Treatment of non-small cell lung cancer (NSCLC)

Konstantinos Zarogoulidis¹, Paul Zarogoulidis², Kaid Darwiche³, Efimia Boutsikou¹, Nikolaos Machairiotis⁴, Kosmas Tsakiridis⁵, Nikolaos Katsikogiannis⁶, Ioanna Kougioumtzi⁴, Ilias Karapantzos⁵, Haidong Huang⁶, Dionysios Spyropoulos⁷

¹Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; ²Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany; ³Cardiothoracic Surgery Department, “Saint Luke” Private Hospital of Health Excellence, Thessaloniki, Greece; ⁴Surgery Department (NHS), University General Hospital of Alexandroupolis, Alexandroupolis, Greece; ⁵Ear, Nose and Throat Department, “Saint Luke” Private Hospital of Health Excellence, Thessaloniki, Greece; ⁶Department of Respiratory Diseases, Shanghai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai 200433, China

ABSTRACT

Radical surgery is the standard of care for fit stage I non-small cell lung cancer (NSCLC) patients. Adjuvant treatment should be offered only as part of an investigation trial. Stage II and IIIA adjuvant cisplatin-based chemotherapy remains the gold standard for completely resected NSCLC tumors. Additionally radiotherapy should be offered in patients with N2 lymph nodes. In advanced stage IIIB/IV or inoperable NSCLC pts, a multidisciplinary treatment should be offered consisted of 4 cycles of cisplatin-based chemotherapy plus a 3rd generation cytotoxic agent or a cytostatic (anti-EGFR, anti-VEGFR) drug.

KEY WORDS
Non-small cell lung cancer (NSCLC); lung cancer; treatment; targeted treatment

INTRODUCTION

Lung Cancer was the most common cause of death from cancer with more than 1.38 million deaths worldwide (1).

Non-small cell lung cancer (NSCLC) accounts for the 80% of all lung cancers. Its main types are: adenocarcinoma (including BAC) 32-40%, squamous 25-30%, large cell 8-16%.

Till lately there were obscure guidelines for the management of NSCLC. Now there is a global attempt to tailor the management of the cancer according to the specific patient’s characteristics, such as the extent of the disease and a number of prognostic and predictive factors.

The IASLC staging project (2) have shown statistical superiority on patient survival in early pathological stage and with median Overall Survival 95 mos for stage IA, 75 mos for stage IB, 44 mos for IIA, 29 mos for IIB and 19 mos for IIIA.

Nevertheless a significant influence factor in OS was the subtype of tumor cells (83 mos for Bronchoalveolar carcinoma, BAC, 45 mos for Adenocarcinoma, ADCA, 44 mos for Squamous, SQUAM, 34 mos for Large cell carcinoma, LARGE and 26 mos for Adenosquamous, ADSQ) (Figure 1).

MANAGEMENT OF NSCLC ACCORDING TO THE EXTENT OF THE DISEASE

Early disease stage I-III A

Stage IA

Once histopathological diagnosis is made, if the patients generally consider fit for radical treatment these will undergo surgical intervention. Usually lobectomy or greater resection is recommended rather than sublobar resections (wedge or segmentation). In patients with stage I NSCLC who may tolerate operative intervention but not a lobar or greater lung resection because of comorbid disease or decreases in pulmonary functions segmentectomy/anatomical resection is recommended over non-surgical interventions. Further management will base on initial extent of the disease, postoperative information and on patient preference and decision.

The use of pre-operative or post-operative chemotherapy or radiation therapy in stage I NSCLC is not recommended by small randomized studies.
Stage IB
The meta-analysis over review gave non-clear evidence-based for adjuvant or induction treatment in stage IB patients after radical tumor resection. Only selective patients and patients that are participating in protocols are candidates for further treatment.

Stage II
Patients with stage II are usually consider for multidisciplinary treatment strategies.

The administration of postoperative radiation therapy for the improvement of survival is not recommended in patients who undergo radical resection of stage II tumor with N1 lymph node metastasis [stage II (N1) NSCLC].

In patients who undergo radical resection of stage II tumor and are in a good physical condition, adjuvant platinum-based chemotherapy should be offered between 4th and 8th week following the thoracotomy (adequate wound healing, non residual inflammatory or infectious complications). Patients in stage II, who are not candidates for surgical approaches due to comorbidities (e.g., pulmonary risk factors), could be considered for chemo-radiotherapy strategies.

Stage IIIA and selected IIIB

Patients in stage IIIA1-IIIA2 (3) are usually operated with mediastinal lymphadenectomy followed by platinum-based of adjuvant chemotherapy.

Postoperative radiation therapy alone can reduce the relapse locally without increasing survival.

A multidisciplinary management of IIIA3 and IIIA4 patients becomes crucial. Patients with proven N2 involvement (IIIA3 and IIIA4) could be treated by induction chemotherapy followed by surgery followed by platinum-based chemo radiotherapy.

Stage IIIB is typically considered for concurrent chemo radiotherapy approaches. In selected cases surgery will be incorporated within clinical trials.

Until now there is an obscure evidence of a randomized phase III pre-operative trials (Table 1).

Nevertheless a meta-analysis from five randomized trials of cisplatin-based therapy revealed a survival benefit for adjuvant chemotherapy (HR for death =0.89; 99% CI: 0.82 to 0.96; P=0.005) (4).
Patients of stage IIIB-IV should understand that the treatment goals are the prolongation of life, the palliation of symptoms and the improvement of QoL.

Chemotherapy vs. best supportive care (BSC)

A number of randomized studies compared the overall survival of NSCLC patients in stage IIIB and IV between chemotherapy and BSC and they revealed a real advantage for chemotherapy treatment (Table 2).

Cytotoxic agents active against NSCLC are platinum analogues (cisplatin-carboplatin), ifosfamide, mytomycin C, vindesine, vinblastine, etoposide, gemcitabine, paclitaxel, docetaxel, vinorelbine, pemetrexed.

In the guidelines of ACCP, ASCO, FNCLCC and the Ontario Program, chemotherapy of advanced stage IIIB/IV pts, should be platinum-based with a new (3rd generation) single-agent. In Table 3 is presented the response in 3rd generation cytotoxic drugs as monotherapy and in combination with platinum analogues (10). In Tables 4-6 are presented the results from Phase I/III studies of 3rd generation cytotoxic agents in combination with older
<table>
<thead>
<tr>
<th>New agent</th>
<th>First author</th>
<th>Patients (n)</th>
<th>Chemotherapy regimens</th>
<th>Response rates (%)</th>
<th>Median survival weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinorelbine</td>
<td>Le Chevalier et al., 2001 (23)</td>
<td>412</td>
<td>Vinorelbine</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vinorelbine, cisplatin</td>
<td>30*</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Depierre (24)</td>
<td>231</td>
<td>Vinorelbine</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vinorelbine, cisplatin</td>
<td>43*</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Baldini et al., 1998 (25)</td>
<td>140</td>
<td>Vinorelbine, carboplatin</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vinorelbine, cisplatin, ifosfamide</td>
<td>17</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, vindesine, mitomycin</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Wozniak (26)</td>
<td>432</td>
<td>Cisplatin</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vinorelbine, cisplatin</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Frasci (27)</td>
<td>120</td>
<td>Vinorelbine</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vinorelbine, gemcitabine</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Paclitaxel/Docetaxel</td>
<td>Kelly et al., 2001 (28)</td>
<td>406</td>
<td>Vinorelbine, cisplatin</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel, carboplatin</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Giaccone (29)</td>
<td>332</td>
<td>Paclitaxel 175, cisplatin</td>
<td>44</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, teniposide</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Gatzemeier (30)</td>
<td>414</td>
<td>Cisplatin 100</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel 175, cisplatin 80</td>
<td>26*</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Schiller et al., 2002 (32)</td>
<td>1,207</td>
<td>Cisplatin, paclitaxel</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, gemcitabine</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, docetaxel</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carboplatin, paclitaxel</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Georgoulas et al. (33)</td>
<td>302</td>
<td>Docetaxel, cisplatin</td>
<td>36*</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Docetaxel</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Statopoulos et al. (34)</td>
<td>360</td>
<td>Paclitaxel, vinorelbine</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paclitaxel, carboplatin</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Gemcitabine</td>
<td>Crino (35)</td>
<td>307</td>
<td>Gemcitabine, cisplatin</td>
<td>38*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, mitomycin, ifosfamide (MIC)</td>
<td>26</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Cardenal (36)</td>
<td>135</td>
<td>Gemcitabine, cisplatin</td>
<td>41*</td>
<td>38*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, etoposide</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Sander (37)</td>
<td>522</td>
<td>Cisplatin</td>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gemcitabine, cisplatin</td>
<td>30*</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Comella et al. (38)</td>
<td>180</td>
<td>Gemcitabine, cisplatin, vinorelbine</td>
<td>47*</td>
<td>51*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gemcitabine, cisplatin</td>
<td>30</td>
<td>42*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, vinorelbine</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Irinotecan (CPT-11)</td>
<td>Masuda (39)</td>
<td>398</td>
<td>Cisplatin 80, irinotecan 60</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin 80, vindesine</td>
<td>31</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irinotecan 100</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Negoro (40)</td>
<td>398</td>
<td>Irinotecan, cisplatin</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, vindesine</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irinotecan</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Pemetrexed</td>
<td>Scaglioti et al. (41)</td>
<td>1,725</td>
<td>Cisplatin, pemetrexed</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisplatin, gemcitabine</td>
<td>28</td>
<td>40</td>
</tr>
</tbody>
</table>

NR, not reported; NS, not significant; *, P<0.05.
agents. Non-platinum containing chemotherapy may be used as an alternative to platinum-based regimen (Table 7).

Number of chemotherapy

Two randomized trials suggest that the survival benefit that pts receive from chemotherapy occurs in the first three to four cycles. Prolonged therapy may increase cumulative toxicities with insignificant increase in survival rates (42).

Concurrent vs. sequential chemo radiotherapy

Several phase III randomized trials of concurrent vs. sequential chemo-radiotherapy have revealed: (I) improved median survival time (average of 15.7 vs. 14 months) (43); (II) improved 2-year survival rates (35% vs. 23%) (44); (III) improved 5-year survival (15.8% vs. 8.9%, P=0.039) (45). On the other hand, an increased toxicity with an acute esophagitis incidence of 26% was observed in the concurrent arm (43).

Baggstrom et al., have performed a meta-analysis of the published literature comparing platinum-based regimens including a third-generation agent to older standard platinum-based regimens. The new third-generation regimens increased patient survival compared to the older regimens (RR, 1.14; 95% CI: 1.01 to 1.29). There was an absolute increase in the 1-year survival rate of 4% using the newer combination regimens compared to the older regimens (P=0.04) (46).

<table>
<thead>
<tr>
<th>Table 6. Response rate and survival with doublet vs. single-agent regimens and triplet vs. doublet regimens (10).</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of comparisons</td>
</tr>
<tr>
<td>Response rate</td>
</tr>
<tr>
<td>2 vs. 1 agents</td>
</tr>
<tr>
<td>3 vs. 2 agents</td>
</tr>
<tr>
<td>1-year survival</td>
</tr>
<tr>
<td>2 vs. 1 agents</td>
</tr>
<tr>
<td>3 vs. 2 agents</td>
</tr>
<tr>
<td>Median survival</td>
</tr>
<tr>
<td>2 vs. 1 agents</td>
</tr>
<tr>
<td>3 vs. 2 agents</td>
</tr>
</tbody>
</table>

| Treatment according to prognostic and predictive factors |

Excision repair cross-complementation group 1 and regulatory subunit of ribonucleotide reductase (ERCC1, RRM1)

A number of studies have shown the importance of RRM1 and ERCC1 expressions (47,48) in tumor cells. High RRM1 and ERCC1 expression is associated with longer survival after resection of early stage NSCLC (prognostic). Additionally high RRM1 and ERCC1 expression are predictors of lower tumor response rate and shorter survival for treatment with gemcitabine and cisplatin (predictive). Finally low ERCC1 expression is associated with survival benefit from adjuvant chemotherapy for NSCLC (predictive). These biomarkers have not been prospectively validated.

Thymidylate synthase expression (TS)

Baseline expression of the TS gene and protein were significantly higher in squamous cell carcinoma when compared with adenocarcinoma (49). Preclinical data indicate that high
expression of TS correlates with reduced sensitivity to cytotoxic agent pemetrexed (antifolate) (50). In JMDB study 1,700 primary untreated NSCLC pts of stage IIIIB/IV and PS 0-1 were randomized either to cisplatin plus gemcitabine or cisplatin plus pemetrexed given every three weeks up to six cycles. Overall Survival found to be similar for both treatment arms (Median 10.3 mos; HR 0.94; 95%, CI: 0.84-1.05). Nevertheless, analysis of pts by histology showed a statistical significant better OS of non-squamous histology pts in cisplatin + pemetrexed arm compared to cisplatin + gemcitabine arm (11 vs. 10.1 mos) and this difference for those with adenocarcinoma was improved in the pemetrexed arm by 12.6 vs. 10.9 mos respectively (P=0.08).

The results of JMDB study indicating a predictive role of tumor histology and cisplatin/pemetrexed has been registered in first line standard therapy in non-squamous NSCLC pts (41).

Biological agents

Progress in understanding cancer biology and mechanisms of oncogenesis has allowed the development of treatment against specific molecular targets, such as epidermal growth-factor receptor (EGFR) and vascular endothelial growth factor (VEGF), which are of special interest in NSCLC.

The most frequently targeted pathways in NSCLC have involved the EGFR and the Vascular Endothelial Growth Factor and its Receptor (VEGF, VEGFR).

The EGFR is a member of ErbB family of transmembrane receptors Tyrosine Kinases (TKs) and plays a major role in the malignant cell phenotype.

The role of EGFR inhibitors in the first line setting as single agents was explored after the failure to show benefit in combination with chemotherapy. In the IPASS trial (51), 1,217 chemo naïve, East Asian with adenocarcinoma histology, never or light smokers pts randomized to receive the EGFR inhibitor gefitinib (G) or carboplatin plus plactitaxel (CP). The trial demonstrating superior paffer in the gefitinib arm compared with CP (HR 0.74; 95%, CI: 0.65-0.85; P<0.0001) and Overall Response Rate (43% vs. 32.2%; P=0.0001) but similar Overall Survival (median mos 18.6 vs. 17.3). Patients with EGFR mutations had the most benefit from gefitinib, with a 51% reduction in progression (HR 0.48; P<0.0001) whereas those pts without EGFR mutation, responded better to chemotherapy (P<0.0001).

Erlotinib inhibits the tyrosine kinase activity of EGFR and has been studied extensively in randomized Phase III trials, yielding promising results, especially as second-line, third line, and maintenance therapy, and in patients with activating mutations of the EGFR receptor.

In the EURTAC multicentre, randomized phase III trial (52), 174 non-squamous EGFR mutant patients received platinum-based chemotherapy or Erlotinib. Median PFS was 9.7 mos in the erlotinib group compared with 5.2 mos in the chemotherapy group (P<0.0001).

Angiogenesis play a critical role in tumor development. Anti-angiogenic therapy such as the use of TKIs that block the VEGFR, aims to disrupt existing capillaries that feed a tumor and prevent new vessels from forming around it.

In two randomized phase III studies the ECOG 4599 (Eastern Cooperative Oncology Group) (53) and AVAIL (AVAstin in Lung) (54) the adding of anti-angiogenetic agent bevacizumab to paclitaxel/carboplatin in the first and to gemcitabine/cisplatin in the 2nd study, indicated improved of efficacy and PFS [(6.2 vs. 4.5 mos, P<0.0001) and (P=0.003 for a dose of bevacizumab of 7.5 mg/kg or P=0.03 for a dose of bevacizumab of 15 mg/kg respectively)].

All the including in the two above studies pts were chemotherapy naïve ECOG PS of 0 or 1 with newly diagnosed stage IIIB/IV and non-squamous NSCLC confirmation.

In the ECOG 4599 study there was a statistical significant improvement even in OS in the arm receiving bevacizumab compared to the control arm (HR 0.79; 95%, CI: 0.67-0.92; P=0.003). Based on the results of ECOG 4599 and AVAIL, the use of bevacizumab is recommended in combination with chemotherapy in non-squamous cell carcinoma (limitations, clinical significant hemoptysis, as controlled, hypertension, therapeutic antiagulation).

More recently, the BeTá (Bevacizumab/Tarceva) trial (55), investigating the benefits of addition of bevacizumab to erlotinib for second-line treatment of advanced NSCLC, showed a doubling of progression-free survival with combination therapy (3.4 months) as compared with erlotinib monotherapy (1.7 months, P=0.001) but no benefit in terms of overall survival.

In another randomized trial (56), each targeted therapy alone (bevacizumab, erlotinib) compared with their combination and cytotoxic platinum-based chemotherapy alone in previously untreated and advanced non-squamous NSCLC, following by administration of these agents as maintenance therapy.

This randomized study suggests that bevacizumab enhances the activity of chemotherapy but this did not translate into longer overall survival.

Acknowledgements

Disclosure: The authors declare no conflict of interest.

References

46. Baggstrom MQ, Stinchcombe TE, Fried DB, et al. Third-generation
42. Smith IE, O’Brien ME, Talbot DC, et al. Duration of chemotherapy
38. Sandler AB, Nemunaitis J, Denham C, et al. Phase III trial of gemcitabine
37. Stathopoulos GP, Veslemes M, Georgatou N, et al. Front-line paclitaxel-
34. Stathopoulos GP, Veslemes M, Georgatou N, et al. Front-line paclitaxel-
33. Crinò L, Scagliotti GV, Antón A, et al. Randomized phase III trial of
cisplatin and irinotecan versus cisplatin and vinblastine in patients with
compared with other histotypes shows higher messenger RNA and protein
31. Cite this article as: Zarogoulidis K, Zarogoulidis P,
Darwiche K, Boutsikou E, Machairiotis N, Tsakiridis K,
Katsikogiannis N, Keogioumtris I, Karapantzos I, Huang
H, Spyratos D. Treatment of non-small-cell lung cancer
(NSCLC). J Thorac Dis 2013;5(S4):S389-S396. doi:
10.3978/j.issn.2072-1439.2013.07.10

34. Stathopoulos GP, Veslemes M, Georgatou N, et al. Front-line paclitaxel-
study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment
31. Sandler AB, Nemunaitis J, Denham C, et al. Phase III trial of gemcitabine
plus cisplatin versus cisplatin alone in patients with locally advanced or
gemcitabine, and vinorelbine with either cisplatin and gemcitabine or
cisplatin and vinorelbine in advanced non-small-cell lung cancer: interim
cisplatin and irinotecan versus cisplatin and vindesine versus CPT-11 in
27. Smith IE, O’Brien ME, Talbot DC, et al. Duration of chemotherapy
in advanced non-small-cell lung cancer: a randomized trial of three
22. Olausen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-
overall survival results from a phase III, randomized, open-label, first-line
study of gefitinib versus carboplatin/paclitaxel in clinically selected patients
chemotherapy as first-line treatment for European patients with advanced
advanced-stage non small-cell lung cancer patients treated with
gemcitabine with either placebo or bevacizumab as first-line therapy
versus erlotinib alone in advanced non-small-cell lung cancer after failure
of standard first-line chemotherapy (BeTa): a double-blind, placebo-