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Abstract
Inhaled nanoparticles have been reported to contribute to deleterious effects on human health. In
this study, we investigated the effects of ultrafine ambient particulate suspensions (UAPS),
polystyrene nanoparticles (PNP; positively and negatively charged; 20, 100, 120 nm), quantum
dots (QD; positively and negatively charged; 30 nm) and single wall carbon nanotubes (SWCNT)
on alveolar epithelial cell barrier properties. Transmonolayer resistance (Rt) and equivalent short-
circuit current (Ieq) of primary rat alveolar epithelial cell monolayers were measured in the
presence and absence of varying concentrations of apical nanoparticles. In some experiments,
apical-to-basolateral fluxes of radiolabeled mannitol or inulin were determined with or without
apical UAPS exposure and lactate dehydrogenase (LDH) release was analyzed after UAPS or
SWCNT exposure. Results revealed that exposure to UAPS decreased Rt and Ieq significantly
over 24 hours, although neither mannitol nor inulin fluxes changed. Positively charged QD
decreased Rt significantly (with subsequent recovery), while negatively charged QD did not. Rt
decreased significantly after SWCNT exposure (with subsequent recovery). On the other hand,
PNP exposure had no effects on Rt or Ieq. No significant increases in LDH release were observed
after UAPS or SWCNT exposure. These data indicate that disruption of alveolar epithelial barrier
properties due to apical nanoparticle exposure likely involves alteration of cellular transport
pathways and is dependent on specific nanoparticle composition, shape and/or surface charge.
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Introduction
Nanoparticles are commonly defined as particles having at least one dimension of <100 nm.
Investigators in environmental health usually refer to particles smaller than 100 nm diameter
in ambient air as ultrafine particles. These ultrafine ambient particulates and engineered
nanoparticles possess nanostructure-dependent properties due to their small size, chemical
composition, surface charge, solubility and/or shape (Oberdorster et al. 2005b; Xia et al.
2006).

Particulates in ambient air and engineered nanoparticles have increasingly been found to be
associated with adverse cardiovascular and pulmonary effects, with suggestions of increased
morbidity and mortality in susceptible populations (Oberdorster et al. 1995; Oberdorster et
al. 2005b; Peters et al. 2001; Sun et al. 2005; Wichmann et al. 2000). Since inhaled ambient
ultrafine particles can be found in heart, bone marrow, blood vessels and other organs
(Nemmar et al. 2002; Nemmar et al. 2001; Oberdorster 2001), their most likely route of
entry into the circulation is across the epithelia of the lung, especially the alveolar
epithelium with its very large surface area and thin barrier thickness. Further knowledge
about the mechanisms by which particles injure, interact with and/or are transported across
the alveolar epithelium is thus of considerable importance for understanding health effects
related to inhalation of ultrafine particles in ambient air.

Determination of the characteristics of ambient particulates and engineered nanoparticles
that might cause injury, and the mechanisms by which they do so, requires further study
(Calcabrini et al. 2004; Ghio and Devlin 2001; Oberdorster et al. 2005b; Xia et al. 2006).
Size, shape, charge and/or composition may be important factors that influence how
particles affect human health (Alfaro-Moreno et al. 2002; Calcabrini et al. 2004; Gutierrez-
Castillo et al. 2006; Oberdorster et al. 2005a; Topinka et al. 2000; Vedal 1997; Xia et al.
2006). Particles smaller than 250 nm are known to reach the distal lung and likely interact
with alveolar epithelium. Because of their increased number and surface area as well as their
high pulmonary deposition efficiency, ambient ultrafine particles are likely to be important
in environmental health (Cassee et al. 2002; Donaldson et al. 2001; Oberdorster et al.
2005b), although some reports have suggested that coarse particles (250 nm < aerodynamic
diameter<10 μm) may be more toxic than fine (aerodynamic diameter< 250 nm) and
ultrafine particles (Monn and Becker 1999; Osornio-Vargas et al. 2003). Different reports
about the consequences of exposure to engineered nanoparticles are inconsistent, with some
studies indicating little effect (Geys et al. 2006; Muldoon et al. 2005; Zhang et al. 2006) and
others suggesting significant toxicity using both in vivo and in vitro models (Gurr et al.
2005; Magrez et al. 2006; Sayes et al. 2006; Shvedova et al. 2005).

Studies using in vitro models have permitted more detailed understanding of important
biological properties of the lung in vivo, such as the presence of functional epithelial tight
junctions and pathways responsible for active and passive ion transport in alveolar
epithelium. Greater than 95% of lung surface area is lined by alveolar epithelial type I (AT1)
cells. Alveolar epithelial type II (AT2) cells in primary culture have been demonstrated to
undergo morphologic (Cheek et al. 1989a) and phenotypic (Danto et al. 1992)
transdifferentiation into AT1-like cells (Adamson and Bowden 1975; Kim et al. 2001a).
AT1 cell-like monolayers represent a reliable model for the study of alveolar epithelial
transport biology/physiology, since many of the transport processes and other characteristics
demonstrated in these primary cultures appear representative of those in the respiratory
epithelium lining the distal region of the intact lung (Elbert et al. 1999; Kim et al. 2001a). In
this study, we utilized primary rat alveolar epithelial cell monolayers (RAECM) exhibiting
AT1 cell-like phenotype (Cheek et al. 1989a; Danto et al. 1992) to investigate potential
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toxicity of ultrafine ambient particle suspensions (UAPS) and several different engineered
nanoparticles.

Materials and Methods
Engineered nanoparticles

Polystyrene nanoparticles (PNP) were purchased from Molecular Probes (Eugene, OR).
Carboxylate-modified PNP of 20 and 100 nm diameter (−304.3 and −320 μEq/g surface
charge, respectively) are negatively charged. Amidine-modified PNP of 20 and 120 nm
diameter (80.2 and 39.7 μEq/g surface charge, respectively) are positively charged.

Hipco® single-wall carbon nanotubes (SWCNT) were purchased from Carbon
Nanotechnologies (Houston, TX). SWCNT were produced by a high pressure CO
conversion synthesis method (Bronikowsk et al, 2001). Individual SWCNT diameter is
between 0.8 and 1.2 nm and length is between 100 and 1000 nm.

Chitosan coated (positively charged) and alginate coated (negatively charged) quantum dots
(QD, 30 nm) were manufactured in our laboratories. To synthesize CdSe/ZnS QD, 25.68 mg
dO (Sigma, St. Louis, MO) as precursor was used (Huang et al. 2004). CdO was dissolved
in a coordinating solvent mixture of 3.88 mg tri-n-octylphosphine oxide (TOPO, Sigma) and
2.41 mg hexadecylamine (HDA, Sigma). The entire process was carried out in a dry
nitrogen atmosphere. Selenium powder (31.58 mg) dissolved in 5 ml tributylphosphine
(TBP, Sigma) was injected rapidly into the TOPO-CdO-HDA solution with vigorous
stirring. CdSe nanocrystals were grown for 5 min at 300°C after mixing. To form a ZnS
shell on the CdSe core, temperature was reduced to 160°C and a ZnS shell solution (379.4
mg zinc stearate and 12.8 mg sulfur powder dissolved in 5 mL TBP) was added into the core
solution under thorough stirring over a period of 15 min. After the addition of shell solution
was completed, the resulting core/shell solution was cooled to 120°C and left stirring to
anneal for 2 hours. The solution was further cooled to 70°C and anhydrous methanol was
added to precipitate the nanocrystals, which were collected by centrifugation and dispersed
in anhydrous toluene or chloroform. To modify surface charge of QD, chitosan (Sigma) or
alginate (Sigma) after grafting with hydrophobic alkyl moieties were used to encapsulate
QD with average diameter of 5 nm. The size of QD coated with amphiphilic alginate or
chitosan is ~30 nm by dynamic light scattering measurements (Wyatt Technology, Santa
Barbara, CA).

Ultrafine ambient particulate suspensions (UAPS)
Ultrafine particle samples were collected in Los Angeles, CA in the summer. The collection
site was located downwind of two major freeways (15–20 m and 150 m from the Santa Ana
and Pomona Freeways, respectively). Particle samples were collected over a period of 7–10
days for 5–6 hours/day. At the end of each day’s collection, samples were frozen in Teflon-
lid glass jars. After one set of complete collections, multiple samples were combined and re-
frozen prior to subsequent utilization in the experiments described below.

Ambient ultrafine particles were collected using the Versatile Aerosol Concentration
Enrichment System (VACES) (Kim et al. 2001b, 2001c). Theory and operation of VACES
is described in detail elsewhere (Kim et al. 2001b; Li et al. 2003). Briefly, ambient ultrafine
particles were concentrated using 0.15 μm cut-point preimpaction to remove larger particles.
Air samples are drawn through a saturation-condensation system that grows particles to 2–3
μm droplets, which are subsequently concentrated by virtual impaction. Highly concentrated
particle suspensions were obtained by connecting the VACES output to a sterilized liquid
impinger (BioSampler, SKC West, Fullerton, CA). Aerosols were collected using ultrapure
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deionized water as the collection medium. Total amount of particulate loading in the
collection medium was determined by multiplying the ambient concentration of each
particulate population by the total air sample volume collected by each VACES line. The
particle concentration in the aqueous medium was then calculated by dividing the particle
loading by the total volume collected in that time period. The concentration enrichment
process does not alter the physical, chemical or morphological properties of the particles
(Kim et al. 2001b, 2001c; Li et al. 2003). Table 1 shows the chemical composition of UAPS
utilized in this study, which contain a high percentage of organic components (mostly
hydrophobic) and inorganic hydrophilic compounds such as sulfates and nitrates and a
portion of trace elements and metals.

Primary culture of RAECM
The detailed procedure for routine generation of primary RAECM has appeared elsewhere
(Borok et al. 1994; Borok et al. 1995). Briefly, fresh AT2 cells were isolated from adult,
male, specific pathogen-free Sprague-Dawley rats (125–150 g) using elastase digestion and
purification by IgG panning. Purified AT2 cells were plated onto tissue culture-treated
polycarbonate filters (Transwell, 0.4 μm pore, 12 mm diameter, Corning-Costar, Cambridge,
MA) at 1.2 × 106 cells/cm2. Cells were maintained at 37°C in a humidified atmosphere
Culture medium (MDS) consisted of 10% newborn bovine serum in minimally of 5%
CO2/95% air. defined serum-free medium (MDSF). MDSF is a 1:1 mixture of DME/F-12
(Sigma, St. Louis, MO) supplemented with 1% nonessential amino acids (Sigma), 0.2%
primocin (InvivoGen, San Diego, CA), 10 mM N-(2-hydroxyethyl)piperazine-N′-(2-
ethanesulfonic acid) hemisodium salt (Sigma), 1.25 mg/mL bovine serum albumin (BD
Bioscience, San Jose, CA ) and 2 mM L-glutamine (Sigma). Cells were fed every other day,
starting on day 3 in culture, when they form confluent monolayers.

Measurement of RAECM bioelectric properties
Transmonolayer resistance (Rt, KΩ.cm2) and potential difference (PD, mV, apical side as
reference) in the presence or absence of varying concentrations of apical nanoparticles were
measured using a rapid screening device (Millicell-ERS, Millipore, Bedford, MA) equipped
with a pair of silver/silver chloride (Ag/AgCl) electrodes (Cheek et al. 1989b). Short circuit
current (Ieq, μA/cm2) was calculated according to Ohm’s law as described previously.
Immediately before and at different time points after apical exposure to nanoparticles, Rt
and PD were measured and Ieq calculated.

Apical exposure of RAECM to nanoparticles
We studied the effects of apical exposure to nanoparticles by replacing monolayer apical
fluid on days 4, 5 or 6 in culture with isotonic solutions of UAPS, PNP, QD or SWCNT.
UAPS in water were adjusted to isosmolarity using NaCl. PNP, QD and SWCNT were
suspended in MDS. These working stocks were sonicated briefly and appropriate volume
was used to replace apical fluid. Apical fluid of control RAECM was replaced at the same
time as experimental RAECM using MDS or isosmolar NaCl solution without nanoparticles.
Effects of UAPS, PNP, QD and SWCNT concentrations of up to 36, 706, 176 and 88 μg/
mL, respectively, were studied. In some experiments, monolayers were apically exposed for
120 min to UAPS (9 μg/mL), followed by replacement of apical fluid with fresh culture
medium. Rt and Ieq were usually assessed at 15, 30, 60, 120, 240 and 1440 min.
Furthermore, permeabilities of 14C-mannitol (180 Da) and 14C-inulin (~5000 Da) were
estimated from their steady state fluxes across RAECM in the apical-to-basolateral direction
in the presence or absence of UAPS (36 μg/mL). Five μL of radiotracer amounts of either
mannitol or inulin were added immediately after monolayer apical UAPS exposure. Fifty μL
samples of basolateral fluid were taken at 30, 60, 120, 240 and 1440 min after radiotracer

Yacobi et al. Page 4

Toxicol In Vitro. Author manuscript; available in PMC 2013 December 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



instillation into apical fluid. Ten μL samples were taken from apical fluid at 60 and 1440
min for determination of upstream radioactivity. Radioactive samples were mixed with 15
mL Ecoscint (National Diagnostics, Atlanta, GA) and assayed using a beta counter
(Beckman Instruments, Fullerton, CA).

Measurement of lactate dehydrogenase (LDH) release
Extracellular LDH (in apical and basolateral fluid) at 1 and 2 hours after exposure to UAPS
(18 μg/mL) or SWCNT (88 μg/mL) was measured using a colorimetric cytotoxicity
detection kit (Roche, Indianapolis, IN) following the manufacturer’s instructions. As
control, release of LDH was obtained for unexposed cells (low control) and maximum
release of LDH was obtained by lysis of cells with 0.2% TX-100 (high control).
Cytotoxicity is defined by:

Statistical Analyses
Data are presented as mean ± standard error. For comparisons of multiple group means, one-
way or two-way analyses of variance (ANOVA) followed by post-hoc procedures based on
modified Newman-Keuls-Student tests were performed using GB-stat v9.0 software
(Dynamic Microsystems, Silver Spring, MD). P < 0.05 was considered to be statistically
significant.

Results
Time courses of changes in Rt following apical exposure of RAECM to UAPS are shown in
Figure 1. Average Rt of RAECM before UAPS exposure was 1.41 ± 0.05 KΩ.cm2 (n =45).
At the highest UAPS concentration (36 μg/mL) studied, Rt declined ~60% with half time of
~30 min. From 2 to 24 hours, no further significant changes in Rt were observed, despite
continued presence of UAPS in apical fluid. No significant changes in cytotoxicity
compared to controls were observed after 1 and 2 hours of monolayer exposure to 18 μg/mL
UAPS (n=5, data not shown).

Figure 2 shows the effects of apical UAPS on Ieq. Ieq prior to UAPS exposure was 4.72 ±
0.10 μA/cm2 (n =45). At the highest apical UAPS concentration (36 μg/mL) studied, Ieq
decreased by ~25% at 2 hours. From 2 to 24 hours, no further significant changes in Ieq
were observed, despite the continued presence of UAPS in apical fluid.

Figure 3 shows time courses of changes in Rt of RAECM exposed apically to 9 μg/mL
UAPS for 2 hours, followed by replacement of apical fluid with fresh culture medium. Rt
prior to UAPS exposure was 2.33 ± 0.68 KΩ.cm2 (n = 3). Rt recovered toward control after
replacing apical fluid with fresh culture medium. Washout caused an increase in Ieq,
followed by a gradual return toward its initial value (data not shown). Ieq prior to UAPS
exposure was 5.29 ± 1.55 μA/cm2 (n = 3).

Apparent permeabilities (Papp) of 14C-mannitol and 14C-inulin measured in the presence
and absence of apical exposure to UAPS (36 μg/mL) are summarized in Table 2. Papp of
neither 14C-mannitol nor 14C-inulin measured in the apical-to-basolateral direction was
significantly altered by UAPS exposure.
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Time courses of changes in Rt following apical exposure of RAECM to positively or
negatively charged QD (176 μg/mL) are shown in Figure 4. Average Rt before QD exposure
was 2.68 ± 0.14 KΩ.cm2 (n = 10). Positively charged QD decreased Rt by ~60% after 2
hours of exposure, while negatively charged QD did not decrease Rt significantly. Effects of
these two types of QD on Ieq were not significantly different from control over 24 hours
(data not shown). Lower concentrations (44–88 μg/mL) of QD (positively or negatively
charged) did not decrease Rt significantly over 24 hours of exposure (data not shown).

Time courses of changes in Rt following apical exposure of RAECM to SWCNT (up to 88
μg/mL) are shown in Figure 5. Average Rt before SWCNT exposure was 3.24 ± 0.07
KΩ.cm2 (n = 33). Rt decreased significantly compared to control monolayers by ~40% after
1 hour of exposure, with recovery to initial value by 4 to 24 hours. The decrease in Rt after
exposure to SWCNT was not dose dependent. Effects of SWCNT (up to 88 μg/mL) on Ieq
were not significantly different from control for up to 24 hours of exposure (data not
shown). No significant changes in cytotoxicity were observed after 1 and 2 hours of
monolayer exposure to 88 μg/mL SWCNT (n=5, data not shown).

Figure 6 shows the time courses of Rt observed for PNP (176 μg/mL) exposure. RAECM
prior to PNP exposure show average Rt = 3.58 ± 0.11 KΩ·cm2 and average Ieq = 4.48 ± 0.16
μA/cm2 (n = 47). No significant changes were observed for 20 nm positively and negatively
charged PNP or for 100 nm negatively and 120 nm positively (data not shown) charged
PNP. Up to 706 μg/mL of PNP in apical fluid led to no significant changes in Rt or Ieq for
up to 24 hours (data not shown), and 176 μg/mL PNP in apical fluid led to no significant
changes in Rt or Ieq for up to 6 days (data not shown).

Figure 7 summarizes changes in Rt after 2, 4 and 24 hours of exposure to 36 μg/mL of
UAPS, 176 μg/mL QD (positively and negatively charged), 88 μg/mL SWCNT and PNP (20
and 100 nm negatively charged and 20 nm positively charged). Average Rt of RAECM
before nanoparticle exposure was 2.13 ± 0.27 KΩ.cm2 (n = 66). Exposure of RAECM to
different nanoparticles affects Rt differently due to different nanoparticle composition,
charge and/or concentration used.

Discussion
In this study, we demonstrate that effects of ambient ultrafine particles and engineered
nanoparticles on barrier properties of RAECM are strongly dependent on nanoparticle
composition, charge and/or concentration. Exposure to UAPS (up to 36 μg/mL) decreased
Rt and Ieq over time significantly, while PNP (negatively and positively charged, up to 706
μg/mL) did not affect Rt or Ieq. After 1 hour of RAECM exposure to SWCNT (up to 88 μg/
mL), Rt decreased significantly but transiently, recovering to initial values after 4–24 hours.
Exposure to positively charged QD (176 μg/mL) decreased Rt significantly, but negatively
charged QD (up to 176 μg/mL) and lower concentrations of positively charged QD (44 and
88 μg/mL) had no effect on Rt and Ieq.

Analysis of UAPS composition (Table 1) revealed a high percentage of organic components
(mostly hydrophobic) and inorganic hydrophilic compounds (sulfates, nitrates and trace
elements and metals). Despite these data on composition, properties of UAPS remain
complex and ill-defined. Due to this complexity, the mechanisms of UAPS toxicity remain
obscure. Disruption of lung alveolar epithelial barrier properties may be caused by multiple
factors associated with UAPS, including trace elements and metals, elemental and/or organic
carbon content and large overall particle surface area (Oberdorster et al. 2005b). Ultrafine
particles may also act as a catalyst for endogenous effects on lung epithelium, leading to
increased toxicity and inflammation (Oberdorster 2001). The larger surface afforded by
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ultrafine particles compared to larger particles may increase particle surface-dependent
reactions (e.g., generation of reactive oxidant species) (Ibald-Mulli et al. 2002; Wichmann et
al. 2000). Lack of effects of UAPS on paracellular movement of hydrophilic solutes
suggests that the observed decreases in Rt and Ieq in response to apical UAPS exposure of
monolayers reflect primarily changes in transcellular transport properties (e.g., ion channel
and pump activities), consistent with the absence of cytotoxicity (no increase in LDH
release) after UAPS exposure.

In related studies, ultrafine carbon black particles were reported to cause detectable
proinflammatory effects in rat lung, including modest neutrophil influx, protein leak, and
modulation of glutathione levels (Donaldson et al. 2001). Ultrafine particles made of low-
solubility and low-toxicity materials were found to be inflammatory in rat lung (Donaldson
et al. 2002). Aerosolized ultrafine TiO2 particles were shown to cause severe
bronchoalveolar inflammation (Ferin et al. 1992). Instillation of ultrafine carbon black
particles (~14 nm) intratracheally into rat lungs led to a marked increase in lactate
dehydrogenase (LDH) levels in bronchoalveolar lavage (BAL) fluid (Li et al. 1999).
Intratracheal instillation of diesel exhaust particles (~30 nm) and an amorphous silicon
dioxide (commercially available as Carbosil, ~7 nm) into lungs of male Sprague-Dawley
rats increased air-blood barrier permeability, inflammation and edema formation, leading to
a strong correlation of plasma viscosity with an index of type I cell injury (reflected as rat
type I cell marker found in lung lavage fluid) (Evans et al. 2006). By contrast, healthy mice
did not appear to respond to ultrafine carbon and platinum particles (15 and 25 nm,
respectively) when inhaled for up to 6 hours at 110 μg/mL (Oberdorster 2001). These effects
may be dependent on many factors, including physicochemical characteristics of particles.
Health effects manifested by ambient particulates are currently thought to be especially
important in specific risk groups of persons who are predisposed to injury by genetic
susceptibility, age and/or disease (Kreyling et al. 2006).

QD toxicity appears to be dependent on particle size, charge, concentration and surface
coating bioactivity (Derfus et al. 2003; Hardman 2006; Hoshino et al. 2004; Zhang et al.
2006). Our results show that positively charged QD are more toxic to RAECM compared to
negatively charged QD. Cationic amino acids and peptides are known to increase leakage of
solutes into alveolar fluid by disruption of tight junctional pathways (Kim and Malik 2003),
suggesting that positively charged nanoparticles may cause injury to air-blood barriers of the
lung by related mechanisms. Uncoated QD made of core/shell CdSe/ZnS have been reported
to be toxic to cells due to surface oxidation which, through a variety of pathways, leads to
release Cd2+ ions into the cellular environment (Derfus et al. 2003; Zhang et al. 2006).
Studies of toxicity of QD with different coatings (neutral, negatively or positively charged)
in primary human epidermal keratinocytes showed that negatively and positively charged
QD were both toxic up to 20 nM, while neutral QD were not, after 48 hours of exposure
(Ryman-Rasmussen et al. 2007). These varying results suggest that QD cytotoxicity depends
at least in part on specific cellular interactions and particle physicochemical properties.

Our results suggest that SWCNT acutely and transiently affect passive barrier properties,
without appreciably affecting active ion transport properties of the alveolar epithelial barrier.
Manufactured SWCNT may contain significant amounts of metallic impurities that can
serve as catalysts for oxidative stress. The specific physicochemical properties and metallic
content (especially iron) of SWCNT may have contributed to the observed effects. After
intratracheal instillation in mice (Lam et al. 2004) and rats (Warheit et al. 2004), unpurified
and/or purified SWCNT caused epithelial granulomatous reactions. In another study, it was
shown that purified SWCNT induce acute inflammatory reactions and decreased bacterial
clearance in rats (Shvedova et al. 2005). Unpurified SWCNT exposure led to generation of
reactive oxygen species and increased oxidant stress and cytotoxicity in human bronchial
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epithelial cells (Shvedova et al. 2003). Other studies showed purified and/or unpurified
SWCNT causes very low toxicity to the rat alveolar cell line NR8383 (Pulskamp et al. 2007)
and human alveolar epithelial cell line A549 (Davoren et al. 2006; Pulskamp et al. 2007). It
has been reported that iron content of enriched SWCNT has a significantly more pronounced
toxic effect on cultured cell lines (human keratinocytes) than SWCNT treated with iron
chelators (Shvedova et al. 2003), consistent with the possibility that metal impurities in
SWCNT preparations may be more damaging to cells than SWCNT themselves (Shvedova
et al. 2003).

Our studies demonstrate that apical exposure of RAECM to concentrations up to 706 μg/mL
of positively and negatively charged PNP (20, 100 and 120 nm) cause no significant changes
in active and passive transport properties over 24 hours. These findings are in agreement
with a recent preliminary report using 46 nm PNP (positive or negative surface charge) in
isolated primary rat AT2 cells (Geys et al. 2006). On the other hand, studies with a
phagocytic cell line (RAW 264.7) showed that positively charged PNP (60 nm) produces
reactive oxygen species, mitochondrial damage and cellular toxicity (although negatively
charged PNP have little effect (Xia et al. 2006)), while studies in rat lungs in vivo showed
that instillation of 64 nm PNP (1 mg) caused significant cell death as measured by BAL
LDH levels (Brown et al. 2001). These data suggest that cellular toxicity of PNP may be
related at least in part to the specific cell types and experimental milieu in which exposure
occurs.

In summary, we have shown that UAPS, QD and SWCNT (but not PNP) can alter the active
and/or passive ion transport properties of primary RAECM. We conclude that
physicochemical properties of nanoparticles, a result of their varying sources, formation
mechanisms, composition or surface charge, are important factors in determining their
effects on lung alveolar epithelial barrier properties. Further mechanistic studies with
defined nanoparticles may provide additional insights into how nanoparticles interact with
alveolar epithelial cells and lead to modulation of barrier properties.
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Figure 1.
Effects of apical exposure to UAPS on Rt of RAECM (n = 4–9 for each concentration). Rt
of all monolayers prior to apical UAPS exposure (at t = 0) was 1.41 ± 0.05 KΩ.cm2 (n = 45).
At the maximum concentration of UAPS (36 μg/mL) studied, Rt declined significantly by
60% after 2 hours of exposure and did not change further over 24 hours. * = significantly
different (p < 0.05) from control (monolayers not exposed to UAPS).
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Figure 2.
Effects of apical exposure to UAPS on Ieq of RAECM (n = 4–9 for each concentration). Ieq
of all monolayers prior to apical UAPS exposure of (at t = 0) was 4.72 ± 0.10 μA/cm2 (n =
45). At the maximum concentration of UAPS (36 μg/mL) studied, Ieq declined significantly
by ~25% after 30 min of exposure and did not change further for up to 24 hours. * =
significantly different (p < 0.05) from control (monolayers not exposed to UAPS).
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Figure 3.
Effects of removal of apical UAPS (9 μg/mL) on Rt of RAECM after 2 hours of exposure.
Rt prior to apical exposure to UAPS (t = 0) was 2.33 ± 0.68 KΩ.cm2 (n = 3). After 1 and 2
hours of UAPS exposure, Rt decreased significantly. Rt after replacement of UAPS with
fresh culture medium recovered toward control values. * = significantly different (p < 0.05)
from control (monolayers not exposed to UAPS).
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Figure 4.
Effects of apical exposure to QD (176 μg/mL) on Rt of RAECM (n = 6 for each
concentration). Rt of all monolayers prior to apical exposure to QD (at t = 0) was 2.68 ±
0.14 KΩ.cm2 (n = 19). Exposure to positively charged QD decreased Rt significantly after 1
hour, with recovery to control level by 24 hours. * = significantly different (p < 0.05) from
control (monolayers not exposed to QD).

Yacobi et al. Page 15

Toxicol In Vitro. Author manuscript; available in PMC 2013 December 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Effects of apical exposure to SWCNT on Rt of RAECM (n = 9 for each concentration). Rt
of all monolayers used prior to apical exposure to SWCNT (at t = 0) was 3.24 ± 0.07
KΩ.cm2 (n = 33). Exposure to SWCNT up to 88 μg/mL decreased Rt significantly after 1
hour. Rt recovered to control level by 4–24 hours. * = significantly different (p < 0.05) from
control (monolayers not exposed to SWCNT).
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Figure 6.
Effects of apical exposure to PNP (176 μg/mL, 20 nm positively and negatively charged and
100 nm negatively charged) on Rt of RAECM (n = 10–13 for each concentration). Rt of all
monolayers prior to apical exposure to PNP (at t = 0) was 3.58 ± 0.11 KΩcm2 (n = 47).
These three types of PNP, as well as positively charged 120 nm PNP (data not shown), did
not cause significant changes in Rt or Ieq (data not shown).
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Figure 7.
Effects of apical exposure to UAPS (36 μg/mL), SWCNT (88 μg/mL), QD (positively and
negatively charged, 176 μg/mL), and PNP (20 nm (negatively and positively charged) and
100 nm (negatively charged), 176 μg/mL) on Rt of RAECM after 2, 4 and 24 hours of
exposure (n = 5–9 for each condition). Rt of all monolayers prior to apical exposure to
nanoparticles (at t = 0) was 2.13 ± 0.27 KΩ.cm2 (n = 66). * = significantly different (p <
0.05) from control (unexposed monolayers).
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Table 1

Chemical composition of UAPS

Chemical species % by mass

Nitrate 8.76

Sulfate 8.84

Elemental carbon 5.73

Organic carbon 47.80

Trace elements and metals* 15.88

Unknown 13.01

*
Predominant components of trace elements and metals were silicon, aluminum, iron, calcium and zinc.

Toxicol In Vitro. Author manuscript; available in PMC 2013 December 06.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yacobi et al. Page 20

Table 2

Apparent permeability (Papp) of mannitol and inulin

Control UAPS

14C-Mannitol 7.4 ± 4.2 8.8 ± 8.1

14C-Inulin 3.0 ± 2.0 7.0 ± 3.4

Effects of apical exposure to UAPS (36 μg/mL) on apparent permeability coefficient (Papp × 107 cm/s) of RAECM to 14C-mannitol and 14C-
inulin. Papp are shown as mean ± SEM (n = 3). No significant differences due to UAPS exposure were seen.
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