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Abstract
A crucial step in an epidemiological study of the effects of air pollution is to accurately quantify
exposure of the population. In this paper, we investigate the sensitivity of the health effects
estimates associated with short-term exposure to fine particulate matter with respect to three
potential metrics for daily exposure: ambient monitor data, estimated values from a deterministic
atmospheric chemistry model, and stochastic daily average human exposure simulation output.
Each of these metrics has strengths and weaknesses when estimating the association between daily
changes in ambient exposure to fine particulate matter and daily emergency hospital admissions.
Monitor data is readily available, but is incomplete over space and time. The atmospheric
chemistry model output is spatially and temporally complete, but may be less accurate than
monitor data. The stochastic human exposure estimates account for human activity patterns and
variability in pollutant concentration across microenvironments, but requires extensive input
information and computation time. To compare these metrics, we consider a case study of the
association between fine particulate matter and emergency hospital admissions for respiratory
cases for the Medicare population across three counties in New York. Of particular interest is to
quantify the impact and/or benefit to using the stochastic human exposure output to measure
ambient exposure to fine particulate matter. Results indicate that the stochastic human exposure
simulation output indicates approximately the same increase in relative risk associated with
emergency admissions as using a chemistry model or monitoring data as exposure metrics.
However, the stochastic human exposure simulation output and the atmospheric chemistry model
both bring additional information which helps to reduce the uncertainly in our estimated risk.
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1 Introduction
Numerous studies have shown the positive association between short and long term
exposure to particulate matter and adverse human health effects - Dominici, Peng and Bell
[1]; Pope et al [2], Bell et al [3], and Ostro et al [4] for respiratory effects, among others. In
other examples, air pollutants are linked to a significant increase in respiratory deaths in
Ostro et al [5] and Braga et al [6]. Holloman et al [7] relates PM2.5 exposure to
cardiovascular mortality, Braga et al [6] and Hoek et al [8] relate pollution exposure to
cardiovascular disease, and Pope et al [9], Dockery et al [10], Dockery and Pope, [11], and
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Fuentes et al [12] related pollutant exposure to mortality and morbidity in general. The
Environmental Protection Agency (EPA) is “concerned about particles that are 10
micrometers in diameter or smaller because those are the particles that generally pass
through the throat and nose and enter the lungs” [13]. Fine particles, PM2.5, such as those
found in smoke and haze, are defined as 2.5 micrometers in diameter and smaller. Once
inhaled, “particle pollution - especially fine particles - contain microscopic solids or liquid
droplets that are so small that they can get deep into the lungs and cause serious health
problems” [13]. According to the EPA, particle pollution exposure has been specifically
linked to a variety of problems including premature death in people with heart of lung
disease, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung
function, and increased respiratory symptoms, such as irritation of the airways, coughing or
difficulty breathing [13]. The EPA warns that “people with heart or lung diseases, children,
and older adults are the most likely to be affected by particle pollution exposure” [13].

The aim of this paper is to assess the sensitivity of the estimates of the short-term health
effects of ambient exposure to fine particulate matter on population health outcomes, under
three different exposure metrics for daily levels of PM2.5. The National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) [14] describes statistical methods for
estimating the percentage increase in mortality associated with day-to-day changes in
ambient levels of PM10. A challenging aspect of air pollution studies is quantifying the daily
exposures of individuals in the population accurately. We investigate the sensitivity of the
estimated health effect of three potential exposure metrics for fine particulate matter:
ambient monitor data (AQS), estimated air quality concentrations from a deterministic
atmospheric chemistry model - the Community Multi-scale Air Quality modeling system
(CMAQ) described in Byun and Schere [15], and simulated individual daily average
exposure based on the Stochastic Human Exposure and Dose Simulation model (SHEDS-
PM). Each metric considered here has different strengths and weaknesses. AQS monitoring
data is readily available but is spatially and temporarily incomplete, whereas CMAQ output
is spatially and temporally complete, but may be less accurate. SHEDS-PM output accounts
for population exposure variability but requires extensive input and is computationally
expensive. CMAQ serves as a surrogate for directly measuring ambient pollution exposure
and SHEDS-PM is a surrogate for population exposoure to fine particulate matter. The
outcome considered here is emergency respiratory disease hospital admissions for Medicare
patients age 65 and older for the period 2002-2006.

SHEDS-PM can provide information about short-term population ambient exposure. Several
recent papers have used Bayesian hierarchical models to incorporate output from an
exposure simulator as predictors of various health responses (Calder et al [16], Berro-cal et
al [17], Blangiardo et al [18], and Reich et al [19]). This paper focuses in particular on the
comparison of health effects models incorporating SHEDS-PM output as explanatory
variables, as it is of interest to the scientific community to understand the possible benefits
to be gained from population exposure information.

A limitation of many studies of adverse human health effects is that a single exposure value
is used for all individuals whereas personal exposure can vary greatly. The New York
Community Air Survey (NYCCAS) [20] illustrates that exposure as described by sparse
monitoring station data is not fully describing the spatial distribution of PM2.5. While direct
measurements of individual exposure are not available with sufficient spatial and temporal
coverage to enable comparison with health effects data at the scale evaluated here, SHEDS-
PM estimates population distributions of inter-individual variability in daily average
exposure using information about human activity patterns and living environments, as well
as census data. In this paper, we present a comparison of exposure metrics utilizing a
modeling framework to capture the population exposure information. The comparison is
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showcased in a simulation study as well as an application on emergency hospital room
admissions for respiratory disease.

First, Section 2 describes the exposure metrics and the data used for the application. Then
Section 3 details the methodology and models, and Section 4 outlines the simulation study.
Section 5 describes the application and Section 6 explains the model results for the effect of
PM2.5 on emergency hospital admissions. Finally, a discussion comparing the exposure
metrics is presented in Section 7.

2 Data
In this application we focus on three counties in the New York City area: Bronx, Queens,
and New York Counties, for the years 2002-2006. The outcome of interest is emergency
respiratory disease hospital admissions for Medicare patients age 65 and older, obtained
from emergency hospital admissions data created from the Medicare Part A and Medicare
Denominator files, where daily time series of hospitalizations were constructed for each
county as described in Peng et al [21]. Respiratory admissions were classified based on
“ICD-9 codes including chronic obstructive pulmonary disease (490-448) and respiratory
tract infections (464-466, 480-497)” [21]. For each outcome, only the primary diagnosis for
the hospital admission was considered as the basis for inclusion and daily time series of
hospitalization rates were constructed by cause for each county by summing the number of
emergency hospital admissions for each day in each county [21].

AQS monitor data measurements are observed approximately every third day, and the
resulting data product is an aggregate county measurement averaged over the stations
located in each county. Another important source of PM2.5 over large areas can be obtained
from the three-dimensional (3-D) regional scale air quality models such as the U.S. EPA
Community Multiscale Air Quality (CMAQ) modeling system (Binkowski and Rosell [22];
Byun and Schere [15]). CMAQ output is spatially and temporally complete, but may be less
accurate than monitor data as it provides estimates of the pollutants on a grid. CMAQ is a
deterministic chemistry model based on stochastic differential equations that describe that
underlying chemistry [23]. CMAQ simulations over an airshed of interest provide gridded
hourly concentrations and dry/wet deposition fluxes of major air pollutants such as ozone
and fine particles at a 12 × 12 km2 resolution for the entire Eastern United States from
2002-2006. CMAQ has various sources of uncertainties, including the support space. A full
description of the CMAQ modeling system can be found on the EPA website [24]. AQS
monitoring data is compared to a CMAQ data product in Chang et al [25] to relate fine
particulate matter to pre-term birth, and Bravo et al [26] consider CMAQ as a metric for
pollutant exposure in epidemiological studies.

SHEDS-PM is a population exposure model for particulate matter developed by the US
Environmental Protection Agency. SHEDS-PM employs a probabilistic approach to
estimate distributions of inter-individual variability in outdoor and indoor
microenvironmental PM2.5 exposures for a simulated population based on ambient air
quality and human activity data (Burke) [27], such as workplace or residential environment
and exposure through cooking and smoking. The human activity data are based on the
Consolidated Human Activity Database (CHAD) [28], which is based on over 22, 000 daily
dairies of participants documenting time spent in various micro-environments. Figure 1
provides a schematic of this algorithm. Details on the SHEDS-PM estimation procedure can
be found in Burke and Vedamtham [27], with information concerning the inputs to the
SHEDS-PM algorithm in Jones et al [29] and Jiao et al 2012 [30].

Days with daily average temperatures less than 65°F are defined as “cold,” whereas days >=
65°F. are defined as “warm.” The cold and warm distributions were applied to each
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simulated day depending on the daily average temperature. Inter-individual geographic
variability in exposures is described in Cao and Frey [31] and [32]. The output includes
predicted daily average values of ambient (Ea), non-ambient (Ena), and total exposure (Et)
for each simulated individual for each simulated day, and time spent in each
microenvironment. An aggregated county sample mean and standard deviation were
calculated for each county. Ratios of Ea/C for each simulated individual were calculated
from daily average ambient exposure divided by input ambient PM2.5 concentration (C).

2.1 Data Processing
Daily hospital admissions data are available on a county level, thus it was necessary to
convert AQS, CMAQ, and SHEDS-PM to aggregates on a county level. CMAQ output is on
a 12 × 12 kilometer grid. To aggregate to the county level, a weighted average across the
grids was calculated based on the land proportion of each county on each grid. We use a
database of fine PM2.5 and ozone monitoring data from AQS, modeled CMAQ output from
the EPA, and health data from Medicare billing claims (as detailed in Peng et al [21] and
Dominici [1]), as well as daily weather conditions. We also have SHEDS-PM daily total
particulate matter exposure simulated for approximately 50,0001 people age 65 and older for
this same time-frame. To aggregate to the county level, the tracts within each county were
averaged. Our response is daily respiratory (RESP) disease emergency hospital admissions
for Medicare patients for the period 2002-2006.

We standardized daily fine PM2.5 by subtracting the sample mean and dividing by the
sample standard deviation across time for each of the three counties. Additionally, we tested
for outliers by isolating days that were six times the interquartile range above the median
values. However, the five days that met this criteria were kept because they were deemed
reasonable given the pollutant and time of year that they occurred. Lag terms for ozone and
particulate matter were created using the one day lag for ozone and PM2.5. Total particulate
matter exposure includes particles of ambient and non-ambient origin, taking into account
air exchange rate, penetration, deposition, smoking status and cooking habits. We use only
ambient exposure for comparison with AQS and CMAQ. The average and the variance of
PM2.5 exposures were calculated from the SHEDS-PM simulation for inclusion in the
individual exposure model in equation (2).

There were some instances of missing data. For New York County, all ozone readings were
missing and the missing ozone values were infilled with CMAQ ozone output. As ozone was
not the main covariate of interest, we are able to focus analysis on PM2.5 using the infilled
ozone values. In the CMAQ output, there were five non-consecutive days where fine
particulate matter concentration was missing. The days corresponding to missing fine
particulate matter values were removed, which represented less than one third of one percent
of the overall CMAQ particulate matter output, and the analysis performed on only complete
daily records.

3 Methodology
Many studies (two papers by Dominici, [33] and [34], and Peng et al [35]) have illustrated
the potential confounders associated with air pollution and health effects, and the importance
of adjusting for these effects. We employ the semi-parametric method outlined in Peng,
Dominici, and Louis [35] to adjust for seasonal and long-term trends by incorporating
natural splines. The use of nonparametric smoothing for health effects time series models
was introduced in Schwartz [36], where smooth functions were used for time, temperature,

1The simulation was run to collect information for 8.3% of the population using census values. This corresponds to approximately
50,000 people each year, spread proportionally by population over the counties, above the age of 65.
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dewpoint, and PM10. The smooth function of time accounts for potential confounding
factors which vary smoothly over time. Natural splines are utilized to control for long-term
trends and seasonality over time. Weather variables such as temperature and relative
humidity are also considered confounders. Therefore splines in temperature and relative
humidity are incorporated into the model, as well as linear and quadratic terms in time. Also
of interest are possible confounding long-term trends due to delayed onset of hospital
admissions after exposure. Thus a confounding term is included for the 1-day lag for ozone,
as well as temperature where the mean value is taken over the preceding 3-day period.

3.1 Models
Define Yt as the total number of events, i.e. the number of emergency respiratory
admissions, on day t, across all three counties. As potential confounders, we use a linear and
quadratic fit in time, and spline fits in maximum daily temperature (tempt) and average daily
relative humidity (humt). Additional non-pollutant confounders considered are the
temperature lag defined as the average temperature over the previous three days

, ozone, and day of the week (dow), where dow has six levels corresponding
to the calendar days of the week, with Saturday as the baseline exposure. There are certainly
other covariates and confounders that could be considered for the modeling of human health
effects such as emergency hospital admissions in the presence of PM2.5. The focus of this
paper is the comparison of the three different available exposure metrics - measured air
quality (AQS), modeled air quality (CMAQ), and modeled individual exposure(SHEDS-
PM). Thus the focus here is to create a base model that captures the basic characteristics of a
pollutant model that enables the comparison of these metrics and their effectiveness at
providing exposure information for PM2.5. In the application presented here, PM2.5 is
standardized by subtracting the mean and dividing by the standard deviation for each of the
three counties.

We include the ambient concentrations of fine particulate matter from either AQS monitor
data or from CMAQ output. In models with the AQS monitoring data and the CMAQ
output, the exposures are ambient concentrations and are considered constant for the entire
population and are denoted PMt for day t. The counts are modeled as poisson with

(1)

where s(;d) is the natural spline basis expansion with d degrees of freedom, chosen as
explained in Section 6.3. E(Yt) represents the expected number of counts for time t, and
βdowdowt is a vector (βSI(Sun) + … + βFI(Fri)) corresponding to the calendar days of the
week, where Saturday is considered the baseline level for pollutant exposure. This standard
model assumes that there are no interactions between covariates, and includes an offset term
for Poisson models, logNt, where Nt is the number of Medicare participants in the study and
βPM represents the change in ambient exposure.

The analysis incorporating estimated personal exposure is approached differently, as the
SHEDS-PM personal exposure model allows us to consider exposure at an individual level.
SHEDS-PM does not assume that the exposure is the same for all individuals in that county
on that day in the population, and the health model must be modified accordingly. If the
exposure distribution on day t is estimated by SHEDS-PM to have mean mt and variance υt,
then the expected number of counts can be modeled as in Reich, Fuentes, and Burke (2009)
[19]. Note that if the variance of the exposure distribution is zero, then this reduces to the
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ambient concentration model with exposure PMt = mt. Here we are considering the lag-term
for the mean personal exposure, mt−1, as indicated by Braga 2001 [6].

(2)

αPM represents the change in individual exposure and the final term α2υt accounts for
variation in exposure across the population. The derivation of the modeling formulation is
described in Reich et al 2009 [19]. An offset term, logNT, for Poisson count models is also
included.

We carry out the analysis using Bayesian methods. The advantages of a Bayesian
framework in pollutant effect models has been shown in multiple studies as well as utilized
in the studies referenced in Section 1. Dominici (2002) [34] outlined the advantages to a
Bayesian approach in modeling air pollution, Choi et al (2009) [37] uses a Bayesian
framework to model PM2.5 over space and time, Blangiardo et al (2009) [18] implement a
Bayesian framework to relate individual level data from activity diaries to particulate matter
exposure, and Reich et al (2009) [19] relates fine particulate matter, PM2.5, to mortality
using the SHEDS-PM simulated exposure. Reich et al introduce a Baysian model that
incorporates the exposure distributions to account for variability in exposure across the
population, which is the methodology considered here.

A Bayesian analysis begins by specifying a prior distribution for each model parameter
which quantifies the information about parameter before observing the data. After observing
the data, we have two sources of information, the data's likelihood and the prior, which are
combined using Bayes' theorem to give the posterior distribution [38]. The posterior
distribution represents the current state of knowledge based on all available information and
is used for inference. A crucial step in a Bayesian analysis is selecting appropriate priors for
model parameters. We use normal priors with mean zero and large variance for the
coefficient parameters to allow for a non-informative prior. Markov Chain Monte Carlo
methods are used to sample from the conditional distribution. A burn-in of 5,000 is
discarded and 20,000 posterior draws are obtained for inference. Convergence was
confirmed using trace-plots. All analysis was performed using R: A Language and
Environment for Statistical Computing, version 2.14.1 [39].

4 Simulation
A simulation study is conducted to test the power of detecting a relative risk signal from the
three exposure metrics defined above. A health outcome data set, Z, of simulated health data
is generated using random draws from a Poisson distribution with a linear mean function in
the confounders, simulated values for the daily mean exposure Mt, and specified values for
the variance V of the daily individual exposures. The expected number of simulated hospital
admissions on day t can be expressed through the log relationship:

(3)

where a basic structure for the confounders considered was fit with β = (0.1, 0.2,0.3,0.4)
where dewt = dewpoint and dowt = day of week is an indicator for weekday, weekend, or
holiday. An offset term for Poisson count models is also included. Zt is simulated using the
R function rpois as
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(4)

where X = {dewt, tempt,dowt, ozonet}. The mean Mt of the daily individual exposures is
simulated according to the relationship:

(5)

with input Ct, of the observed 1-day lag AQS ambient exposure for PM2.5 for day t and R
representing random draws from a normal distribution with mean Emn = 0 and standard
deviation Esd = 0.88. A constant variance V is used for purposes of simplicity. V = 0.3 is
chosen as the average of the estimated personal exposure variances υε, and a larger variance,
V = 1, was tested as well for a robustness comparison. N1 = 1623 simulated hospital
admission counts were generated, utilizing the 1623 available AQS observations over the 5-
year time period.

In Equation (5) the observed AQS observations, denoted by C above, are used as to generate
simulated personal exposure distributions. The data, ZN1, is generated to have correlation
corr(Mt, Ct) = 0.7 where Mt is the mean exposure and Ct is the input AQS on day t, which is
consistent with the correlation of AQS and SHEDS-PM as observed in New York counties
data. A correlation of r = 0.7 corresponds to an approximate standard deviation of Esd = 0.88
for the mean exposure. For each dataset we test the null hypothesis that the PM2.5 effect on
the relative risk is zero - i.e., α is not significantly different from 0. Other possible values of
Esd are also considered, as well as additional values of α and V, for robustness. The power

of detecting the individual effect α with the distributional component  described in
Equation 3 is compared to the power of detecting the effect βPM of fine particulate matter
according to the model described in Equation (1), with the reduced set of confounders for
simplicity. Table 1 displays the empirical power over 1, 000 simulations across a reasonable
spectrum of possible values of α and standard deviation, Esd. For each simulation 5,000
posterior samples were drawn after a burn-in of 500 using non-informative normal priors
with mean 0 and a large variance of 100 with convergence diagnostics checked via a
sampling of trace-plots.

Table 1 and Figure 2 show that as the strength of the effect for PM2.5 increases, the model
incorporating the individual exposure has greater power than the model utilizing the ambient
AQS data. The difference in power is significant for the standard deviation Esd = 0.88 for
the mean exposures, which is the most realistic scenario as a standard deviation of Esd =
0.88 captures the observed dependence between AQS and SHEDS-PM. The personal
exposure metric exhibited a significantly higher power across all values of α for V = 1, at
the 0.01 level of significance for α = 0.03 and α = 0.05 and at the 0.05 level of significance
at α = 0.01. At V = 0.3, the SHEDS-PM exposure metric exhibited a significantly higher
power at the 0.01 level of significance for α = 0.03 and α = 0.05. It can be seen in Figure 2
that with the exception of the case V = 1.0 and α = 0.3, for all values of V and α considered,
the SHEDS-PM personal exposure metric exhibits higher power than the AQS exposure
metric. Other possible values for Esd were considered as well. Esd = 0.2 (not shown) showed
no significant difference in the power of detecting a non-zero effect of PM2.5 between the
AQS and SHEDS-PM exposure metrics. As seen in Table 1,Esd = 0.4 showed a significant
difference at the 0.05 level in the power of detecting a non-zero effect of PM2.5 between the
AQS and SHEDS-PM exposure metrics. The AQS metric exhibited a significantly higher
power at α = 0.01, there was no difference at α = 0.03, and SHEDS-PM exhibited a
significantly higher power at α = 0.05 for Esd = 0.4. It is important to point out that in most
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cases the powers are relatively similar, and that in reality, SHEDS-PM will not summarize
the population exposure distribution as it does for our synthetic data. This simulation simply
provides an illustration of the statistical properties of the SHEDS-PM output.

Incorporating personal exposure increases our power in detecting risk for an increase in
expected number of hospital admissions due to fine particulate matter. It has increased
power across increasing magnitudes of relative risk.

5 Application Study
We consider an analysis of PM2.5 metrics - monitoring data from AQS, modeled CMAQ
output from the EPA, and personal exposure with SHEDS-PM - with health data from
NMMAPS. The response considered in this application is respiratory disease emergency
hospital admissions for Medicare patients. First we consider the ratio of individual exposure
to the input ambient concentration, Ea/C, as an exposure metric. Ea/C is often used to study
the output of exposure simulators (Özkaynak et al [40]). Then the distribution of the
SHEDS-PM exposure metric is compared to the AQS point metric.

5.1 Ea/C Analysis
We consider Ea/C over time, to investigate its temporal properties. Ea/C is important to
consider because it portrays information about individual sources of variability such as
housing type and activity patterns. Figure 3 shows Ea/C ratios over time for 2003. Figure 3a
illustrates that Ea/C is relatively stable over time, with some seasonal fluctuations. There is
no evidence of a significant linear trend though there is a clear seasonal pattern. This is one
of the reasons that Ea is used as the predictor for the analysis in this case, as individual
variation might be more informative than the concentration ratios. Mean Ea/C is
hypothesized to vary by season, as depicted in Figure 3b which illustrates the density of the
Ea/C ratio for all counties by season, as well as by geographic location (Jiao et al 2012 [30],
and Sarnat et al 2007 [41]). Though in this case there is little differentiation in the quantiles
for Ea/C across the three counties, as seen in Table 2. Table 2 shows Ea/C ratios for
2002-2006 overall and by county. January 2003 and July 2003 are also shown to represent
both a “cold” and “warm” month for comparison. Since the Ea/C are not exhibiting a linear
temporal trend, Ea - i.e. ambient concentration - is used as the personal exposure metric.
Any seasonal trend is captured in the model via the linear and quadratic terms in time, and
the spline fit for temperature.

5.2 SHEDS-PM Exposure Distribution
Figure 4 shows the SHEDS-PM exposure distribution for a representative day for the “cold”
and “warm” seasons: January 15, 2003 (a) and July 14, 2003 (b) respectively. There is
evidence of a county effect for the SHEDS-PM exposure metric, with New York County
showing a more skewed distribution with significant positive mass in the upper tail. Figure 4
shows the relative variation across the population during a single day of exposure, versus the
single exposure value for the AQS metric represented by the vertical line. When comparing
predicted concentrations from CMAQ to measured concentrations from AQS for the three
counties selected, CMAQ tended to under-estimate summer concentrations and to over-
predict winter concentrations, which is consistent with previous findings (Tesche et al., 2006
[42]). This may explain in part why the exposure estimates in summer are below the AQS
values, whereas in the winter there is overlap between the exposure distributions and AQS
values. Actual exposure depends on the amount of time an individual spends in different
microenvironments, which include various indoor locations, outdoors, in transit, and others.
For indoor microenvironments, a portion of ambient PM2.5 penetrates indoors, and some
deposits to interior surfaces. Since people spend majority of daily time indoors, on average
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for a population, the daily exposure to particles of ambient origin is typically less than the
ambient concentration. Thus, SHEDS-PM accounts for the variability in individual activity
patterns in different microenvironments, whereas AQS only accounts for outdoor
concentrations. The goal of SHEDS-PM is to model the variation in the distribution of
possible exposure values across different members of the population. Figure 4 shows the
amount of information contained in SHEDS-PM exposure metric relative to the static AQS
metric.

6 Results
Results for the effect of fine particulate matter exposure on emergency hospital admissions
for respiratory cases showed a positive association between increased exposure and number
of admissions for all metrics. We also considered an analysis with cardiovascular emergency
hospital admissions as the response. This study did not show a consistent effect of fine
particulate matter on cardiovascular admissions. The sign for the estimated effect of PM2.5
on cardiovascular admissions was negative but not significant for AQS. In this study we
focus on the details of the respiratory outcomes, in order to compare the effectiveness of
SHEDS-PM as a metric in contrast with the more widely used and studied AQS.

6.1 Non-Individual Exposure Models: AQS and CMAQ
This section details the results for the AQS and CMAQ pollutant exposure surrogates for the
non-individual exposure models. Table 3 shows the posterior coefficient estimates for PM2.5
and the corresponding 95% credible intervals for the AQS and CMAQ exposure models.

We used normal priors with mean 0 and variance 100 as uninformative priors for the PM2.5
exposure metric coefficient parameter to allow the data to inform the posterior. Both the
AQS and CMAQ exposure metrics exhibit a positive coefficient for PM2.5, indicating that
the relative risk for emergency hospital admissions for respiratory disease increases with
increased fine particulate matter exposure. For AQS, the posterior mean of βPM is 0.0179
with a 95% posterior credible interval of (0.0008,0.0350), which corresponds to an increased
relative risk of approximately 1.8% (e0.0179 = 1.018) for emergency respiratory hospital
admissions. This corresponds to an approximate increase of 1.8 admissions per 100, with a
posterior 95% credible interval 0.08 to 3.3, for each one standard deviation increase fine
particulate matter (PM2.5) on a given day. For CMAQ, the posterior mean of βPM is 0.0225
with a 95% posterior credible interval of (0.0124, 0.0325), which corresponds to an
increased relative risk of approximately 2.3%, i.e. an approximate increase of 2.3 admissions
per 100 for each one standard deviation increase in fine particulate matter (PM2.5) on a
given day, with a posterior 95% credible interval (1.0, 3.3). It is important to point out that
CMAQ results in more precise estimates than AQS, as evidenced by the smaller credible
intervals and posterior standard deviation.

6.2 Individual Exposure Models: AQS and CMAQ
Table 4 shows the posterior coefficient estimates for both ozone and PM2.5 and their
corresponding 95% credible intervals for the SHEDS-PM individual exposure model. Table
4 also showcases the posterior coefficient estimates and corresponding credible intervals for
the full model considered, including the linear, quadratic, and spline terms for the additional
confounders. SHEDS-PM is exhibiting a positive coefficient for PM2.5, indicating that the
relative risk for emergency hospital admissions for respiratory disease increases with
increased levels of individual exposure to fine particulate matter. For SHEDS-PM, the
posterior mean of αPM is 0.0231 with a 95% posterior credible interval of (0.0135, 0.0329),
which corresponds to an increased relative risk of approximately 2.3% for emergency
respiratory hospital admissions. This corresponds to an approximate increase of 2.3
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admissions per 100, with a 95% posterior credible interval of (1.4, 3.3) for each one standard
deviation increase in fine particulate matter (PM2.5) on a given day. SHEDS-PM results in
more precise estimates than AQS, as shown by the smaller credible intervals, and is
comparable to CMAQ in this regard. The uncertainty associated with the SHEDS-PM
coefficient is less than that of AQS, showing a 44% reduction in uncertainty estimates. The
uncertainty associated with SHEDS-PM is comparable to that of CMAQ.

Figure 5 shows the posterior distribution of PM2.5 coefficient estimates for the AQS,
CMAQ, and SHEDS-PM metrics. The uncertainty associated with the AQS coefficient
estimates is higher than that of CMAQ and SHEDS-PM. In addition, the PM2.5 coefficient
posterior estimates for CMAQ and SHEDS-PM are consistent with each other with regards
to the posterior mean (0.0225 for CMAQ and 0.0231 for SHEDS-PM respectively). This
indicates that the additional information contained in the individual exposure metric of
SHEDS-PM may provide more precise estimates of the effect of PM2.5.

Sensitivity analysis detailed in Section 6.3 indicates that confounding factors such as
temperature and time were satisfactorily addressed. The simulation study shows that
SHEDS-PM exhibits a higher power for detecting an increase in relative risk than AQS and
CMAQ, with power increasing as a function of the true magnitude of the relative risk
coefficient. Several reasonable values for the prior variance were considered to test prior
robustness with similar results.

Results for cardiovascular admissions, while not detailed here, were similar in terms of the
comparison between metrics. The estimated effects of PM2.5 on cardiovascular emergency
admissions were similar for CMAQ and SHEDS-PM, and the corresponding uncertainty
estimates were more precise for SHEDS-PM compared to AQS.

6.3 Sensitivity Analysis
A sensitivity analysis was run to determine the appropriate degrees of freedom for the spline
fits in the Poisson model. Splines were fit for the following confounders using the function
ns in the R-package gam[43]. Degrees of freedom for the spline fits were selected using a
sensitivity analysis on the coefficient of the covariate of interest, PM2.5, in the model. Figure
6 shows the sensitivity the coefficient of PM2.5 to the spline fit for the possible values 1-10
for degrees of freedom for AQS and CMAQ for respiratory admissions. The degrees of
freedom selected, according to the stabilization of the coefficient estimate, were d1 = 3 for
temperature and d2 = 3 for relative humidity. This is in relative agreement with commonly
used literature values [35]. Though Peng et al (2006) [35] utilized higher degrees of freedom
for the spline fits, their analysis concerned PM10 over a 13 year period, where here PM2.5 is
analyzed over a 5 year period.

Preliminary analysis showed significance for the linear and quadratic terms in time for
respiratory disease response. Several models were considered including spline fits in time,
linear and quadratic terms in temperature as well as relative humidity, and various lag values
for temperature, ozone, and PM2.5. The spline fits in time were not significant, possibly due
to the splines in the other covariates capturing of portion of the temporal trend, including the
spline and linear fit in temperature. The quadratic time fit was significant to capture the
temporal trend given information in the other spline terms. The base model was selected
using the significance of the terms in the model as well as overall model AIC values.
Exploratory data analysis showed very mild overdispersion, with values of the dispersion
parameter estimated between 1.05 and 1.52, thus the standard Poisson model is appropriate.
Figure 7 shows the amount of trend captured in the model for emergency respiratory
admissions. The blue shows the effect of the confounders on explaining emergency hospital
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respiratory admissions and the red indicates the added effect of PM2.5, utilizing a
generalized linear model fit for exploratory data analysis.

7 Discussion
It is clear that the current methods to measure PM2.5 exposure are imperfect, which
motivates the study and comparison of more advanced exposure metrics. In this work we
study the impact of using a population exposure model, SHEDS-PM, as a metric to
characterize particulate matter in studying the relative risk for emergency hospital
admissions. SHEDS-PM uses information about demographics and activity patterns of the
population of interests as well as a characterization of the potential indoor exposure resulting
in a more complete description of the population exposure. The sensitiviy of CMAQ to
PM2.5 estimates would presumably manifest in our model in differences in effect estimates
for the CMAQ and AQS models. Szpiro and Paciorek [44] note that the underestimation of
uncertainty from ignoring measurement error in the first-stage measurements of exposure is
modest in the second-stage association study. Specifically, literature on measurement error
in predictors (Carroll et al [45]) suggest effects estimates are biased towards zero when there
is error in the covariates. Our effect estimates are fairly constant across metrics, which
indicates that the model is capturing an effect on health due to fine PM rather than due to
measuerment error in the underlying exposure metric.

Our results indicate that SHEDS-PM provides approximately the same increase in relative
risk associated with emergency respiratory admissions as using a chemistry model, CMAQ,
or monitoring data, AQS, as exposure metrics. However, SHEDS-PM and CMAQ both
bring additional information which helps to reduce the uncertainly in our estimated risk by
approximately half. The exposure models SHEDS-PM and CMAQ have errors and sources
of uncertainty, and further evaluation of these models is recommended, since this exposure
model error could result in a bias in the estimated risk. SHEDS-PM provides additional
power over AQS in detecting a positive effect on relative risk for emergency hospital
admissions associated with PM2.5 exposure.

SHEDS-PM is a very useful model for characterizing population exposure to PM2.5. In
comparison to CMAQ, SHEDS-PM does not provide additional information for the
characterization of relative risk with regards to exposure. However, while CMAQ can
provide output at a very high resolution, it is specific to the CMAQ grid cell location, and
does not account for population variability introduced by possible movement across grid
cells. SHEDS-PM provides a metric capable of capturing this variability, as it is based on
human demographics and activity patterns and time spent in various microenvironments.
The additional information available in the personal exposure metric provides a more
complete description of population exposure at the county level, as in this study, as
individuals are not static within one grid cell. There could possibly be an additive exposure
effect that could be represented by this variation in activity patterns that is possibly being
absorbed into the information provided by the other model covariates. In addition, if health
data are available at a finer geographical scale, SHEDS-PM could provide more realistic
spatial variation in daily exposures for the estimation of health effects at the census tract
level.

In order to make a direct comparison to the often used exposure surrogates AQS and
CMAQ, only the ambient individual exposure through SHEDS-PM was considered.
SHEDS-PM also provides information about non-ambient individual exposure, such as
exposure through smoking or cooking. There was evidence of a county effect in the personal
exposure distribution. As the focus of this study was to make an initial comparison of
exposure metrics and modeling a county effect would present an interesting challenge in and
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of itself, capturing a county effect is left for future work in order to keep focus on the
exposure metrics under consideration. In addition, AQS and CMAQ contain information
about speciated particulate matter, including nitrate, sulfate, elemental carbon, and organic
carbon. Adding these additional covariates into a modeling scheme for adverse human
health effects greatly increases the complexity. An area of current study is the consideration
of model selection techniques and controlling for multi-collinearity in the presence of these
additional covariates.
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Figure 1.
Input and output for SHEDS-PM Model [27]. Used with permission.
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Figure 2.
Power across α = 0.01, 0.03, 0.05. V fixed at 0.3 (a) and 1.0 (b), with Esd at 0.88. The red
solid line represents the personal exposure metric and the blue dashed line represents the
AQS exposure metric.
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Figure 3.
(a) Ea/C ratio distribution across all counties for 2003. Red line at 0.993 indicates the 99th

percentile. (b) Ea/C ratio density across all counties for 2003 by season. 99th percentiles are
indicated for each season.
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Figure 4.
SHEDS-PM distribution for Jan 15 2003 (a) and Jul 14, 2003 (b) across the three counties.
Bronx county is in red, Queens in green, and New York County in blue. Vertical lines
represent AQS concentration values.
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Figure 5. Posterior distribution of PM2.5 coefficients estimates for emergency respiratory
admissions
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Figure 6.
Spline sensitivity analysis over all counties for temperature (a) and relative humidity (b) on
PM coefficient for AQS; temperature (c) and relative humidity (d) on PM coefficient for
CMAQ.
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Figure 7.
Base Model AQS Fits: (a) Bronx, (b) Queens, & (c) New York County. Utilizing a
generalized linear model fit, the blue lines show the effect of the confounders on emergency
respiratory admissions, and the red indicates the added effect of PM2.5.
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Table 3
AQS and CMAQ posterior distribution of the effect of ambient PM2.5 on emergency
respiratory admissions

Covariate Posterior Mean Posterior Std Dev 2.5th percentile 97.5th percentile

AQS 0.0179 0.0088 0.0008 0.0350

CMAQ 0.0225 0.0051 0.0124 0.0325
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Table 4
SHEDS posterior distribution for the effect of ambient PM2.5 and confounding covariates
on emergency respiratory admissions

Covariate Posterior Mean Standard deviation 2.5th percentile 97.5th percentile

Intercept −0.3409 0.0504 −0.4397 −0.2530

t 0.0001 0.0000 0.0001 0.0002

t2 −0.0000 0.0000 −0.0000 −0.0000

temp −0.0050 0.0017 −0.0087 −0.0018

temp.Sp1 −0.0900 0.0920 −0.2452 0.1045

temp.Sp2 0.8063 0.2098 0.4846 1.2282

temp.Sp3 0.1532 0.1243 −0.0607 0.4051

hum.Sp1 0.0313 0.0237 −0.0153 0.0792

hum.Sp2 0.0036 0.0845 −0.1542 0.2038

hum.Sp3 0.0128 0.0264 −0.0372 0.0669

Sunday −0.0434 0.0172 −0.0766 −0.0094

Monday 0.1981 0.0162 0.1666 0.2302

Tuesday 0.1189 0.0165 0.0857 0.1510

Wednesday 0.1217 0.0162 0.0892 0.1524

Thursday 0.0906 0.0162 0.0588 0.1217

Friday 0.1403 0.0163 0.1081 0.1717

Lag1Ozone −0.0424 0.0065 −0.0554 −0.0302

Lag1PM2.5 0.0231 0.0049 0.0135 0.0329
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