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Abstract
As causes of death, influenza and pneumonia are typically analyzed together. We quantify
influenza’s contribution to the combined pneumonia and influenza mortality time series for the
United States, 1959–2009. A key statistic is I/(P+I), the proportion of pneumonia and influenza
mortality accounted for by influenza. Year-to-year, I/(P+I) is highly variable and shows long-term
decline. Extreme values of I/(P+I) are associated with extreme P+I death rates and vice-versa, but
I/(P+I) is a weak predictor of P+I mortality overall. Prominence of influenza in the medical news
is associated with high I/(P+I). Influenza and pneumonia should be analyzed as a combined cause.

Keywords
cause of death classification; influenza; methodology; mortality; pneumonia; time series

Introduction and overview
Influenza is an acute infection of the respiratory tract, caused by the influenza virus. Most
fatal cases of influenza involve pneumonia (Wright and Webster 2001). Deaths due to
influenza-caused pneumonia may be recorded as influenza or as pneumonia, depending on
(among other things) whether the medical professional filling out the death certificate has
laboratory confirmation of influenza. Pneumonia deaths are seasonal, peaking in the winter,
but occur at some level year-round. This indicates that not all pneumonia mortality is due to
influenza virus, which has negligible or zero circulation during the summer (Glezen et al.
1987). Other causes of fatal pneumonia include the bacterium Streptococcus pneumoniae,
commonly called pneumococcus (Bogaert et al. 2004).

Combined, influenza and pneumonia killed 56,284 people in the United States in 2008
(Miniño et al. 2011), making it the eighth leading cause of death, and accounting for 2.3
percent of all mortality. Moreover, influenza has been implicated as playing a causal role in
the winter increase in cardiovascular disease mortality (Reichert et al. 2004). Influenza
mortality is usually studied as an amalgam of influenza and pneumonia (Thompson et al.
2009a; Noymer 2008). The goals of this analysis are (i) to quantify influenza’s contribution
to the combined mortality from pneumonia and influenza for the United States, 1959–2009,
(ii) to determine if influenza mortality data can be meaningfully interpreted separately from
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pneumonia, (iii) to identify medico-social correlates of the changing proportion of combined
influenza and pneumonia mortality that is coded as influenza.

We characterize the relationship between influenza mortality and pneumonia mortality, as
coded on the death certificate. Thus, hereinafter, when we speak of influenza, we mean
mortality explicitly coded as influenza, and for pneumonia we mean that coded as
pneumonia without mention of influenza.

We analyzed age- and sex-specific mortality for influenza and pneumonia for the United
States, by month, from 1959 to 2009. The overall trend of combined pneumonia and
influenza mortality is steady, but punctuated by events such as the 1968–69 “Hong Kong”
H3N2 pandemic. Yet, influenza as a proportion of combined pneumonia and influenza
mortality is highly variable over time and exhibits a long-term decline.

Taken at face value, there is high year-to-year variability of influenza mortality.
Nonetheless, combined pneumonia and influenza mortality does not show the same level of
variation. This suggests that other causes of fatal pneumonia become more prominent in
years when there is less influenza. That is to say, in years when there is little influenza
mortality, the other causes of pneumonia pick up the slack, to fill-out the total pneumonia
and influenza (P+I) mortality. Conversely, these causes, such as pneumococcus or
respiratory syncytial virus, must become less prominent when influenza mortality is
ascendant. Biologically, this is implausible. A more parsimonious explanation is that the
cause of death classification for influenza changes from year-to-year.

It is important to understand thoroughly the relative trends in influenza and pneumonia
mortality. For example, Serfling regression (Dauer and Serfling 1961; Eickhoff et al. 1961;
Serfling 1963) is a widely-used technique to estimate excess mortality from seasonal
diseases, especially influenza. This technique calculates a cyclical baseline from summer-
only data, since little or no influenza virus is in circulation. This baseline is then subtracted
from the observed winter mortality; the result, which can be negative, is excess mortality.
Some modern approaches to excess-mortality estimation differ in the details from Serfling
regression but adopt similar overall logic (e.g., Choi and Thacker 1981a; Schanzer et al.
2007; Thompson et al. 2009b; Newall et al. 2010; Nunes et al. 2011).

Serfling regression takes mortality data on pneumonia and influenza (usually combined) as
its input. Doshi (2008), however, considered influenza mortality, solely — i.e., without
pneumonia, and without calculating excess. His data have subsequently been used by other
investigators (Juzeniene et al. 2010). The analysis of influenza mortality without including
pneumonia is unusual, and the present paper seeks to clarify best practice.

Materials and methods
We obtained data on number of deaths, by cause, from the mortality detail files of the
National Center for Health Statistics (NCHS 2012). Deaths were stratified by age, sex,
month, and underlying cause as coded on the death certificate. We extracted data on deaths
from influenza, and from pneumonia without mention of influenza, from January 1959 to
December 2009. This period spans four revisions of the International Classification of
Diseases (ICD 7–10); the specific ICD codes used for each revision are given in Appendix
1. To ensure comparability, all data were converted to ICD-10 using the published crossover
tables (Klebba and Dolman 1975; Klebba 1980; Anderson et al. 2001).

One advantage of working with data on death counts is that deaths are well-documented.
The US has complete mortality registration, so every death results in a death certificate with
a cause. On the other hand, rate data also require population counts from the census, which
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are subject to higher error rates. Censuses are generally regarded as having small
undercounts, and the data are interpolated between decennial censuses, which compounds
uncertainties. So while rates are subject to error in both numerator and denominator
(Brillinger 1986), the data we use are mostly numerator data, where the count error rates are
minimal. Conveniently, the ratio of counts and the ratio of death rates are equal, since the
population denominators of the rates cancel out. For example, I/(P+I), the ratio of influenza
to combined pneumonia and influenza, is the same whether “I” and “P+I” denote counts or
rates. The quantity I/(P+I) plays an important role in our analysis. This is analogous to the
use of (P+I)/(all causes) (Choi and Thacker 1981b), but at a different level of specificity.

To examine age-group-specific relationships, however, we also analyze some rate data.
Rates were calculated using the above-described death counts in the numerator, and
exposure data (i.e., person-years at risk) from the Human Mortality Database (accessed July
2012) in the denominator. Analyses were conducted using AWK (Aho et al. 1988), Stata
v10.1 (College Station, TX, USA), and IDL v8.1 (Boulder, CO, USA).

Results and discussion
Time series of influenza and pneumonia deaths

Figure 1 plots two mortality time series for females: influenza, and pneumonia excluding
influenza. Figure 2 plots the same data for males. These figures display two noteworthy
patterns. Over the 51-year span, it is strikingly regular how much the two causes of death
follow each other. Both peak in the winter and are in seemingly perfect synchrony, except
for 2009. Pneumonia kills far more than influenza: the left axes (pneumonia) range from 800
to 8,000 deaths per month, while the right axes (influenza) range from 1 to 2,500 deaths per
month (and the data rarely exceed 1,000).

The second thing to note in figures 1 and 2 is the long-run change in the two causes of death.
Pneumonia deaths have moved upward with population growth, with the summer troughs
going from about 1,000 deaths per month per sex in the 1960s, to approximately 2,000
deaths per month per sex in the 2000s. Influenza deaths, on the other hand, and despite
population growth, have become rarer, with the summer troughs going from about 10 or
more deaths per month per sex in the 1960s to under 5 deaths per month per sex in the
2000s. Starting in the 1990s, some months did not experience a single influenza death for
either sex.

Advances in influenza surveillance have lead to the knowledge that summertime outbreaks
of influenza-like illness (ILI) are only rarely caused by the influenza virus (Kohn et al.
1995). Evidently, this knowledge has influenced death recording practices. Even in the
winter, influenza is becoming a less-used cause of death. Another feature of figures 1 and 2
is the decline over time in the relative peak-to-trough amplitude of pneumonia mortality; the
reason for this is unknown.

Influenza as a proportion of influenza and pneumonia, I/(P+I)
The changes documented in figures 1 and 2 are seen more starkly in figure 3, which plots I/
(P+I), influenza as a proportion of all pneumonia and influenza mortality, over time. The use
of influenza as a cause of death has diminished in the long term. In the 1960s and 1970s it
was not unusual, in the peak month of the flu season, to see at least one-quarter of all P+I
deaths attributed to influenza. There has been a steady decline in this pattern, starting in the
1980s. More recently, influenza typically accounts for less than 10 percent of all P+I deaths.
The 1980-81 flu season was the last in which influenza deaths exceeded 25 percent of all P
+I deaths in a given month. Females are almost always slightly higher than males during the

Noymer and Nguyen Page 3

Biodemography Soc Biol. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



flu seasons of figure 3; the only exception is the fall wave of the 2009 H1N1 influenza
pandemic.

Certain years are noteworthy in figure 3. The 1968–69 flu season — the “Hong Kong” flu
pandemic of H3N2 (Cockburn et al. 1969) — recorded the highest influenza proportion of
the 1960s. Over the 51-year span, the highest flu season on record for I/(P+I) was 1975–76,
coincident with the “swine flu” scare (Stuart-Harris 1976). Specifically, from January to
March 1976, the age-standardized death rate (ASDR, per 100,000) for P+I for males
increased 112 percent, from 39.8 to 84.3, while I/(P+I) increased a whopping 966 percent,
from 3.8 percent to 40.9 percent. Females showed a parallel trend: the ASDR increased 150
percent and I/(P+I) increased 896 percent.

The 1977–78 flu season, in which there was reemergence of “Russian” H1N1 influenza A
virus (Nakajima et al. 1978), shows much higher I/(P+I) than either of the surrounding
seasons. More recently, influenza was more seldom used. After 2000, the two highest peaks
are the 2003–04 and fall 2009 flu seasons. In 2003–04, there was a fall vaccine shortage
(Nelson 2003), and the emergence of the Fujian strain of influenza A/H3N2 (Centers for
Disease Control and Prevention 2010). Throughout the early 2000s, there was also concern
about the possibility of human transmission of H5N1 “bird flu” (Oxford 2005). The 2009 flu
season corresponds to the H1N1 pandemic, which affected up to one-fifth of the US
population (Shrestha et al. 2011; Cox et al. 2011). Thus, the use of influenza on death
certificates seems to reflect its presence in the medical news.

Intra-season timing of I/(P+I)
The curve in figure 3 follows a half-wave rectified sinusoidal pattern. The use of influenza
as a cause of death builds along with the number of deaths from P+I, as well as declines with
it. It makes sense that the proportion of P+I deaths attributed to influenza is very low in the
summer (e.g., Glezen et al. 1987). However, this graph could in theory follow more of a
square wave pattern: during the flu season, some constant proportion is influenza, and
during the summer a much lower (or zero) proportion is influenza.

To examine the idea that I/(P+I) builds during the flu season, table 1 compares the intra-
season timing of the peak of I/(P+I), and the peak of P+I age-standardized death rate. The
cross-tabulation shows that the two quantities either peak concurrently (i.e., on the
diagonal), or with I/(P+I) lagging the P+I ASDR. Only three times in 51 flu seasons does I/
(P+I) lead the P+I ASDR — twice for males and once in the female series — each time by
one month. On the other hand, I/(P+I) lags the ASDR in 13 seasons for males and 18
seasons for females. For two seasons for males and one for females, I/(P+I) peaks in April,
lagging the ASDR by three months. The only occurrence of December in table 1 is 2003,
evidently an unusual flu season. Not only was influenza prominent in the medical news due
to the vaccine shortage, but P+I death rates peaked unusually early. The only occurrence of
November is in 2009, the first influenza pandemic since 1968–69.

Relationship between I/(P+I) and P+I death rates
Figure 4 shows the variation between the intensity of the flu season (measured by the P+I
death rate), and the propensity for influenza to be used explicitly as the cause of death
(measured by I/(P+I) mortality). The graphs plot monthly data for each sex separately. Three
age groups are shown: 0–19, 20–64, and 65 and older. Over time, crude death rates have
increased through population aging. Thus, we disaggregate by age to provide a better
comparison (Cohen 1986). For these graphs, we use two six-month pseudoseasons: winter
(November through April), and summer (May through October). These approximate the
circulation of influenza virus better than any other half-year periods (Thompson et al.
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2009b). Summer and winter pseudoseasons are plotted in gold and purple, respectively,
along with their corresponding regression lines. The plots are log-log, or scale-invariant
(Keeling 1999; Rhodes and Anderson 1996). Appendix 2 provides a regression table
showing that this age-, sex-, and pseudoseason-disaggregated analysis is justified.

The one-way variation in figure 4 is worth noting. Specifically, as age increases, the P+I
death rate shows less total variation: the 0–19 year-old data span about 2 logs on the
horizontal axis, the 20–64 year-old data span about one log, and the 65 and older data are
nested within one log. On the other hand, for I/(P+I), the oldest age group shows the most
variation, spanning about three logs on the vertical axis, while the other two age groups span
about two logs.

The hard boundary with a striped appearance, seen on the lower left of each panel, is an
artifact of integer constraints on the number of deaths per month. The 0–19 age group has
many months with 1, 2, or 3 influenza deaths, which makes the stripes particularly apparent.
The time span is 612 months, but months in which I/(P+I)=0 cannot be plotted on log scale.
Hence, the number of points plotted in each figure is less than 612 (the numbers are given in
the panel captions).

The bivariate analysis in figure 4 reveals important relationships. The 0–19 age group has
the fewest deaths, with overlapping summer and winter data, making it diffecult to discern a
clear differentiation between the two pseudoseasons. The regression lines for winter and
summer are negative. In other words, as the P+I death rate increases, I/(P+I) decreases, or
viceversa, as causality could run the other way.

The 20–64 age group, on the other hand, has the opposite bivariate relationship, with
positive slopes for both the summer and winter regression lines. As the P+I death rate
increases, so does I/(P+I). The winter slope is steeper than that of the summer. While a clear
distinction between the summer and winter data is lacking here as well, the differentiation is
more apparent than in the younger group.

The age group 65 and older has the most deaths and the most interesting bivariate
relationship. The summer and winter data show a salient differentiation, clearly occupying
different regions. What is more, the slopes of the summer and winter regression lines have
different signs. In the winter, as the P+I death rate increases, I/(P+I) does too. In the
summer, there is a negative relationship between P+I death rate and I/(P+I). In the end of the
pseudosummer (e.g., October), P+I death rates begin to increase but I/(P+I) stays low, which
creates a negative relationship overall. For males, in the summer there is large spread of I/(P
+I) over a narrow range of rates, and hence no strong relationship.

The most important point from the scatterplots, especially for the oldest age group, is that
the highest P+I death rates are predictive of the highest I/(P+I) proportion (or vice-versa);
this only applies to a handful of months, however. Beyond that, there is a poor relationship
between I/(P+I) and the P+I death rate, despite the fact that, as seen in figures 1 and 2, the
cycles follow each other so well. Indeed, the goodness of fit for the age group 65 and older
of figure 4, as measured by the R2, is quite poor in the winter for females (R2 = 0.051) and
higher for males but hardly overwhelming (R2 = 0.33). This is seen not only in the
scatterplots but by reconsideration of figure 3, where there are huge year-to-year swings in I/
(P+I). These drastic changes may be compared to figures 1 and 2; over short time spans,
these are good approximations to the rate changes, since the populations at risk in the rate
denominators change relatively slowly.

Influenza mortality, the numerator of the key quantity of this study, drives most of the
month-to-month variation in I/(P+I). Over all ages, the R2 for I predicting I/(P+I) in an OLS
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regression (N = 612 months) is 0.9031 for males, and 0.9062 for females. This is hardly
surprising, given the way I/(P+I) is set-up, and the fact that influenza experiences more
dramatic relative peak-to-trough seasonal swings compared to pneumonia (figures 1 and 2).
One could essentially replace the data on the vertical axis of figure 4 with influenza alone
without altering the pattern. This only reinforces our point, that expressly-coded influenza
mortality is not a good proxy for influenza-attributable mortality. It does not predict the
pneumonia and influenza death rate very well, and it is known to have spurious peaks, such
as the during the spring 1976 swine flu scare.

Our results suggest that the variation over time in influenza-only mortality is just as affected,
if not more so, by seemingly-random year-to-year reporting changes as by actual changes in
influenza-associated mortality. These results strongly endorse the standard practice of
combined analysis of pneumonia and influenza mortality.

Conclusion
As a cause of death, influenza is highly variable from year-to-year. Influenza and pneumonia
are typically combined in mortality analysis, although this has been challenged by Doshi
(2008). We analyzed disaggregated influenza and pneumonia data to quantify their
relationship and to determine best practice. To produce estimates of excess mortality,
Serfling regression (and similar techniques), takes as its inputs the data considered herein
(Eickhoff et al. 1961). Detailed knowledge of the inputs can help interpretation of the
outputs and models (Nishiura 2011).

Over the 51-year span, influenza has seen a decline in use on the death certificate. Years in
which influenza is in the medical news are exceptions to this trend, with the 1975–76 “swine
flu” scare on record as the highest proportion I/(P+I). Despite the decline, during each flu
season, the proportion I/(P+I) builds during the winter. Of course, this could only go to show
that as influenza viral circulation grows each winter, so does its impact on mortality. This is
probably part of what is happening, but it does not explain the tremendous year-to-year
variation in the proportional use of influenza, in the face of more-or-less similar overall P+I
mortality.

Increased influenza vaccination, especially since the 1980s, could play a role in the secular
decline of I/(P+I). Higher vaccination rates may reduce the propensity to code a pneumonia
death as specifically attributable to influenza. It is possible that influenza vaccination
impacts morbidity (Nichol et al. 2007) more than mortality. The actual role of increased
influenza vaccination in the reduction of influenza mortality has been debated (Simonsen et
al. 2005a; Thompson et al. 2005; Simonsen et al. 2005b).

As the flu season builds, so does short-term medical awareness of influenza, and this is
reflected by the patterns of I/(P+I) reported herein. It may be that explicitly-coded influenza
deaths are the result of greater laboratory confirmation, but that just begs the question of
whether there is increased testing in years when influenza is making medical news. For
example, 1975–76 was the swine flu scare but not an actual outbreak. The 2009 mortality
data further support this hypothesis, with the 2009 I/(P+I) being the highest since the 1980–
81 flu season.

What gets recorded on the death certificate and why has long been a subject of interest for
historical demographers (Alter and Carmichael 1996, 1997, 1999). This study shows that,
influenza versus pneumonia death classification is, in part, influenced by medical-social
factors.
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Figures 1 and 2 show that influenza and pneumonia mortality co-move, but figures 3 and 4
show that, overall, influenza-only mortality is a poor predictor of P+I mortality. Epidemic
phenomena are often assumed to be power-law processes, but our results show that the
influenza and pneumonia relationship is a poor fit to scale-invariance, reinforcing the notion
that influenza alone should not be used as a stand-in for P+I mortality. The simplest
interpretation of our results is that influenza is not a cause-of-death classification to be
trusted. Barring an especial reason, influenza mortality should never be analyzed as a stand-
alone cause, but instead should be combined with pneumonia.

Our analysis both supports and contradicts a recent finding, that “recorded influenza”
mortality is in decline (Doshi 2008). It is supportive in the sense that it’s replicative: we
show that, despite population growth, influenza deaths have indeed declined in the period
1959–2009. However, this is overwhelmingly driven by a reduction in the propensity for
influenza (as opposed to pneumonia) to be used as the underlying cause of death. Using vital
statistics data alone is not sufficient to address definitively the question of influenza’s
relative importance in P+I mortality. Autopsies may, in theory, provide more information,
but those conducted as a matter of course are performed when the cause of death is
unknown. For pneumonia deaths, an autopsy is not normally performed to determine the
etiologic agent (Liu et al. 2012). Large-scale autopsy studies specifically designed to address
the question of I/(P+I), although prohibitively expensive, would be the gold standard
(Kircher et al. 1985).
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Appendix 1: ICD codes for influenza and pneumonia

Cause of death

Years Influenza Pneumonia
†

1959–1967 (ICD 7) 480–483 490–493

1968–1978 (ICD 8) 470–474 480–486

1979–1998 (ICD 9) 487 480–486

1999–2009 (ICD 10) J10–J11 J12–J18

†
excluding influenza

Appendix 2: Figure 4 regression table

log(I/(P+I)) Coefficient SE t P> |t| [95% Conf. Interval]

Winter, female, 0–19 −0.256 0.7747 −0.33 0.741 −1.775 1.263

Winter, male, 20–64 19.036 1.2512 15.21 0.000 16.582 21.489

Winter, female, 20–64 20.506 1.3530 15.16 0.000 17.853 23.159
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log(I/(P+I)) Coefficient SE t P> |t| [95% Conf. Interval]

Winter, male, ≥65 21.086 1.4656 14.39 0.000 18.212 23.960

Winter, female, ≥65 7.775 1.2221 6.36 0.000 5.379 10.171

Summer, male, 0–19 −3.773 0.8545 −4.42 0.000 −5.448 −2.097

Summer, female, 0–19 −5.141 0.9112 −5.64 0.000 −6.928 −3.354

Summer, male, 20–64 12.059 1.9099 6.31 0.000 8.315 15.804

Summer, female, 20–64 17.786 2.1834 8.15 0.000 13.504 22.067

Summer, male, ≥65 −6.312 3.3454 −1.89 0.059 −12.871 0.248

Summer, female, ≥65 −29.480 1.9032 −15.49 0.000 −33.212 −25.748

log(P+I death rate) −0.208 0.0513 −4.05 0.000 −0.308 −0.107

log(P+I death rate) × {Winter, female, 0–19} −0.027 0.0738 −0.37 0.715 −0.172 0.118

log(P+I death rate) × {Winter, male, 20–64} 2.051 0.1288 15.92 0.000 1.798 2.303

log(P+I death rate) × {Winter, female, 20–64} 2.066 0.1336 15.47 0.000 1.804 2.328

log(P+I death rate) × {Winter, male, ≥65} 3.333 0.2225 14.98 0.000 2.897 3.770

log(P+I death rate) × {Winter, female, ≥65} 1.138 0.1758 6.47 0.000 0.793 1.483

log(P+I death rate) × {Summer, male, 0–19} −0.287 0.0806 −3.57 0.000 −0.445 −0.129

log(P+I death rate) × {Summer, female, 0–19} −0.412 0.0858 −4.8 0.000 −0.580 −0.244

log(P+I death rate) × {Summer, male, 20–64} 1.390 0.1940 7.17 0.000 1.010 1.770

log(P+I death rate) × {Summer, female, 20–64} 1.834 0.2091 8.77 0.000 1.424 2.244

log(P+I death rate) × {Summer, male, ≥65} −0.707 0.4972 −1.42 0.155 −1.682 0.267

log(P+I death rate) × {Summer, female, ≥65} −4.007 0.2661 −15.06 0.000 −4.529 −3.485

intercept −5.015 0.5348 −9.38 0.000 −6.064 −3.967

Number of observations = 3029

F( 23, 3005) = 147.75

Prob > F = 0.0000

R2 = 0.5307

RMS Error = .92988

The analysis of figure 4 is disaggregated into 12 groups: two regression lines (winter,
summer) per panel, with six panels (three age groups, two sexes). As noted in the text, this is
done because of the important differences between age groups. This regression table shows
a three-way interaction (pseudoseason × sex × age group). The 24 coefficients recapitulate
the 12 regression lines of figure 4 (one slope and intercept per line). The omitted category is
winter males, 0–19. Most age/sex/pseudoseason combinations are statistically different (p
<0.0005), justifying the disaggregation. Winter females, 0–19, are not distinguishable from
the omitted category. Summer males age 65 and older have a slope that is not statistically
distinguishable from the omitted category and an intercept that is borderline (p =0.059).
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Figure 1.
Females. Time series graph of pneumonia deaths (red), left scale, and influenza deaths
(green), right scale. Vertical axes are logarithmic. Vertical dashed lines denote changes in
ICD revisions, although the data are ICD-adjusted. Gaps in the green data series correspond
to months with no influenza deaths.
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Figure 2.
Males. Time series graph of pneumonia deaths (blue), left scale, and influenza deaths
(green), right scale. Vertical axes are logarithmic. Vertical dashed lines denote changes in
ICD revisions, although the data are ICD-adjusted. Gaps in the green data series correspond
to months with no influenza deaths.
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Figure 3.
Time series graph of influenza as a proportion of total pneumonia and influenza mortality,
all ages. Red, females; blue, males. Vertical dashed lines denote changes in ICD revisions,
although the data are ICD-adjusted. Shaded regions are discussed in detail in the text.
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Figure 4.
Scatterplots of I/(P+I) vs. P+I death rate, age 0–19 (a,b), age 20–64 (c,d), and 65 and older
(e,f). Females, left panels (circles); males, right panels (squares). Each plotting symbol
represents one month, 1959–2009. Summers are gold; winters are purple. Ordinary least-
squares regression lines are also shown for each pseudoseason; all slopes differ significantly
from zero (p < 0.0005) except panel (f), summer (p = 0.17), but the two lines in panel (f) are
statistically different from each other (p < 0.0005). Months plotted in random sequence to
avoid systematic summer or winter overlap.
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