.505, and 0.502 for the model with GPD tail. Exceedence prediction for high
thresholds is not only affected by the tail of the distribution, but also the center. For
example, Figure 1 shows that most exceedences of 80ppb occur when CMAQ is large, and
that 80ppb is in the center of the conditional distribution for large CMAQ. Therefore, the
GPD tail is not the most influential factor for Brier score, but rather the most important
factor is accurate modeling of the relationship between AQS and RF-CMAQ via the degree
of the polynomial in the model parameters, M. The Brier score for 80ppb is 2.105, 2.108,
2.122, and 2.150 for the linear models with M = 1, compared to 1.975, 1.951, 1.978, and
1.973 for the quadratic models with M = 2. More complex models for the RF-CMAQ
predictors such as higher-order polynomials (that is, M > 2) or spline fits are also possible.
We fit the model with GPD tails and L = 1 with M = 3 and found a slight improvement for
moderate quantile levels but poor performance for the extremes, likely due to overfitting.
Therefore, we conclude a second-order polynomial is sufficient for these data. Non-
Gaussian modeling (L = 4) of the distribution below the threshold does not appear to
improve model fit compared to the Gaussian model (L = 1) for these data. Therefore,
although other models are fairly similar, the best model in terms of both the quantile scores
and Brier scores has L = 1, M = 2, and GPD tail. This model is Gaussian below the
threshold, and all the model parameters are quadratic in RFM. The results below are from
the data analysis using this model on the complete dataset.

5.2 Summary of the final model
For the final model with L = 1 and M = 2, RF-CMAQ input parameters αj are all negative
with high probability, suggesting that all emissions inputs used in the base simulation C0 are
too high. Their 95% posterior intervals are (-0.17, -0.05) for mobile source NOx, (-0.22,
-0.11) for point source NOx, (-0.27, -0.10) for other NOx, (-0.74, -0.59) for anthropogenic
VOC emissions, (-0.24, -0.17) for biogenic VOC emissions, and (-0.10, -0.07) for ozone
boundary conditions.

Figure 2 summarizes the GPD fit to the tail of the conditional distribution. The threshold
T[C(t, s|α)] in Figure 2a, which depends on l, u, and d(C), varies between the 0.80 and 0.95.
The threshold is lower, and thus the GPD fits a larger portion of the tail, for moderate to
high RF-CMAQ values 50-80ppb. The GPD shape ξ[C(t, s|α)] in Figure 2b is near zero for
low RF-CMAQ values, negative for moderate RF-CMAQ, and positive for large RF-
CMAQ. This generally agrees with the sample density estimates in Figure 1b, which have
heavier tails for low and high values of RF-CMAQ. Unlike the threshold and shape, the
GPD scale σ[C(t, s|α), s] varies spatially (Figures 2c and 2d). The GPD scale is larger in the
south and the Chesapeake Bay area. Also, the scale is generally larger for RF-CMAQ equal
50ppb than 80ppb. Note that this does not imply a lighter tail for extreme RF-CMAQ, since
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the GPD shape parameter (Figure 2b) is higher for large RF-CMAQ values compared to
moderate RF-CMAQ values.

To determine the form of residual dependence, we compute the estimated Gaussian-
transformed residuals z(t, s). Figure 3a plots the residuals for each consecutive pair of
observations at the same station, [z(t–1, s), z(t, s)]. The sample correlation is 0.26 (p-value
for the test of correlation is <0.001). We note that much of the autocorrelation in ozone is
captured by RF-CMAQ model, and thus the correlation in the residuals is lower than the
correlation in the raw ozone values. To test for extremal dependence, Figure 3b plots the
residuals transformed to have unit Fréchet margins to emphasize dependence in the tails.
The unit Fréchet distribution function is P(Z < c) = exp(–1/c), therefore if z(t, s) is standard
normal then zF(t, s) = –1/log{Φ[z(t, s)]} is unit Fréchet. The pairs [zF(t – 1, s), zF(t, s)] show
no asymptotic dependence since for all pairs with one extremely large value the other
member of the pair is near zero. Therefore, we use a Gaussian copula for predictive
purposes.

6 The distribution of extremes under various control strategies
To determine the local effects on extreme ozone events of several control strategies, we
sample R replicates of summer ozone at each grid cell from the predictive distribution, as
described in Section 4.2. We compare four control strategies:

S0: the base case with no change in emissions, ρ = (0, 0, 0, 0, 0, 0)

S1: a 50% reduction in mobile-source NOx, ρ = (–0.5, 0, 0, 0, 0, 0)

S2: a 50% reduction in point-source NOx, ρ = (0, –0.5, 0, 0, 0, 0)

S3: a 15% reduction in mobile, point, and other-source NOx, ρ = (–0.15, –0.15, –0.15,
0, 0, 0).

These emission reductions were selected to give roughly a spatial-average of 3ppb decrease
in the base CMAQ C0(s, t). These reductions are in line with reductions often considered by
regulators and air quality managers. For example, the 2008 EPA Regulatory Impact
Analysis (http://www.epa.gov/ttn/ecas/regdata/RIAs/452_R_08_003.pdf), which considers
reductions of 30% to 90% for both VOC and NOx. We display the predictive distribution by

computing various summary statistics for each replication, e.g., , the fourth largest

value of {y(1, s), ..., y(nT, s)} for replication r, and plotting its mean, , and

proportion above 75ppb, .

To illustrate the effects modeling the tail as GPD rather than Gaussian, Figure 4 plots the
average yearly maximum and fourth-highest day for the base case S0 with the final model
with L = 1, M = 2, and GPD tails and the fit without the GPD tail, i.e., a Gaussian model
with mean β(x, s) and standard deviation θ1(x, s). The two models differ by 3-5ppb in many
locations, which is a meaningful difference for regulatory purposes. The probability that the
yearly maximum and fourth highest day are larger using the GPD model is 0.8-0.9 in eastern
North Carolina and the Chesapeake Bay area (Figures 4c and 4f). Although these
probabilities are not definitive, we note that they are computed using separate samples from
the residual distribution (z(s) in Section 4.2), and therefore these probabilities represent an
almost complete separation of the predictive distributions under these two models.

Figure 5 compares the projection of the 4th highest day of the year under the four scenarios.
Compared to the base case, the 50% reduction in mobile source NOx has the largest effects
in the area surrounding Atlanta (Figure 5a). The reduction is as large as 6ppb to the east of
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Atlanta. In the center of the city, however, this control strategy gives virtually no reduction.
It is well known that high NO released in high-traffic areas destroys ozone near the source,
and therefore reducing the mobile-source emissions does not reduce ozone near the source,
but rather downwind where NO concentrations are lower. This can be seen in the map of the
sensitivities in Figure 1c, which is negative in Atlanta's center, but positive in its
southeastern suburbs. The reduction in ozone for the point-source NOx scenario is generally
smaller and is more uniform across space (Figure 5b). The reduction is 2-5ppb for most of
the region with exceptions of smaller reductions in Atlanta and Northern Virginia.
Comparing the reductions corresponding to the mobile-source and point-source control
strategies (Figure 5d), we find a larger reduction for the mobile-source strategy in most of
the spatial domain, with exceptions in Kentucky, West Virginia, and central Atlanta. The
third control strategy of reducing all the NOx emissions by 15% shows a similar spatial
pattern to the mobile-source strategy, but with generally smaller reductions.

In addition to comparing changes in the mean of the fourth highest day of the year, the
predictive distributions can also be used to study the probability that the fourth highest day
exceeds the current standard of 75ppb. Figure 6 shows that many areas have a substantial
reduction in the exceedance probability. For example, the Birmingham and Raleigh areas go
from near 1.0 in the base case to 0.6-0.8 under the mobile-source control strategy. However,
areas with the highest ozone level, Atlanta and Chesapeake Bay, have exceedance
probability near one in all cases. Comparing the mobile-source and point-source strategies
(Figure 6f), the exceedance probability is lower under the mobile-source control strategy
than the point-source strategy for 74% of the grid cells. Overall, the mobile-sources
reduction strategy appears to be the most effective.

7 Discussion
In this paper, we propose a new framework for downscaling extremes. We propose to model
the conditional distribution of the monitor data given the RFM as a combination of quantile
regression and extreme value modeling, using generalized Pareto tails. Using a fully-
Bayesian analysis, we propagate many sources of uncertainty through to the final estimate of
the effect of each control strategy. Using this approach, we evaluate three control strategies
related to reduction in NOx. We find that reducing mobile-sources NOx has the largest
impact of the strategies considered, especially in suburban Atlanta. However, the probability
of non-compliance with the EPA regulation remains near one for the Atlanta area for all
control strategies.

Although our modeling framework is quite flexible, it has several limitations. First we have
not considered residual spatial correlation in the model fitting stage. Reich (2012) does
include residual spatiotemporal dependence for spatial quantile regression. Although
estimating residual spatial dependence in not the primary focus in this work, failing to
account for this may cause underestimation of the uncertainty of model parameters. Also,
although the quantile function is modeled as increasing for each value of the RFM, the
quantile function is not forced to be increasing in RFM for each quantile level, as one would
naturally expect. Including this prior belief may be possible by adding further restrictions to
the polynomial coefficients in the conditional distribution, and would certainly improve the
fit for small and moderate data sets.

Also, we note that our analysis only considers global emission control strategies that assume
a uniform reduction in emissions across the entire spatial domain. An extension would be to
calculate sensitivities to local changes, to study the effects of emission reduction in one grid
cell on neighboring cells. This would add another spatial aspect to the model, and provide a
more comprehensive sensitivity analysis.
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Figure 1.
Plot of the CMAQ output versus AQS monitor data pooled over all sites (Panel (a)), the
kernel-smoothed density estimate of the AQS density by binned CMAQ (Panel (b)), and the

RF-CMAQ sensitivity  (1, s) for one day for mobile source NOx (Panel (c); points are
AQS monitor locations).
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Figure 2.
Posterior of the threshold T(C), GPD shape ξ(C), and GPD scale σ(C, s) by RF-CMAQ
output. In Panels (a) and (b), the horizontal line in each boxplot gives the median,
interquartile range, and 95% interval. Panels (c) and (d) plot the posterior mean.
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Figure 3.
Plots of the residuals for consecutive days at the same locations, transformed to (a) standard
normal and (b) unit Fréchet marginals.
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Figure 4.
Comparison of the predictive distribution for the yearly maximum and yearly 4th highest
value (ppb) for the base case with (“GPD”) and without (“noGPD”) Generalized Pareto tails.
Plotted are the posterior mean for the GPD model (Panels (a) and (d)), the posterior mean
difference between GPD and noGPD (Panels (b) and (e)), and the posterior probability that
GPD gives a larger value than noGPD (Panels (c) and (f)).
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Figure 5.
Difference in the posterior predictive mean of the fourth highest day of the year for the
several pairs of scenarios (Panels (a)-(f); parts per billion) and probability that the fourth
highest day of the year is larger for one scenario than another (Panels (g)-(i)). The
probabilities of a reduction from S0 are near one for all other scenarios and thus not shown.

Reich et al. Page 21

Ann Appl Stat. Author manuscript; available in PMC 2014 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Comparison of the predictive probability of greater than 75ppb for the yearly 4th highest
value under three control strategies. Each point in Panels (d)-(f) corresponds to one of the
grid cells in Panels (a)-(c).
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