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Summary
Estimating the probability of extreme temperature events is difficult because of limited records
across time and the need to extrapolate the distributions of these events, as opposed to just the
mean, to locations where observations are not available. Another related issue is the need to
characterize the uncertainty in the estimated probability of extreme events at different locations.
Although the tools for statistical modeling of univariate extremes are well-developed, extending
these tools to model spatial extreme data is an active area of research. In this paper, in order to
make inference about spatial extreme events, we introduce a new nonparametric model for
extremes. We present a Dirichlet-based copula model that is a flexible alternative to parametric
copula models such as the normal and t-copula. The proposed modelling approach is fitted using a
Bayesian framework that allow us to take into account different sources of uncertainty in the data
and models. We apply our methods to annual maximum temperature values in the east-south-
central United States.
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1 Introduction
The modelling of spatial extreme data is an active area of research. One of the challenging
issues in spatial extreme value modeling is the need for spatial extreme value techniques in
high dimensions, since most of the multivariate extreme value theories only work well for
low dimensional extreme values. In this paper innovative and general statistical methods for
modelling of extreme events are proposed, to produce maps of temperature return levels, to
estimate trends and variability of extreme temperature events, and to provide uncertainty
measures. We introduce a new framework to characterize extremes, a nonparametric
Dirichlet process (DP) copula approach. This DP copula defines the most flexible type of
copula framework that we currently have in the literature.

Recently, there has been some work focusing on spatial characterization of extreme values
(e.g. Kharin and Zwiers, 2005, Cooley et al., 2007, Sang and Gelfand, 2009, Zhang et al.,
2008), including papers discussing spatial interpolation for extreme values (e.g. Cooley et
al., 2008, and Buishand and Zhou, 2008). Sang and Gelfand (2009) used a Bayesian
hierarchical model, which assumes that the annual maxima at each location follows a one-
dimensional GEV distribution and that the parameters of this distribution are varying
according to latent spatial models capturing the spatial dependence. Nonstationarity refers to
spatial dependence that is a function of location, rather than just relative position of
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observations. To account for nonstationarity in univariate extreme events in an approach
popularised by Davison and Smith (1999), the model parameters are modelled as functions
of covariates. Eastoe and Tawn (2009) and Eastoe (2009) suggest an alternative approach
for spatial nonstationary extremes, the nonstationarity in the whole dataset is first modelled
and removed, using a preprocessing technique. Then, the extremes of the pre-processed
(transformed) data are modelled using the approach of Davison and Smith (1990), giving a
model with both pre-processing and tail parameters. We introduce here new continuous
spatial models for extreme values to account for spatial dependence which is unexplained by
the latent spatial specifications for the distribution parameters, characterizing also the
potential lack of stationarity across space and time.

Although there are methods in the literature for extremes (i.e. Eastoe (2009)) to account for
spatial correlation between nearby stations, the high-dimensional joint distributions induced
by that type of models are restrictive. The most popular approach is a copula which models
spatial correlation in a latent space and projects to the data scale in a way that preserves the
desired marginal at each site. For instance, the Gaussian copula is asymptotically (as the
threshold increases) equivalent to the independent copula. In this work we present a very
flexible copula framework, a nonparametric copula for extreme temperatures. We also
introduce measures to characterize complex spatial dependence in these extreme
temperatures, allowing the extremal coefficient function, commonly used to study the
extreme value dependence structure, to be space dependent. This extremal coefficient
function is threshold invariant for max stable distributions. However, our temperature data
seem to have a threshold specific tail dependence structure. The nonparametric model for
extremes presented here has tail dependence that is allowed to be threshold-specific.
Furthermore, this new nonparametric spatial framework introduced here to model extremes
for annual maximum temperature, is not max-stable, has marginals that are Generalized
Extreme Value (GEV) distributions.

This paper is organized as follows. In Section 2, we introduce flexible measures to
characterize dependence in extremes, in particular to explain extreme dependence for spatial
nonstationary and threshold dependent extreme processes. In Section 3, we introduce a new
nonparametric copula framework, a DP copula. In Section 4, we present some simulation
studies to evaluate the performance of the new nonparametric model proposed here. In
Section 5, we apply our methods to maximum annual temperature data. We finish in Section
6 with some conclusions and final remarks.

2 Measures of spatial dependency for extremes
We assume Xt(s), the recorded maximum temperature amount at location s on year t,
follows a marginal GEV distribution. The GEV distribution function at each site s in a given
domain D, is given by

(1)

where μt(s) is the location parameter, σt(s) is the scale, and ξt(s) is the shape. The GEV
distribution includes three distributions as special cases (Fisher and Tippett, 1928): the
Gumbel distribution if ξt(s) = 0, the Fréchet distribution with ξt(s) > 0, and the Weibull with
ξt(s) < 0. The distribution's domain also depends on ξt(s); the domain is (−∞, ∞) if ξt(s) =
0, (μt(s) − σt(s)/ξt(s), ∞) if ξt(s) > 0, and (−∞, μt(s) − σt(s)/ξt(s)) if ξt(s) < 0. In modelling
extreme (air and sea) temperature values using GEV marginals, we typically obtain negative
shape parameters (see, eg. Gilleland and Katz, 2006)
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We model the GEV parameters μt(s), σt(s), and ξt(s) in (1) as a spatial processes that
characterize spatial nonstationarity in the marginal distribution of the temperature extremes.
An example of one of the models used for the GEV parameters is

where αμ(s) and βμ(s) are spatial processes with a covariance that is a function of the
distance between stations and other parameters. In Section 5 we discuss in more detail the
structure and models used for the spatial GEV parameters.

We use the copula framework to characterize the spatial dependence in the extreme
temperatures that is left after accounting for the spatial structure of the GEV parameters. We
refer to this as residual spatial dependence, though note that these are not residuals in the
sense of explaining the structure left after removing a trend. Furthermore, we will estimate
simultaneously the copula parameters and the GEV parameters. Standard models for spatial
extremes tend to assume that conditioning on the GEV parameters we have spatial
independence, in this work we would like to characterize this potential spatial dependence
that remains in the model after accounting for spatial GEV parameters. We define the GEV
residuals, Yt(s), using the following probability integral transformation

(2)

After this transformation, Yt(s) has a standard Fréchet distribution function (Fs(y) = e−1/y).
To simplify notation, throughout this paper we describe our GEV residuals using standard
Frechet distributions, but in the application section, as part of our hierarchical Bayesian
framework we use the relationship between Yt and Xt given in (2) at any given location s, to
obtain the GEV distributions with space-dependent parameters. For the GEV residuals, since
we assume i.i.d. replications across time, to simplify the notation throughout the next
sections, we write Y(s) dropping the subindex t.

After the integral transformation, the resulting process Yt(s) has stationary marginals, but its
spatial dependence is not necessarily stationary. The scope of the paper is to introduce a
model to characterize nonstationary spatial dependence for a process that has marginals
GEV with spatial-varying parameters. In the next section we present measures to
characterize complex extreme dependence, allowing for nonstationarity and threshold-
specific dependence structure.

2.1 Extremal coefficient
The association between extreme events is often summarized, rather than using a correlation
function, using the extremal coefficient. If the vector (Y(s1), …, Y(sm))′ follows an m–
variate extreme value distribution where the univariate margins are identically distributed,
the extremal coefficient, ϑ, between sites s1, …, sm is given by

for all u ∈ ℛ. The extremal coefficient was introduced by Smith (1990). The extremal
coefficient ϑ can be interpreted as the number of independent variables involved in an m-
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variate distribution. ϑ takes values in [1, m] where ϑ = 1 refers to complete dependence, and
ϑ = m to independence. Commonly, extremal coefficients are used for max-stable processes,
in which the extremal coefficient does not depend on u. However, even for non-max-stable
processes, the extremal coefficient is an intuitive way to summarize the relationship between
extreme values via joint exceedence probabilities.

Consider the joint distribution for Y(s1) and Y(s2) with a extremal coefficient that satisfies

(3)

and ϑ(u) = ϑ(1), for all u. Then, we name ϑ(u) a threshold-independent extremal coefficient.
In contrast, if ϑ(u) depends on u it is called in this paper a threshold-specific extremal
coefficient. Max stable processes cannot have threshold-specific dependence structure
(Beirlant et al., 2004, p255).

To illustrate the potential need for models that would allow for a threshold-specific
dependency, in Figure 1 we plot the estimated extremal coefficient for annual maximum
temperatures in Florida (FL) for what we define warm years versus cold years within the
period from 1978 to 2007. For this exploratory analysis, the extremal coefficient was
estimated using the spatial Gaussian coupla in (??) fitted using a Bayesian approach. The
95% bands presented in this graph, are from the posterior distribution of the extremal
coefficient. Here, we took the 30 annual maximum temperatures at each site and averaged
across space to obtain a value for each year, thus warm years are the 15 years with the
largest spatial-average maximum temperature values, and the cold years are the other 15
years. The significant difference in the extremal coefficient for the different type of years
illustrates the potential need of models like the one introduced in this paper in Section 4 that
allow for a threshold-specific dependence structure in the extremes for the temperature data.
Our model is flexible enough to accommodate different type of dependence for different
types of years simultaneously, without using a rule to split the years into different groups.

The spatial dependency structure of extremes may change with location. We introduce a
nonstationary extremal coefficient function to characterize nonstationary spatial dependency
structures in extremes. For notational simplicity, we temporarily assume the extremal
coefficient is threshold-independent. We define a stationary extremal function, θ(s1,s2), as
the extremal coefficient between locations s1 and s2, that depends on s1 and s2 only through
their vector distance s1 − s2, for any s1, s2 ∈ D. Thus,

and there is a function θ0, such that,

This stationary extremal function was introduced by Schlather and Tawn, 2003. Here, we
extend this function to a nonstationary setting. A extremal function θ(s1, s2) that can not be
reduced to a function of s1 − s2 is called in this paper a nonstationary extremal function.

Figure 2 presents the pairwise estimated extremal coefficient function (and 95% posterior
bands) for annual maximum temperatures using data from Georgia (GA) and Tennessee

Fuentes et al. Page 4

Extremes (Boston). Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(TN), using the spatial Gaussian copula in (??). The extremal functions are significantly
different for both states, which indicates lack of stationarity in the spatial dependence of
extreme temperatures. The extremal coefficient is plotted as a function of distance and also
threshold. The results suggest stronger spatial correlation in TN than in GA for the extreme
temperatures at larger distances. In GA the extremal function takes the value 2
(independence) after few kilometers, which is a reflection of having a more spatial
heterogeneous geographic domain than in TN, in particular due to the presence of a large
city, Atlanta.

In Section 3 we introduce a nonparametric extension of the copula approach (reviewed in
Appendix A) that can be used to generate non-stationary dependence structure in extremes
and threshold-specific extremal functions.

3 A Dirichlet process copula model
The Gaussian copula, described in Appendix A, with ρ < 1, where ρ is the correlation
parameter (off-diagonal element in the covariance function), is attracted to an independent
EV copula (eg. Demarta and McNeil, 2004). It is straightforward, then, to calculate the
extremal coefficient for the independent EV copula, and we have, ϑ(s1,s2;u) = 2, for all
values of u and all pair of locations s1 and s2. Then, based on this asymptotic result, when a
spatial Gaussian copula is used to characterize the distribution of extreme values, this
distribution may not offer much flexibility to characterize complex dependence in the tails.

In Figure 3, we plot the extremal coefficient function for a Gaussian copula, ϑρ(s1,s2;u),
evaluated at different values of u and ρ. On the horizontal axis we plot the quantiles levels
e−1/u. When ρ = 1, the distribution is degenerate, and ϑ1(s1, s2; u) = 1 for all values of u, in
contrast, ρ = 0, corresponds to the independent case and the extremal coefficient is always 2.
Similar to the independent case, for ρ = 0.5, ϑ0.5(s1, s2; u), converges to 2 for large values of
u. The asymptotic theory refered in this Section shows this will be the case for all ρ < 1.

If the pairwise extremal coefficients equal 2, then, the extremal coefficient for m variables
equals necessarily m (Tiago de Oliveira, 1975). Thus, the multivariate (spatial) Gaussian
copula may not be able to characterize complex tail spatial dependence structures, since
asymptotically it does not allow for tail dependence.

In this section we introduce an extension of the spatial Gaussian copula model that is more
flexible and should better capture the phenomenon of dependent extreme values. Instead of
assuming a Gaussian distribution for the copula or any other distribution (e.g. a t-
distribution), we introduce a Bayesian nonparametric representation of the copula. Bayesian
nonparametric methods avoid dependence on parametric assumptions by working with
probability models on function spaces, in other words, by using infinitely-many parameters.
The Bayesian framework allow us to properly characterize the uncertainty in the
specification of the distribution of the latent process, and be able to make valid inference.

In particular, we use the spatial Dirichlet process (DP) priors, described in the next section.
The Gaussian copula is a particular case, but we allow for other distributions beyond
normal. This DP model provides a random joint distribution for a stochastic process of
random variables. The fitting of this type of stick breaking (SB) model is fairly
straightforward using Markov chain Monte Carlo (MCMC) methods. In the Appendix we
review the Dirichlet process and SB models.

3.1. Spatial Dirichlet process
A random probability distribution, F, has a stick-breaking prior (Sethuraman, 1994) if

Fuentes et al. Page 5

Extremes (Boston). Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

where δz denotes a Dirac measure at z, p1 = V1, pi = Vi Πj<i(1 − Vj) where V1, …, VK−1 are
independent with Vi ～ Beta(ai, bi) and θ1, … , θK are independent draws from a centering
(or base) distribution H. A particular case of the SB prior is the Dirichlet process prior,
characterized by vH, where H is the base distribution and ν is a positive scalar (often called
the mass or spread parameter), the DP prior arises when Vi follows a Beta(1, ν) for all i.

In order to make this wide class of nonparametric priors useful for our spatial context, we
need to index it by space. More generally, we can attempt to introduce dependencies on time
or other covariates (leading to nonparametric regression models). Most of the (rather recent)
literature in this area follows the ideas in MacEachern (1999), who considered allowing the
masses, V = (V1, V2, …), or the so-called “location parameters”, θ = (θ1, θ2, …), of the
atoms to follow a stochastic process defined over the domain. This leads to so-called
Dependent Dirichlet (DDP) processes and a lot of this work concentrates on the “single-p”
DDP model where only the locations, θ, follow stochastic processes. An application to
spatial modelling is developed in Gelfand et al. (2005) by allowing the location parameters θ
to be drawn from a random field (a Gaussian process). Other spatial extensions are
introduced by Griffin and Steel (2006), Reich and Fuentes (2007), Dunson and Park (2008),
and An et al. (2009).

The idea in Gelfand et al. (2005) is to introduce a spatial dependence through the locations,
by indexing θ with the site s and making θ(s) a realization of a random field, with H being
the distribution of a stationary Gaussian process. The joint density of the transformed
residuals Z = (Z(s1),…, Z(sm)) is a location mixture of normals with density function of the
form

(5)

using (4), where θi = (θi(s1),…,θi(sm)), and Nm(Z|θi, τ2Im) denotes a m-dimensional normal
density function evaluated at Z, with mean θi and covariance matrix τ2Im. By varying θi the
density function representation in (5) allows for a large amount of flexibility.

3.2. DP copula model
The spatial Dirichlet process copula introduces a latent process Z, such that in year t, for t =
1, … ,T, the joint density of Z = (Z(s1), …, Z(sm)) at m locations (s1, …, sm), given, Hm, the
m-random probability measure of the spatial part and τ2, the nugget component, f(Z|Hm, τ2),
is almost surely of the form (a countable mixture of normals)

(6)

where Nm(.|λ, Σ) denotes the m-variate normal density with mean vector λ, and covariance
Σ, the vector ϑi = (ϑi(s1), … , θi(sm)), p1 = V1, pi = Vi Πj<i(1 − Vj), Vi ～ Beta(1, ν),
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and . We denote FZ the distribution of Z associated to the
density in (6).

Then, T(s) = Hs(Z(s)) ～ Unif(0,1), where Hs is the CDF corresponding to the density in (6)
for Z(s). The copula CZ for the distribution function of Z(s1), …, Z(sm) is (conditioning on
the θi components),

where u1, … um ∈ [0, 1]m. Then, Y(s) ～ G−1(T(s)) ～ G. G is the CDF of the standard
Fréchet distribution. Using the relationship in (2), we allow the marginal distributions to be
GEVs with space-dependent parameters, by incorporating a change of variable (Y to X in
(2)) in the likelihood function. The multivariate distribution of Y is

Spatial dependence for spatial extremes using the DP copula—The spatial
dependence induced by FZ (conditioning on the θi components) is in general nonstationary,
we have

Then, the resulting extremal function is flexible enough to allow for nonstationary

for all u, since the covariance in FZ can be nonstationary. The extremal function is also
threshold-specific,

Since FZ is a multivariate distribution, the results above can be extended and calculated
simultaneously for any number of sites {s1, …, sm}.

In Figure 3 we present the extremal coefficient ϑ for different quantiles levels, P[Y < u] =
e−1/u, for a copula that is a mixture of normal distributions. This is a simplified version of
the mixture copula proposed in this section, we present it here as an illustration of the
flexibility that this mixture copula framework offers to explain tail dependence structures.
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There are three mixture copula densities in Figure 3 with , where x is
a 2-vector, μ, = (μ1, … ,μk) is a K-dimensional vector, the weights are pj = 1/K, and Σj is the
2 × 2 correlation matrix with off-diagonal element ρj. For two of these three mixtures, K =
10, and μ is a 10-dimensional vector with equally spaced values between −3 and 3, and they
have in one case ρ = (0, …, 1), where ρ is a 10-dimensional vector with equally spaced
values between 0 and 1, such as the jth component of ρ is ρj, and in the other ρ = (1, …, 0).
In one case the extremal coefficient increases for large values of u, while in the other we
have the reverse situation. In Figure 3 we present another mixture with K = 2, mean zero,
and ρ = (0, 1). In this case the extremal coefficient for large values of u coverges to 1.5 (as
justified next), a situation a Gaussian copula could never characterize.

Let us calculate the pairwise dependence between Y(s1) and Y(s2) using the mixture in
Figure 3 with K = 2. Denote P[Y(si) < u] = p = e−1/u for i = 1, 2. We have u = Φ−1G(u), and
P[Y(s1) < u,Y(s2) < u] = .5p(1 + p). Therefore,

And, by l'Hopital rule

Thus, for this particular mixture we obtain that the limiting value of the extremal coefficient
for large quantile levels is 1.5.

As we increase the number of mixture componentes (K) we allow for more flexibility in the
tail dependence, ultimately, in the mixture presented in this Section with K = ∞, we can
obtain all different type of shapes for the extremal coefficient as a function of u. Though in
practice, it might be useful to consider finite approximations to the infinite stick-breaking
process. Dunson and Park (2008) study the asymptotic properties of truncation
approximations to the infinite mixture, while Papaspiliopoulos and Roberts (2008) introduce
an elegant computational approach to work with an infinite mixture for Dirichlet processes
mixing. From a practical point of view, working with a finite number of mixture
components should be enough to characterize complex spatial patterns and dependence
structures, see e.g. Reich and Fuentes (2007). The mixture aspect of the model (having more
than one component) is what facilitates the dependence structure to be so flexible, as clearly
presented in Figure 4. In particular, having in the mixture a term that is a Gaussian process
with a covariance that has an off-diagonal value of 1 (ρ = 1), makes ϑ ∈ (1, 2).

4 Simulation study
In this section we conduct a simulation study to illustrate the effect of modeling the joint
spatial distribution on estimation the marginal GEV parameters. For each simulated data set,
we generate n = 20 spatial locations randomly on [0, 1]2, and then generate T = 50
independent (over time, not space) replications of the spatial process. The marginal GEV
parameters with linear trend are denoted
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(7)

where Ut is the temporal variable, t, standardized by subtracting the sample mean of the
values {1, … ,T} and dividing by their sample standard deviation. We generate M = 100
data sets from each of six simulation designs:

1. αμ(s) = 0; βμ(s) = 1/2; Zt ～ N (0, Σ(ρ1))

2. αμ(s) = 0; βμ(s) = 1/2; Zt ～ N (0, Σ(ρ2))

3. αμ(s) = 0; βμ(s) = 1/2; Zt|gt ～ N(μgt, Σ(ρgt)), P(gt = g) = 1/3 for g ∈ {1, 2, 3}

4.

5.

6.

where s = (s1, s2), Σ(ρ) is the n × n covariance matrix of the latent process Zt with (i, j)
element exp(−‖si − sj‖/ρ), μ = (−2, 0, 2), ρj = (0.01, 0.3, 1). The first three designs have the
same marginal GEV distribution at each location, but different copulas used to generate the
data. The first design is the Gaussian copula with a weak spatial correlation, the second
design is the Gaussian copula with moderate spatial correlation, and the third design is the
model proposed in this paper, a particular case of the stick breaking mixture, in this case is a
mixture of three normals, with a different spatial correlation for each mixture component.
Designs 4-6 have spatially-varying location parameters.

For each data set we fit three copula models: the independent copula (“Indep”), the usual
single-component Gaussian copula (“Gauss”), and the DP mixture copula of Section 3
(“DP”). The so-called here independent copula, would correspond to the null model, a
model without residual dependence. The Gaussian copula could be considered a particular
case of the DP mixture copula with just one component. In terms of the parameters added by
the DP mixture, every time we add a mixture component we add an extra spatial process to
be estimated. For all copula models, we model the GEV parameters as constant across space
for Designs 1-3, and allow the location parameters, but not the scale or shape parameters, to
vary spatially for Designs 4-6. The GEV parameters held constant across space have N(0,
102) priors. The GEV parameters allowed to vary spatially have Gaussian process priors

with E(αμ(S)) = ᾱμ and , with α ¯ μ ～ N(0, 102)

and . We use the same prior model introduced here for αμ(s) for the other
GEV space-dependent parameters in (7). All the spatial range parameters ρ have U(0, 10)
priors. For the DP model we take the spread parameter ν ～ Gamma(1,1), and we use 10
terms in the DP mixture model. The priors are independent.

For each model we compute the posterior mean of the GEV parameters and we obtain the
mean square error. We present here the MSE for αμ(s). We denote α ^ μ(s)(sim) the posterior
mean of αμ(s) for data set number sim, and compute the mean square error

Fuentes et al. Page 9

Extremes (Boston). Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

where αμ(s) is the true value used to generate the data. In addition, we report the coverage
probabilities of the 95% intervals, averaged across space and simulated data set. The results
are given in Tables 1 and 2.

The first design has weak spatial association, and all three model have similar MSE and
coverage. This illustrates that the complex spatial models can reduce to the independence
copula if appropriate. The non-spatial model has large MSE and small coverage for the
spatial data generated by Designs 2 and 3, and the usual Gaussian copula performs poorly
for Design 3 with non-Gaussian latent spatial data. For example, the MSE for the location
intercept αμ is 2.80 (0.39) for the DP copula, compared to 5.86 (0.79) for the independent
copula, and 6.46 (0.81) for the Gaussian copula. also, the coverage probabilities for αμ are
0.91 for the DP copula, compared to 0.56 for the independent copula and 0.74 for the
Gaussian copula. Therefore, failing to adequately model the underlying spatial process can
adversely affect estimation of the GEV parameters, and thus estimates of return levels.

Designs 4-6 have spatially-varying location parameters. The results for all three models are
similar for Design 4 with weakly-correlated residuals. For Designs 5 and 6 with spatially
correlated residuals, the copula models do not reduce MSE compared to the independence
model. This may be due to a lack of identifiability between the spatially-varying location
parameters and the spatially-correlated residuals. However, the copula models have
considerably smaller MSE for the shape and scale parameters and generally have higher
coverage probability than the independence copula model. For the final design with a non-
Gaussian latent spatial process, the nonparametric Bayesian model outperforms the usual
Gaussian copula model.

Convergence is monitored using trace plots of the deviance and several parameters. We
generated a data set from design 6 and fit the full Bayesian DP copula model. The trace plots
of the deviance (measure of overall model convergence) and the spatial range ρk of the
covariance for the spatially-varying coefficients (the most challenging parameter in terms of
convergence) are presented in Figure 4. The deviance converges after 1 000 iterations,
which the burn-in used in these simulations.

The trace plots for the range paramters are parameterized in terms of the correlation between
points separated by 0.5, i.e., exp(−0.5/ρ). In Figure 4 we plot these trace plots for ραμ and
ρβμ which are the range of the covariance for the intercept and slope parameters of the
spatially-varying GEV location parameter. The prior 95% interval (interval calculated with
the prior distributions) for this is (0.14, 0.95), so there is significant Bayesian learning.

5. Application
Extreme temperature events may cause loss of life, injury, property damage, and threaten the
existence of some species. Observed and projected climate change has direct implications
for the occurrence of these extreme temperature events, and extreme temperatures may be
more responsible for changes in natural and human systems than changes in the average
weather (Parmesan et al., 2000). The recent report of the government's Climate Change
Science Program (CCSP, 2008) states that the greatest impacts of climate change on society
and wildlife will be experienced through changes in extreme weather events as global
temperatures increase (Vliet and Leemans, 2006). So, the frequency and intensity of many
temperature extremes is now changing. For example, in recent decades most of North
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America has experienced more unusually hot days (Houghton et al, 2001). Systems tend to
adapt to their historical range of extremes, in the meantime the impacts of these extreme
events are more likely to have negative as opposed to positive impacts on human and
biological systems. Thus, it is of paramount importance for climate change adaption
planning to accurately quantify this historical range (distribution) of extreme temperature
events and monitor its evolution.

The climate models described in the Intergovernmental Panel on Climate Change (IPCC)
First Assessment Report (Mitchell et al., 1990) showed that a warmer mean temperature
increases the probability of extreme warm days and decreases the probability of extreme
cold days. This result has appeared consistently in a number of more recent different climate
model configurations (Dai et al., 2001; Yonetani and Gordon, 2001). Using global climate
deterministic models, in North America the greatest increase in the 20-year return values of
daily maximum temperature (IPCC third assessment report), is found in central and
southeast North America, where there is a decrease in soil moisture content. In this paper we
study extremes for maximum daily temperatures in this subdomain of interest, southeast-
central U.S., and we obtain maps of 20 and 50 year return values, using Bayesian spatial
statistical modelling frameworks, rather than climate models. We also present the
uncertainty in the obtained return-value maps. In our analysis we allow for nonstationarity
across space and time. The probability of an extreme event under nonstationary conditions is
going to depend on the rate of change of the distribution as well as on the rate of change of
the frequency of their occurrence. Under these nonstationary conditions, the concept of the
return period or return level is altered, since the value is highly dependent on the
extrapolated period of consideration.

5.1. Data
Our application uses surface air daily maximum temperature data produced by the National
Climatic Data Center (NCDC) in Asheville, NC. The online data files are available at
www.ncdc.noaa.gov/cgi-bin/res40.pl?page=gsod.html.

In this section, we study temperature extremes in the east-south-central and south Atlantic
United States over a 30 year period from 1978 to 2007. More specifically, daily surface air
temperature records were obtained over the years 1978–2007 from 60 stations located in
Alabama (AL), Florida (FL), Georgia (GA), Kentucky (KY), Mississippi (MS), and
Tennessee (TN). These stations are shown in Figure 5, and are located within the region
with the greatest increase in 20-year return values of daily maximum temperature according
to the IPCC Third Assessment Report “Climate change 2001”.

In the following Section we apply the Dirichlet process copula proposed in this paper to the
extreme temperature data, and we compare its performance to the Gaussian copula and to
the spatial varying GEV model (independent copula).

5.2. DP copula approach for extreme temperatures
We assume that the annual maximum temperature at location s for year t, Xt(s), for t = 1, …,
30 and s ∈ {s1, …, s60}, follows a GEV distribution with location parameter μt(s), scale
parameter σt(s) and shape parameter ξt(s). Thus, we have a marginal GEV distribution for
Xt(s) with parameters that are spatial functions

(9)
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(10)

(11)

Ut is the standarized temporal covariate. The GEV spatially-varying coefficient αμ(s) in the
location parameter has a spatial Gaussian prior with E(αμ(s)) = α ¯ μ and

, with α ¯ μ ～ N(0, 102) and .
We use the same Gaussian prior model for the other GEV spatially varying coefficients. For
the spatial Gaussian copula model we introduce a latent process Zt with prior N(0, Σ(ρZt)),

Σ(ρZt) is the 60 × 60 covariance matrix with (i, j) element . The latent
process Zt would have a DP prior for the DP copula. All the spatial range parameters ρ have
U(0, 1000km) priors. For the DP model we take the spread parameter ν ～ Gamma(1,1).

We conduct a 5-fold cross-validation (CV) to compare the performance of the Dirichlet
process copula model to the spatial Gaussian copula model and to an independent copula,
and to asses how well these models fit the annual maximum temperature described in
Section 5.1. The CV is done by splitting the temperature data randomly over space and time
into g = 5 groups. We consider six different models, summarized in Table 3 and described
below, each fit using 4 of the 5 groups of data. These models are then used to predict
temperature values for those locations and time points that have been removed. This is
repeated so that each group is removed once. We compare the models using the MSE values
(and standard errors (SE) of MSEs) between observed and predicted temperature values.
Since we have a 5-fold CV, the SEs of the MSEs are obtained by calculating S/√(5), where S
is the sample standard deviation of the 5 MSEs for the 5 splits.

In Models 1-3, no parameters in (9)-(11) are varying spatially, while models 4-6 have
spatially-varying location parameters, αμ and βμ and all other parameters constant across
space. Models 1-2 and 4-5 are Gaussian copula models with GEV marginal distributions,
while Models 3 and 6 are Dirichlet process (DP) copula models with GEV marginal
distributions. We approximated the DP copula density in (6) with a 3-component mixture.
The GEV parameters in (9)-(11) that are held constant across space have N(0, 102) priors,
while those varying spatially have the Gaussian process spatial priors described in this
Section.

From Table 3 it is clear that allowing the marginal GEV parameters to vary spatially
improves prediction, regardless of the residual correlation model. MSE varies substantially
and significantly by the type of copula. Model 4 which ignores residual correlation has 35%
larger MSE than Model 5′s Gaussian copula. Also, accounting for complex spatial
relationships using the flexible DP mixture copula with spatially-varying GEV coefficients
gives the smallest MSE of the models considered. This seems to suggest the need for models
to characterize the residual dependence, going beyond the independent copula model above,
after accounting for GEV spatially varying parameters, as well as the need for more flexible
copula models than the spatial Gaussian.

In Figure 6 we present a summary of the posterior distributions for some of the GEV
parameters using a DP copula, and also using a spatial Gaussian copula. Figure 6a shows the
posterior median of the spatially-varying coefficient βμ(s) in the location parameter μ(s) of
the GEV marginal distribution, using the DP copula framework. There is an significantly
increasing trend in the eastern and central part of our domain, in particular in FL. Figure 6b
presents the posterior SD for the trend, there is higher variability for this parameter in the
northern part of our domain, where there is higher elevation. The temporal trend was not
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significant for the scale and the shape parameters, so we just focus on the intercept
coefficients for those parameters. Figure 6c shows the median of the posterior distribution of
the spatially-varying intercept αξ(s) for the shape parameter, using the DP copula
framework. This parameter is negative for the DP copula, corresponding to the Weibull
distribution. However, it is positive for the Gaussian copula (Fréchet distribution), see
Figure 6d. A positive shape parameter would correspond to a distribution that, in this case,
has very heavy tails, and this causes problems with the spatial prediction, as we will see next
when we calculate the return levels. For the scale parameter (graph no shown here), larger
values are obtained in the northern part of our domain, corresponding to areas with larger
elevation. The estimated location and scale parameters were very similar using the DP and
the Gaussian copulas, the shape parameter however, as we have seen, had opposite signs. A
negative shape parameter is more consistent with the current literature and previous analysis
of extreme temperatures (e.g. Gilleland and Katz, 2006).

5.3 Return levels for extreme temperatures
In the context of modelling extreme temperatures, it is often of interest to obtain differences
of the n-year return levels across time. We obtain return levels here using the spatial
Gaussian copula and the DP copula approaches. Figure 7 presents the posterior distributions
for the 20 and 50 year return values for annual extremes of maximum daily temperatures.
We use data from 1978 to 2007, and we fix t (time) at the last time point. The return levels
using the DP copula have very similar spatial patterns as the sample mean of the extreme
temperatures presented in Figure 5. Though, the sample mean is smoother across space. The
20-year return levels using the DP copula are about 1 degree Celsius (°C) higher (Figure 7a)
than the sample mean of the extreme temperatures, and the 50-year return levels are about 2
°C higher (Figure 7c). The maximum values for the return levels are obtained in the eastern
and central part of our domain, eastern KN and MS, and central parts of AL, and GA, which
are the areas that also have higher extreme temperatures. However the patterns were more
difficult to explain using the spatial Gaussian copula, since in particular for the 50 year
return levels shown in Figure 7d, lower values were concentrated in central AL, which is an
area in our subdomain that has the highest extreme temperatures.

Figure 8 presents the median of the posterior distribution for the difference in the 20-year
return levels for surface air temperature using the DP copula and the spatial Gaussian
copula. The difference in the return values is obtained by calculating the return levels using
data from 1978 - 2007, at two different values of the time covariate (t), using t= 30, and t=
20. Figure 8a presents results for the DP copula, the difference in return levels is greater and
significant in MS and GA (about 0.5-1 °C), where there is a decrease in soil moisture
content (IPCC third report: Houghton et al., 2001). The differences in the return levels using
the spatial Gaussian copula, Figure 8b, are very variable and again difficult to interpret, we
believe due to the heavy tails induced by the positive shape parameter.

To determine the necessary number of mixture components, we keep increasing K until
results do not change by increasing any further the value of K. A extensive study of the
sensitivity of the results to the selection of prior distributions was conducted, in particular
varying the number of mixture components K, considering different upper bounds on the
spatial range parameters and changing the variance parameters in the GEV coefficients. In
terms of the number of mixture components, once we had 3 mixture components the results
were very robust, and they were not affected by increasing the number of components. The
estimated return levels were no sensitive to the chosen priors for the variance parameters.
For the range parameter, the results were robust to the choice of prior as long as the range
upper bond was greater than 100km.
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6. Discussion
In this work we study the spatial structure of extreme temperature values. We introduce a
modelling framework to characterize complex spatial patterns and explain potential non-
stationarity in the extremes. We present an extension of copula frameworks using Dirichlet
type of mixtures. An advantange of the formulation presented in this paper using
nonparametric models is that many of the tools developed for Dirichlet processes can be
applied with some modifications. In terms of the computational effort and feasibility of its
implementation, the DP copula and the spatial Gaussian copula offer similar challenges,
since the main computational inconvenience is working with the spatial covariance matrix.

Multivariate extensions of the nonparametric spatial approaches presented here can be
adopted to model simultaneously maximum and minimum extreme temperature values or
other extreme weather variables, using, for instance the nonparametric spatial framework
proposed by Fuentes and Reich (2008). They could also be applied to spatial daily data with
Generalized Pareto marginal distributions.
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Figure 1.
Extremal coefficient functions for the maximum temperatures in FL using a spatial Gaussian
copula, plotted as a function of distance for warm years (red lines) and cold years (blue
lines). In this graph we present the median of the posterior distribution for the extremal
coefficient (solid lines), as well as 95% posterior bands (dashed lines).
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Figure 2.
Extremal coefficient functions for the maximum temperatures in GA (black line) and TN
(blue line) using a Gaussian copula. In this graph we present the median of the posterior
distribution for the extremal coefficient (thick lines), as well as 95% posterior bands (thin
lines).
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Figure 3.
Extremal coefficients for different copula models with standard Fréchet marginals, versus
different quantile levels. The thin lines are the extremal coefficients for Gaussian copulas
with different spatial correlation parameters ρ. The solid lines are the extremal coefficients
for mixture of normals copula with different mean and spatial correlation for each term, μk
and ρ(μk), respectively.
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Figure 4.
Monitoring convergence, trace plots for the Deviance and range parameters.

Fuentes et al. Page 20

Extremes (Boston). Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Mean and SD of the yearly maximum surface air temperature values (°C) using data from
years 1978-2007. The circles are the observation locations.

Fuentes et al. Page 21

Extremes (Boston). Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Graphs (a) and (b) show the median and SD of the posterior distribution of the spatially-
varying coefficient βμ(s) that multiplies the temporal trend Ut in the location parameter of
the GEV marginal distribution, using the DP copula framework. Graphs (c) and (d) show the
median of the posterior distribution of the spatially-varying intercept αξ(s) for the shape
parameter, using the DP copula framework (left) and Gaussian copula (right).
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Figure 7.
Posterior median for the 20 and 50 year-return (RL) levels fixing t (time) at the last time
point, t = 30. Graphs (a) and (b) show the 20 year return levels using a DP copula (left), and
a spatial Gaussian copula (right). Graphs (a) and (b) show the 50 year return levels using a
DP copula (left), and a spatial Gaussian copula (right).
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Figure 8.
Graphs (a) and (b) show the median of the posterior distribution for the difference in the 20-
year return levels for surface air temperature (°C), using a DP copula (left) and all the
available data, and using a Gaussian copula (right). The differences are obtained by
calculating the return levels at two different values of the time covariate, using the temporal
covariate for year 2007 (when t = 30), and for year 1997 (when t = 20).
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Table 3

Cross validation results using 60 sites for the annual daily max temperature data.

αμ and βμ spatial Copula Type MSE (SE) Coverage Probability

Model 1 No Indep. 3.348 (0.134) 93.78%

Model 2 No Gaussian 3.052 (0.128) 94.00%

Model 3 No DP 3.002 (0.131) 92.28%

Model 4 Yes Indep. 2.623 (0.127) 94.17%

Model 5 Yes Gaussian 1.945 (0.108) 93.94%

Model 6 Yes DP 1.558 (0.096) 94.78%
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