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Abstract
As hurricanes approach landfall, there are several hazards for which coastal populations must be
prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and
inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields
are used as the primary forcing for the numerical forecasts of the coastal ocean response to
hurricane force winds, such as the height of the storm surge and the degree of coastal flooding.
Unfortunately, developments in deterministic modeling of these forcings have been hindered by
computational expenses. In this paper, we present a multivariate spatial model for vector fields,
that we apply to hurricane winds. We parameterize the wind vector at each site in polar
coordinates and specify a circular conditional autoregressive (CCAR) model for the vector
direction, and a spatial CAR model for speed. We apply our framework for vector fields to
hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior
methods that decompose wind speed and direction into its N-S and W-E cardinal components.
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1 Introduction
Across many areas of research, one may come into contact with vector data. One such type
of data is wind fields. Studying wind fields is important in environmental research. For
example, with the current insurgence of support for cleaner energy, there is an increased
focus on studying spatial and temporal variations in wind speed and direction (Hering and
Genton, 2010). Researchers are trying to identify optimal locations for wind turbines, which
requires a model for the wind speed, direction, and duration at different sites. Another
example is the wind fields generated by a hurricane. Residents living along the coastal area
of the southeast United States and Gulf Coast are presented with many hazards during a
landfalling hurricane. With populations in these areas increasing, it is imperative that as
storms approach the coastline we have the means necessary to give these citizens the
information needed to prepare for possible landfall conditions. Storm winds, torrential rain,
and spawned tornadoes each can harm both life and property, but the single largest threat to
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coastal areas is the storm surge. This inundation of water pushed by the landfalling storm
can quickly take lives and destroy property with homes and businesses being either right at
or just a few feet above sea level.

Developing accurate forecasts of storm surges will improve the preparedness of these
communities. Research has shown that the effectiveness of these forecasts depends upon
accurate modeling of wind forcings. At present, there has not been a model adopted for the
forecasting/mapping hurricane winds for the specific purpose of improving storm surge
forecasts. Some researchers believe that this is due to the computational expense of such
models. However, there have been some models and methods developed to assist with
modeling these hurricane wind fields. Holland (1980), Depperman (1947), and DeMaria et
al. (1992) each presented models that have been termed as axis-symmetric. These models
are based upon a cyclostrophic wind balance and place the key dependence on the distance a
location is from the storm circulation center. These models are simple to understand and
apply; however, they do not describe the true asymmetrical structure of the winds within
hurricanes. For example, winds in the northeast quadrant of the storm are typically stronger
than those in other locations due to friction, environment, vertical shear, etc. These and other
possible sources were discussed by Chen and Yau (2003), Ross and Kurihara (1992),
Shapiro (1983), and Wang and Holland (1980).

Xie et al. (2011) looked into the effect asymmetry of a storm has on the storm surge. Using
the Coastal Marine Environmental Prediction System (CMEPS), developed at North
Carolina State University, they simulated storm surge under different conditions. They
found that there was significant difference in water levels when the asymmetry of hurricane
wind fields was changed while holding all other parameters such as maximum wind speed,
radius of maximum winds, and minimum pressure constant. Xie et al. commented that there
has been improvements made to storm surge forecasts. However, they point out that all of
these advancements were made under the assumption that the wind forcing fields were
accurate.

With the knowledge that hurricanes are asymmetrical, there have been models proposed that
would attempt to incorporate asymmetric structures (Georgiou, 1985). Xie et al. (2006)
looked at the wind model developed by Holland and attempted to model its error utilizing a
Gaussian process. Reich and Fuentes (2007) took this approach one step further and
removed the assumption of the Gaussian process. With the incorporation of a stick-breaking
prior, they were able to develop a non-parametric approach that was more general than the
previous. This model assumed that the cross-dependence between the N-S and W-E wind
components was constant across space which may not hold in practice.

The common statistical modeling approach for wind vectors decomposes the wind fields
into the u and v components (Cartesian representation), where u corresponds to the N-S and
v to the W-E wind component. Figure 1 plots the data for Hurricane Floyd on September 14,
1999. Modeling u (Figure 2a) is challenging because it displays heavy-tails (non-normality),
increased variability, and a shorter spatial range (non-stationarity) near the storm center.
Joint modeling of u and v, as in Reich and Fuentes (2007), is also complicated because their
correlation varies dramatically in different parts of the spatial domain. In contrast, the
logarithm transformation of wind speed and wind direction, respectively, vary relatively
smoothly in space and do not have a complicated joint relationship (Figure 3). Therefore, in
this paper we propose to model hurricane wind fields using polar coordinates.

Modeling wind using polar coordinates presents challenges of its own. The literature on
spatial modeling of angles is limited. Morphet (2009) presents some frequentist methods as
well as enhanced the visualization of circular-spatial data through the development of an R
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package. Morphet developed a circular kriging solution that was based on fitting a new
defined cosineogram. Morphet also presented a method of simulating from a circular
random field that was a transformation of a Gaussian random field.

The Bayesian approach for hurricane modeling has several advantages, including a
convenient framework for simultaneously modeling several data sources (e.g., satellite and
buoy data) and natural measures of uncertainty for model parameters, which are crucial
inputs to deterministic hurricane and storm surge models. Ravindran (2002) approaches
circular data from a Bayesian perspective utilizing wrapped distributions. Ravindran states
that likelihood-based inference for these wrapped distributions can be very complicated and
not be computationally efficient. These issues are resolved using Markov Chain Monte
Carlo (MCMC) method with a data augmentation step. An extension is given for time-
correlated data. To our knowledge, we present the first hierarchical Bayesian model for
spatial circular data.

In this paper, we present a new statistical modelling framework for spatial vector fields, for
hurricane wind fields. With the assistance of wrapped distributions, we model the angle of
the wind direction using a circular conditional autoregressive model (CCAR). The wind
speed and wind direction at a particular location within a storm tend to be less correlated
than the u and v components. Then, it is easier to explain the spatial cross-dependence of
wind vectors using polar coordinates. The paper is organized as follows. In Section 2 we
review circular statistics. In Section 3 we describe the new CCAR methodology. In Section
4 we apply our methods to Hurricane Floyd. We conclude with results and some final
remarks in Section 5 and 6 respectively.

2 Circular Statistics
Since the 1970s, there have been advancements in the analysis of circular data with a
“vigorous development” of methods in the 1980s (Fisher, 1993). Angles are vastly different
than their linear counterparts. Computation of summary statistics, performing analysis, and
simply displaying the data all must take into account their periodic nature. Thus the standard
approaches to model distributions and calculate moments have to be modified when working
with angles. This section describes the common approaches to obtain moments and
distributions of angles; for further information, we refer to Fisher (1993).

2.1 Sample Moments
We begin with the calculation of the mean. With linear data, the sample mean is

. When xi = θi is an angle, this is not appropriate because this ignores similarity
of values near 0 and near 2π. For the angular mean, it is more appropriate to use vector

addition. We begin by calculating three values: , and R2 = C2

+ S2. With these calculations, the value (direction) of θ̄ is .

 is commonly referred to as the resultant length of the resultant vector.

Thus, we can calculate the mean resultant length . R ̄ = 1 represents all the points were
overlapping; however, R̄ = 0 does not imply uniform dispersion around the circle. The main
usage of R̄ is in the calculation of sample circular variance, V = 1 − R̄. Similar to the
interpretation of linear variance, a small circular variance does imply that the distribution of
data was more concentrated. Differences between linear and circular variance are that V ∈
[0, 1] and calculation of standard deviation is not just a square root. Sample circular standard

deviation is defined as . These calculations are needed for calculating
posterior means and standard deviations from MCMC output.
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2.2 Circular Distributions
Many distributions can be placed on circular data. The common way to generate a circular
distribution is wrapping distributions on ℜ to the unit circle. If X is a random variable on the
real line, we can construct a random variable on the circle and determine its density. Assume
that X has probability density function g(x) and cumulative distribution function G(x), and
define θ = X[mod2π]. The probability density function of θ, f(θ), is found by wrapping g(x)

around a unit circle. Thus  with corresponding distribution of

. The Wrapped Normal distribution with X ~ N(μ, σ2)
is of particular interest in modeling wind fields. The density is

(1)

where φ(·|m, s2) is the N(m, s2) density function. In the wrapped normal model, the mean
direction is E(θ̄i) = μi and σ2 > 0 controls the variability. We denote this model as θ ~
WN(μ, σ2).

3 Hierarchical Bayesian spatial model for a vector field
We assume that the response in grid cell i = 1, …, n is a vector defined by its speed ωi and
direction θi. Therefore we model yi = log(ωi) ∈ . Our circular conditional autoregressive
model (CCAR) statistical framework is as follows:

(2)

where  and  represent the contribution to each mean by covariates, g(θi) captures
the relationship between speed and direction after accounting for covariates, and μi1 and μ2i
are spatial effects. Xi includes covariates radial distance from center of storm ri, latitude of
location i, longitude of location i, and the sine and the cosine of the inflow angle at cell i
across circular isobars towards the storm center φi ∈ [0, 2π). Currently no covariates are
included for the variability of the errors or spatial effect for angular data. Our model can be
adapted to include covariates to explain the variability of wind speed and direction. For
example, the log of the variance parameter could be modeled with a linear relationship with
radial distance from center.

There are several possibilities for a functional relation between the θi and yi that could be
included in g(θ). One could assume a linear mean model g(θi) = bθi, but this is not
appropriate, since conceptually we should have g(0) = g(2π). Another is the standard
approach for circular/linear association is g(θi) = b cos(θi) (Fisher, 1993). To specify more
complicated circular/linear relationship, rather than including higher-order polynomials, one

could include higher frequencies .

Modeling θi is challenging due to the restrictions that θi ∈ [0, 2π) and that its density at 0
and 2π should be equal since these are the same angle. We model θi by extending the
wrapped normal (WN) distribution to the spatial setting. The WN distribution alleviates
several difficulties in modeling spatially-referenced angles. Unfortunately, the WN density
(1) cannot be evaluated directly because it includes an infinite sum with no closed form.
However, we are able to analyze this model using MCMC methods after introducing
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auxiliary variables for the wrap number, Ki ∈ {…, −2, −1, 0, 1, 2, …}. To simplify notation,

define . The auxiliary model is

(3)

where TNA(m, s2) denotes the truncated normal distribution with domain A, location m, and
scale s, and Φ(·|m, s2) is the distribution function of a normal with mean m and standard
deviation s. The truncated normal density can be written

(4)

Therefore, marginally over Ki,

(5)

as desired.

Clearly . However, implementing this prior is challenging since Ki has
an infinite domain and non-standard prior. An equivalent representation of (3) is

(6)

where ⌊ −zi/(2π) ⌋ is defined as the largest integer less than −zi/(2π). Here we replace Ki’s
prior in (3) with the two-stage model Ki = ⌊ −zi/(2π) ⌋ + 1 and zi ~ N (μ̄i, σ2), which gives
the same prior probabilities for Ki since

(7)

As shown in the Appendix, this representation is conducive to standard software packages
because it only requires standard parametric distributions.

The simplest setup for spatial random effects μ1i and μ2i is a proper conditionally
autoregressive prior (“CAR”; Banerjee et al., 2004). The CAR covariance is specified
through spatial adjacencies. Let i ~ j indicate that cells i and j are spatial neighbors and mi be
the number of spatial neighbors of cell i. The CAR model for the log vector lengths μ1i is
defined through the full conditional distribution of μ1i given μ1j at all other cells with j ≠ i.
The full conditional distribution is Gaussian with
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(8)

The full conditional mean is proportional to the average of the spatial neighbors, ρ1 ∈ [0, 1]

controls the degree of spatial association, and the variance is controlled by . We denote

the model .

A potential prior for the spatial angle effects are .
However, using this direct CAR modeling of the angular spatial random effect μ2i may be
problematic. The central assumption of the CAR model is that the full conditional
distributions are centered on the linear mean of neighboring regions. For angular data, the
conditional mean in (8) may not be a good summary of the neighboring angles. For example,
if half of the neighbors are slightly above 0 and half are slightly less than 2π, the linear mean
in (8) is π, when in fact the mean should be near zero.

Therefore, we need an alternative manner of modeling the spatial random effect μ2i that
respects the periodicity of the circular spatial process. To define the angle model, we
introduce two latent spatial processes Si and Ci, each with proper CAR priors

 and . From each of these, we
perform a hyperbolic tangent transformation,

(9)

so that both S̄i and C̄i are on [−1, 1]. Here S̄i and C̄i represent the sine and cosine,
respectively, of the angle process. The value of μ2i is then calculated using the inverse
tangent,

(10)

To ensure that μ2i ∈ [0, 2π), we adjust the previous result by adding π when C̄i < 0 and
adding 2π when S̄i < 0 and C̄i > 0.

Modeling the sine and cosine of μ2i alleviates the problem with the usual CAR described
above. For example, in the scenario with the neighboring observations split between small
positive values and values slightly below 2π, S̄i will be near zero for all neighbors and C̄i
will be near one for all neighbors. Therefore the full conditional priors for S̄i and C̄i will be

near zero and one, respectively, correctly centering the prior for  on zero.

To complete the Bayesian model, we specify uninformative priors for the hyperparameters.
We use independent N(0, 100) priors for the elements of β1 and β2, independent

InvGamma(0.5,0.0005) prior of the variances , and  and independent
Unif(0,1) priors of the CAR association parameters ρ1, ρ2, and ρ3. MCMC sampling is
performed using WinBUGS. We run chains of length 20,000, and discard the first 5,000
samples as burn-in. Convergence is monitored using trace plots and autocorrelations for the
deviance and several representative parameters.
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4 Analysis of Hurricane Floyd
We use satellite data obtained from NOAA to characterize wind fields. The data are publicly
available at www.ncdc.noaa.gov/oa/rsad/seawinds.html. This is the best source of hurricane
wind satellite data that we currently have. It is obtained by combining different satellites,
and it is stored across the globe on a grid of 0.25 degree squares. We will focus on the
September 14th noon observance of Hurricane Floyd, a category three storm, from the 1999
hurricane season. Our area of interest is a 41×41 grid centered approximately on the storm’s
center of circulation.

Our data is given in the Cartesian decomposition format therefore we transform to the polar

scale,  and . For our CCAR model, recall that yi = log
ωi. Empirical analysis indicates that a log transform of the vector speed allowed conditional
normality to be a reasonable assumption. Figure 4 shows a qq-plot of the residuals from a
model under the log transformation of wind speed. As we can see, these residuals closely
approximate a straight line. Figure 5 shows a scatterplot of wind direction against the
residuals of the log transform of wind speed after accounting for Xi. No discernable pattern
can be seen, therefore the covariates mentioned above appear to capture the effects of
direction on speed and we take g(θi) = 0.

We compare the following two models:

1. Circular model:  and 

2. U/V model:  and 

where Xi includes covariates such as radial distance from center of storm ri, latitude of
location i, longitude of location i, and the sine and the cosine of the inflow angle at cell i
across circular isobars towards the storm center φi ∈ [0, 2π).

5 Results
We compare the performance of our CCAR model to the standard U/V model through five-
fold cross validation. Our original dataset is partitioned into five randomly selected groups.
Each group, in turn, serves as the validation dataset with the other four serving as the
training set. The mean of the posterior realizations is calculated at the missing points and
compared with the observed values using the metrics explained below. With the category of
the storm dependent on the magnitude of the fastest wind vector, our focus is in the
calculation of the wind speed and direction. For each of these models the posterior mean of
ω̂ is calculated and then summarized using the mean square error (MSE). The posterior
mean of direction, θ̂, is calculated using the methods described in Section 2. θ̂ is compared
using two metrics. First, we use the mean absolute cosine error (MACE),

(11)

where closer to 0 indicates a better model. The other metric is mean cosine difference error
(MCDE),

(12)
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in this case closer to 1 is better. Table 1 gives the calculated MSE, MACE, and MCDE
values for the U/V model and the CCAR model along with their standard errors. We see that
there is pronounced significant improvement, of almost 30 times, in the modeling of the
wind speed. When we compare the direction, we see that the CCAR models outperforms the
U/V model in both MACE and MCDE.

We compared the observed direction with that of the posterior mean calculated within our
five-fold cross validation. Figure 6 shows an arrow plot of the observed directions, solid
arrow, compared to the posterior mean direction, dashed arrow. The worst mistakes are
made on points that are closer to the eye of the storm. For all other points within the storm,
our model performs well.

5.1 Sensitivity Analysis
A separate sensitivity analysis was performed to determine the effect of the selection of the
prior for the variance components on the results. Gelman (2006) discussed the possible prior
distributions that could be utilized for scale parameters. We consider three priors for the
scale parameters of our model, Gamma(0.5,0.0005), Uniform(0,100), and Uniform(0,300).
We compare these priors under the same MACE and MCDE as described above. Table 2
displays the results of our sensitivity analysis; prediction errors are not significantly
different for the three priors.

6 Discussion and Remarks
In this paper, we present an innovative multivariate fully-Bayesian spatial model for vector
fields, that we apply to hurricane winds. We introduce for the first time in the literature a
spatial version of circular distributions, a circular conditional autoregressive (CCAR) model
for the vector direction utilizing wrapped distributions. We implemented our framework for
vector fields to better characterize hurricane surface wind fields. A case study of Hurricane
Floyd of 1999 showed that our CCAR model outperformed prior methods that decompose
wind speed and direction into its N-S and W-E cardinal components.

We analyze, in our case study, only responses from a single source, blended satellite data. A
second source of data, buoy measurements, can also be included to be combined with the
satellite data. In our CAR model, we utilized the standard proximity neighborhood structure.
As future work we can introduce a neighborhood structure that would be more
representative of the true neighbors within hurricane wind fields, perhaps define neighbors
based on polar coordinates of the grid cells relative to the storm center. Our case study
analyzed only one time point of Hurricane Floyd’s track towards the US East Coast. Our
model could be altered to account for time series data while still accounting for the spatial
structure across our region of the Atlantic Basin.
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Appendix - The wrapped-normal density in WinBUGS
In this section we give the WinBUGS code used to specify the WN density for the vector
angles. The remaining code for the vector length model, and all hyperpriors are omitted
since they are straight-forward to code in WinBUGS. The WN likelihood is given by

for(i in 1:n){
y[i]~dnorm(meany[i],tau2)
one[i]<-1
one[i]~dbern(denom[i])
meany[i]<-mu2[i] + 2*pi*K[i]
K[i]<-trunc(-z[i]/(2*pi))+1
z[i]~dnorm(mu2[i],tau2)
U[i]<-phi(sqrt(tau)*(2*pi-mu2[i]))
L[i]<-phi(sqrt(tau)*(0-mu2[i]))
denom[i]<-c/(U[i]-L[i])
}

where c = exp(−200) is a small constant used in the “ones trick” to ensure that denom[i] ∈
(0, 1). The product of the normal density for y[i] and the Bernoulli density for one[i] gives
the truncated normal density in (4). The combination of models for K[i] and z[i] executes
the auxiliary model in (6).

Both the U/V model and our CCAR model were implemented in WinBUGS (http://
www.mrc-bsu.cam.ac.uk/bugs/). Due to inverse trigonometric functions not being available
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in WinBUGS, we use an inverse sine approximation designed by C. Hastings, Jr. (1955) on |
sin[i]|. This polynomial form allowed us to remain in WinBUGS for the entirety of the
execution, thus maintaining computational convenient.

Modlin et al. Page 10

Environmetrics. Author manuscript; available in PMC 2013 December 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Plot of wind vectors of Hurricane Floyd (09/14/1999 at noon local time).
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Figure 2.
(a) u component. (b) v component.
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Figure 3.
Scatterplots of Hurricane Floyd data: (a) u and v components, (b) log(speed) (y) and
direction (θ).
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Figure 4.
Normal q-q plot of residuals under log transformation of wind speed.
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Figure 5.
Scatterplot showing wind direction with residuals of model under log transformation of
wind speed.
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Figure 6.
Posterior mean direction, dashed arrow, compared to observed direction, solid arrow.
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Table 1

Five-fold cross validation comparison of the U/V model to our CCAR model. Wind speed is compared under
the MSE metric while wind direction uses MCDE and MACE. Standard errors are in parentheses.

Model MSE(ω) MCDE MACE

U/V 29.89 (3.20) 0.079 (0.003) 0.983 (0.002)

CCAR 0.96 (0.11) 0.024 (0.003) 0.997 (0.001)
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Table 2

Results of sensitivity analysis of prior selection for variance parameters using angle comparison metrics.
Standard errors are in parentheses.

Prior Selection MCDE MACE

Gamma(0.5,0.0005) 0.052 (0.027) 0.763 (0.016)

Uniform(0,100) 0.057 (0.023) 0.748 (0.017)

Uniform(0,300) 0.046 (0.022) 0.753 (0.013)
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