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Abstract
Studies on the health impacts of climate change routinely use climate model output as future
exposure projection. Uncertainty quantification, usually in the form of sensitivity analysis, has
focused predominantly on the variability arise from different emission scenarios or multi-model
ensembles. This paper describes a Bayesian spatial quantile regression approach to calibrate
climate model output for examining to the risks of future temperature on adverse health outcomes.
Specifically, we first estimate the spatial quantile process for climate model output using nonlinear
monotonic regression during a historical period. The quantile process is then calibrated using the
quantile functions estimated from the observed monitoring data. Our model also down-scales the
gridded climate model output to the point-level for projecting future exposure over a specific
geographical region. The quantile regression approach is motivated by the need to better
characterize the tails of future temperature distribution where the greatest health impacts are likely
to occur. We applied the methodology to calibrate temperature projections from a regional climate
model for the period 2041 to 2050. Accounting for calibration uncertainty, we calculated the
number of of excess deaths attributed to future temperature for three cities in the US state of
Alabama.
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1 Introduction
Projections from climate models provide state-of-the-art quantitative information on future
climate. Recently, climate model output has been utilized to quantify the health impacts of
various environmental risk factors due to climate change. However climate model
simulations are deterministic, and uncertainty may be present in various modeling stages
that attempt to represent the underlying physical processes with numerical models [Knutti,
2008]. For health impact analysis, uncertainty quantification has focused predominantly on
the variability that arise from different emission scenarios or multi-model ensembles,
usually in the form of sensitivity analysis [Peng et al., 2011]. While the uncertainty
associated with climate model output is well recognized, it is difficult to assess its
magnitude for any single climate model.

The main objective of this paper is to describe a statistical approach to compare, evaluate,
and resolve the differences between climate model output distribution and the observed data
distribution. We describe a Bayesian spatial quantile regression model to calibrate climate
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model output and use daily maximum temperature as the motivating example. Temperature
projections have been used extensively in health impacts analysis because of its well-
established adverse health effects [Anderson and Bell, 2009; Curriero et al., 2002].
Moreover, temperature can act as a predictor for other environmental processes such as
infectious disease transmission [Ogden et al., 2006; Remais et al., 2008], hydrological
dynamics for water quality [John and Rose, 2005], or ground-level ozone creation [Bell et
al., 2007; Knowlton et al., 2004]. By modeling climate model output to reproduce small-
scale weather events in a historical period where observations are available, we wish to not
only calibrate future model projections, but also incorporate projection uncertainty in the
final health impact estimates.

Early approaches to evaluate model performance usually rely on linear regression analysis
of observations versus model output that describes the complex and complicated spatio-
temporal dependence in environmental data. One common challenge is that data sources
often are not available on the same spatial scales. For example, climate model outputs are
provided as average values over a grid cell, while observations from monitoring stations are
taken at point locations [Eder and Yu, 2006]. Several approaches have been proposed to fuse
the point and gridded outputs by either specifying a latent point-level process [Fuentes and
Raftery, 2005], or by directly modeling the bias between model and observed values as a
spatial-temporal process [Berrocal et al., 2010; McMillan et al., 2009].

Another challenge arises from the usual Gaussian assumption in standard linear regression
approach which may underestimate the tail probability for climate variables with skewed
distributions [Chang et al., 2010]. For example, local heat wave is often defined based on
daily temperatures exceeding the 95th percentile of its local summer time climatology.
Therefore improving the ability to characterize extreme temperature events is of critical
importance. To this end, quantile regression is an important tool for characterizing the tail
probabilities [Koenker, 2005]. Specifically, given the data z1, z2… zT, we wish to model the
cumulative distribution function (CDF) FZ (z) = P (Z ≤ z) and the probability density

. Additionally, for a given τ ∈ [0,1], the quantile function qZ (τ) is defined as

. In the recent literature, efforts have been made to analyze
each quantile level separately [Dunson and Taylor, 2005; Kozumi and Kobayashi, 2011;
Lavine, 1995]. The calibration technique is accomplished by how quantile functions behave
under transformations of random variables. For example, let the τth quantile process of the
observations be qY (τ) and the model outputs be qZ (τ). Similarly, denote distribution
functions of Y and Z, as FY and FZ respectively. Now consider the calibration function Gt.
In fact, Gt (·) is a monotonic function of the quantile functions of model output. For
instance, given the quantile level τ, we have the quantile functions qY (τ) and qZ (τ) to
construct Gt (·) as follows:

(1)

In other words, the transformed data Gt (z1), Gt (z2),…, Gt (zT) are identically distributed as
Y. The quantile calibration of climate model output with respect to observed data was
relatively consistent from year to year, here we present results for the last year, but the
calibration was robust within the same decade. One could consider incorporating the intern-
annual variability by adding a temporal component to the quantile model for both,
deterministic model and observed data; however, the conditional quantile functions of the
two data sources did not show a significant difference [Zhou et al., 2011].

In our approach, we first estimated the quantile process for climate model output using
nonlinear monotonic regression during a historical period. Therefore, we do not choose a
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probability distribution a priori, but model the quantile function directly. One advantage is
that we obtain a model for the entire quantile process instead of a fixed quantile level. By
considering only the model grid cells with a monitoring location, this allows us to identify a
calibration function Gt to map the climate model quantile process to the quantile functions
estimated from the observed monitoring data. Subsequently, a spatial adjustment of the
entire distribution of the model output with respect to the distribution of the monitoring data
was specified to downscale the calibration function and their spatial-quantile processes. Our
main objective is the calibration of deterministic models with respect to observed data, in
terms of their entire distributions. Using a single model, we provide an adequate platform to
adjust the model output across space and differently for different quantile levels. However,
we acknowledge the limitations of using a single model output, and if an ensemble of model
output would be available our framework could be easily adopted in that setting by
calculating the quantile function of the entire ensemble, which would be expected to present
larger variance. Finally, we evaluated the future heat wave excess mortality based on the
calibrated NARCCAP data from 2041 to 2050 (see Figure 1).

Our ability to quantify the health impacts of future climate has significant implications in
guiding policies towards environmental sustainability and in protecting public health.
Uncertainty quantification for climate projections is an important component in the risk
assessment process. To the authors’s knowledge, this is the first health impact analysis to
utilize a calibration approach that directly characterizes the uncertainty in the quantiles of
future weather. This is particularly useful for examining heat-related impacts where extreme
events such as heat waves have been associated with considerable health risks. The main
contribution of this paper is to present a statistical framework aimed to not only provide
more accurate projections, but to also allow uncertainty propagation in the health impact
calculations. We believe the approach described here represents a crucial step towards
enhancing the applicability and relevance of the results from climate change and health
studies.

The paper is organized as follows. In Section 2, we present the climate model projections
and health data for a case study in the US state of Alabama. The southeast region of the US
was selected because it has been shown to experience the greatest increase in 20-year return
values of daily maximum temperature in the U.S. [Kharin and Zwiers, 2000]. In Section 3,
we describe a Bayesian approach to model the spatial-quantile processes of the climate
model output. In Section 4, we outline the modeling steps for risk estimation and how to
utilize calibrated model projections to conduct health impact analysis associated with high
temperature days and heat waves. We provide the estimation algorithm in Section 5. In
Section 6 we present results of the calibration and estimates of the number of attributable
deaths due to future temperature extremes. We also compared our approach to calibration
using linear regression method in a cross-validation study. Finally, we end with some
conclusions and remarks in Section 7.

2 Data
Future climate projection and health impact analysis were conducted in the state of
Alabama, USA for the period 2041 to 2050. We restricted the analysis to the months of May
to September, a total of 153 days. Future daily maximum temperatures were obtained from
the North American Regional Climate Change Assessment Program (NARCCAP).
NARCCAP is an international program to assess uncertainties in regional climate
projections using different combinations of regional climate models and general circulation
models. We utilized results from the Canadian Regional Climate Model (CRCM) [Caya et
al., 1995] using boundary conditions from the third version of the Coupled Global Climate
Model (CGCM3) [Scinocca et al., 2008]. NARCCAP provides gridded output with a
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50×50km spatial resolution generated under the A2 emissions scenario of the
Intergovernmental Panel on Climate Change. The A2 scenario projects large population
increases, high carbon dioxide emissions, weak environmental concerns, and regionally
oriented economic growth with slower and more heterogeneous technological changes.
Additional information and a complete technical description of the NARCCAP model are
given by Mearns et al. [2007] and Mearns et al. [2009].

We estimated the short-term effects of high temperature on daily mortality for three urban
communities in Alabama (Birmingham, Mobile, and Huntsville). Time series of daily
maximum temperature, dew-point temperature, and total non-accidental deaths aggregated
across the county were obtained from the National Mortality, Morbidity, and Air Pollution
Study (NMMAPS) [Peng and Wealty, 2004] for the period 1991 to 2000. To perform output
calibration, we also obtained NARCCAP data for the year 2000. Observed daily maximum
temperature for 13 monitors in Alabama were obtained from the National Oceanic
Atmospheric Administration’s National Climatic Data Center.

3 System calibration and spatial quantile processes
In this section, we will review the spatial-quantile calibration method for obtaining the
transformation (calibration) function Gτ in (1) across space. Suppose we have two data sets
Y (t, si) and Z (t, Bsi), where si = (si1, si2) are latitude/longitude coordinates of a temperature
monitoring location and Bsi is the associated 50×50 km grid cell in which si lies. At each
location i=1,2,…,ns, we have time t = 1, 2, …, T replications. In order to calibrate the
underlying spatial-quantile processes QZ (τ|Bs) and QY (τ|s), we extend the transformation
function Gτ to be space-dependent, and we denote it as Gτ,s. Then we have:

(2)

Without loss of generality, we rescale both the NARCCAP data (in year 2000 and 2041–
2050) and observations (year 2000) such that the range of Z and Y is within [0, 1].

We first model the spatially-varying quantile function of the NARC-CAP model outputs QZ
(τ|Bs) for τ ∈ [0, 0.01, …, 1]. The monotonicity in the coordinate τ for the quantile functions
is achieved through the use of the integrated piecewise polynomial spline (or I-splines) [Lu
and Clarkson, 1999; Ramsay, 1988]. The I-splines construct basis functions using piecewise
polynomials, such that upper and lower tails of a quantile function are estimated
independently from each other. For a knot sequence {γ1, …, γM+h}, M is the number of free
parameters that determine the spline function’s continuity characteristics, and h is the degree
of the piecewise polynomial Im. For all τ, there exists m such that γm ≤ τ < γm+1. For

application to the important case where h=3, let: .
The I-spline Im will be piece-wise cubic, zero for τ < γm and unity for τ ≥ γm+3, with the
direct expressions:
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(3)

Because the I-spline is an integral of nonnegative splines, it yields monotone functions

 when combined with nonnegative values of the coefficients βm (Bs) (see
Figure 3).

Subsequently, the process QZ (τ|Bs) is defined as:

(4)

where I (τ)′ denotes the corresponding I-spline basis functions. Because the I-spline is an
integral of nonnegative splines, it yields monotonically nondecreasing functions

 when combined with nonnegative values of the coefficients βm (Bs).

To ensure the quantile constraints, we introduce latent unconstrained variables  and
take:

(5)

Therefore a model using β̃ (Bs) induces via (4) a quantile process of QZ (τ|Bs). Without loss
of generality, we choose the knots series within γ1 = 0 and γM+h = 1. The quantile process
thus satisfies the boundary conditions QZ (0|Bs) = β0 (Bs), and

. In addition, assume  have prior

, with . The full conditional
distribution of π (βm (Bs)|Z) is then given by

, and is obtained using the Metropolis-
Hastings algorithm for further calibration.

We then calibrate the NARCCAP spatial-quantile process with the observations in (2) by
modeling the observed quantiles of Y as follows:

(6)

where ηs(τ, β̃Bs) is a monotonic function defined as:

(7)
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Therefore, we first model quantile functions of the model output ηs(τ, β̃Bs) as a function of
τ, then we model the quantile values QY (τ|s) to obtain the calibration function Gτ,s between

the two quantile processes (see Formula (2)).  are sampled from the posterior distribution
π (βm (Bs)|Z). Note that we mainly focus on ηs(τ, β̃Bs) ∈ [0, 1] because Z is standardized to
be between 0 and 1. Therefore, for non-negative αm(s) values we obtain a monotonic
mapping between the model output and observed quantile functions. Again, we assume
αm(s) are spatially-varying coefficients modeled as multivariate mean-zero Gaussian spatial

processes α0 (s), α1 (s), …, αM (s), such that, 
and ρms is the spatial decay parameter for the Gaussian process αm (s), m = 0, 1, …, M.

The sample quantiles are bounded by the sample minimum and maximum. In order to model
the tail behaviors of the distribution better, we describe a Bayesian mixture approach to
recover the density function. It is based on (1) the quantile functions estimated from the data
for characterizing the central tendency; and (2) a parametric density function ϕZ for
characterizing the tails. In our application, we treat ϕZ as the density function of the
generalized Pareto distribution (GPD) [Hosking and Wallis, 1987]:

(8)

We extend the work of Tokdar and Kadane [2011] for a bounded response variable to deal
with an unbounded variable. Given a quantile function qZ (τ) we define its density as

(9)

where z(l) and z(u) are lower and upper cut points that satisfy qZ (τz(l)) = z(l) and qZ (τz(u)) =
z(u), respectively. The Newton’s Recursion method [Tokdar and Kadane, 2011] is used to
approximate τz. Therefore, equation (9) allows us to evaluate the likelihood given a
threshold δ. For example, if τz(l)= δ, τz(u)= 1 − δ and δ = 0.1, then we evaluate the central
80% density using the equation (4), and the 10% upper/lower tail’s density using the
generalized Pareto distribution (8).

To ensure a proper likelihood, the constants in equation (9) are given by:

Because CL × ωL and CU × ωU are the density evaluated at the point where the generalized
Pareto distribution joins the quantile derived distribution (See Figure 4). As a result, ωL and
ωU ensure that equation (9) is continuous. Finally, technical details of estimating the
parameter κ are provided in the Appendix.
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4 Health Effect Estimation and Impact Analysis
Relative change in the rate of mortality associated with variation in daily maximum
temperature was estimated via Poisson regression

where  and  are the observed daily maximum temperature and the number of deaths
on day t in city c, respectively. We modeled the effects of temperature as a non-linear
function using natural cubic splines with 3 degrees of freedom denoted by .
Following Anderson and Bell [2011], we also included the following confounders in the
model: (1) indicators for day of the week; (2) indicators for city; (3) indicators of age group
(under 65, 65 to 75, above 75); (4) city and age-group interactions; (5) smooth function of
calendar date ns(t, 10 × 3); and (6) smooth functions of dew-point temperature for the
current day and previous three-day averages using natural cubic splines with 2 degrees of
freedom. In our analysis, we did not find significant interactions between the effects of
temperature and age-groups. We also assumed the effects of weather are identical across the
three cities.

Because the effect of temperature is non-linear, we used the metric by Peng et al. [2011] to
summarize the overall relative risk associated with high temperature and heat waves. The
relative risks (RR) were calculated separately for each city as follows

where  and  are indicators for whether the daily maximum temperature on day t
represents an at-risk day or a reference day. Similarly  and  denote the total number of
at-risk and reference days in city c. Therefore the above metric describes the ratio of average
attributable mortality between the at-risk and reference days. For example, at-risk days are
defined as heat wave days and reference days are non-heat wave days.

To estimate the overall effect of high temperature at different thresholds, we set the
reference temperature to be less than 30°C, the median value between 1991 to 2000. We
then calculated the RR associated with daily maximum temperatures exceeding values
32.5°C, 34°C, 35.5°C, or 37°C (approximately the 90th, 95th, 97.5th and 99th percentile,
respectively). There exists no universal definition of heat waves and various metrics have
been proposed [Huth et al., 2000; Karl and Knight, 1997]. We used a similar definition from
a recent national population study [Anderson and Bell, 2011] to estimate the additional
adverse effect of heat waves by creating indicators for heat wave days. Specifically, we
identified heat waves as a period of ≥ 2 consecutive days with daily maximum temperature
higher than the city-specific quantile thresholds. We examined heat waves defined based on
the 90th, 95th, 97.5th, and 99th quantiles. For the heat wave RR, reference days were defined
as all non-heat wave days.

Finally, we quantified current and future health impacts of temperature by calculating the
expected number of excess deaths attributable to high temperature days as

Zhou et al. Page 7

J Agric Biol Environ Stat. Author manuscript; available in PMC 2013 September 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where Nc is the expected daily mortality in city c, and Mc is the number of at-risk days over
the 10-year period of 1991 to 2000, or 2041 to 2050. We estimated Nc by the mean daily
mortality across all days under 30°C for each city.

5 Estimation
Estimation was carried out in a Bayesian framework via Markov chain Monte Carlo
(MCMC) in two stages (see Figure 1). In the first stage, we estimated the calibration
parameters using the Metropolis-Hastings algorithm with data in year 2000. To sample from

 and  sequentially, the associated density function was
approximated from quantile function QY (τ|Z, s) using a grid of 101 equally-spaced quantile
values τk ∈ [0, 1] and I-splines with interior knots at (0.3, 0.7). We then obtained posterior
predictive samples of the calibrated future NARC-CAP data based on the nonlinear
transformation function Gτ,s,

(10)

where α̃ are posterior samples from the MCMC. Finally, Gτ,s(z(t, Bs), α̃) was re-scaled to its
original range.

In the second stage, we fitted the health model in a separate MCMC run. Posterior
distributions for the relative risks were obtained from the posterior samples of the
temperature-mortality dose-response function . We combined the uncertainty in
both climate projection and risk estimation in calculating the number of excess deaths (ED)
as follows. For the future period, the number of at-risk days Mc was calculated for each
posterior time series of the calibrated NARCCAP daily maximum temperature. We then
took an exposure simulation approach [Gryparis et al., 2009] where for each posterior
sample of the relative risk, a realization of Mc was randomly drawn from its posterior
samples. We then pooled the posterior samples of ED and calculated its posterior median
and 95% credible intervals.

By modeling the calibration and health models separately, we broke the feedback between
the mortality data and the estimated exposures. This directional Bayesian approach [?] not
only reduces computational burden, but it also avoids the potential unintuitive assumption
that health data could provide information on future exposure, for example in a causal
pathway. Another benefit of fitting the exposure and health model separately is that often
different metrics of exposure or sets of confounders are examined in a sensitivity analysis.
For example, in our analysis different definitions of heat wave and extreme temperature
were defined, and fitting a joint model repeatedly is computationally expensive.

6 Application: Calibration of Alabama Maximum Temperature
We first compared the uncalibrated NARCCAP output and the observations in terms of their
entire distribution for year 2000. At τ= 0.05, 0.5, and 0.95, we calculated the empirical root
mean integrated squared error as:
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For the uncalibrated model output, the RMISE at the 5th quantile was equal to 3.93 (1.35 for
the 50th percentile, and 1.72 for the 95th percentile). After calibration, the corresponding
RMISE at τ= 0.05, 0.5, and 0.95 were 0.66, 0.37, and 0.32, respectively.

The improvement in RMISE can be visually depicted in Figure 5. We plot the estimated
quantile functions for the observed temperature at the three cities, as well as the quantile
functions estimated with the uncalibrated NARCCAP model outputs and the calibrated
outputs using our Bayesian algorithm. We also considered a naive calibration approach
using linear regression (LM). This demonstrates the large discrepancies between the
distributions of the NARCCAP output and the observed data at their lower tails. Moreover,
Figure 5 highlights the ineffectiveness of linear model to characterize the tail behaviors.
Across monitors, we also found that the NARCCAP data present a different spatial pattern
from the observed spatial structure, indicating that the process-based numerical models are
biased toward “lower tails” and may not capture the spatial correlations existed in the
monitoring data.

Because our objective is to perform calibration of future climate variables, we conducted a
5-fold cross-validation study to examine the performance of out-of-sample prediction. At
each site, we first randomly split the original daily maximum temperature data (T = 153)
into 5 subsamples. Then we retained a single subsample as the validation set for testing our
spatial-quantile calibration, and the remaining 4 subsamples were used as training data. This
process was repeated 5 times, with each of the 5 subsamples used once as the validation
data. We calculated Q̂Y (τ|si) (the predicted quantiles of the observations at location si),
Q̃SZ(τ|si) (the averaged 5-fold quantiles of the Bayesian calibrated data), and Q̃LZ(τ|si) (the
empirical quantile values calculated using the fitted values obtained from a linear regression
of Ysi on ZBsi

 and a Normality residual assumption), at τ ∈ [0.01, 0.97] and location si. The

root mean squared error  is calculated for
both the linear regression method and our Bayesian approach at each location si. To compare
the predictive performance of different methods, we used the difference root mean squared
error defined as

The DRMSE between the linear regression method and the quantile calibration method
range from −81.6% to −55.3% across monitor. The average DRMSE over monitors was
−68.7%, indicating a 68.7% decrease in RMSE when quantile regression was used compared
to linear regression. In addition, the quantile regression achieves a 74.9% reduction in
RMSE compared to the uncalibrated NARCCAP data. As a result, successfully calibrating
the entire distribution of model outputs would be necessary for the model-based projections
in the future.

Future projections of model outputs during the period 2041 to 2050 were calibrated similarly
as in year 2000. We first scaled the NARCCAP data between 0 and 1, which allows an
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implementation of the transformation function Gτ,s in (10), as well as the associated
posterior samples to be developed in the future. Figure 6 provides the integrated quantile
curves for the uncalibrated and calibrated NARCCAP data over the decade 2041 to 2050.
For comparison purposes, we added the historical values to the same graph at the three
targeted cities. In the US state of Alabama, raw climate model outputs suggest that future
warming at the 95th percentile was equal to 5.47°C (3.04°C for the 50th percentile and a
decreasing 1.34°C for the 5th quantile). However, after calibration, the increased maximum
temperature at τ= 0.05, 0.5, and 0.95 were 1.73°C, 2.90°C and 4.27°C, respectively. Note
that the largest discrepancies mostly occurred at the lower tail of the distribution.

Table 1 gives the estimated number of excess deaths due to high temperature and heat waves
for the historical period (1991–2000) and the future period (2041 – 2050). The estimates are
presented as annual average across the three study cities in Alabama. The health impact of
future temperature were based on calibrated climate model output where the 95% credible
intervals reflect both uncertainty in the temperature exposure-response relationship, and the
uncertainty in model output. The average number of deaths on days with maximum
temperature under 30 °C was approximately 29.8 per day (16.2 for Birmingham, 8.6 for
Mobile, and 4.9 for Huntsville). Similarly average mortality rates were observed on non-heat
wave days defined with the 95% quantile threshold. Assuming similar future baseline
mortality rates, we found a considerable increase mortality attributed to high temperature.
This is dominated by increases in the number of days with extreme temperature. For
example, Table 2 gives the observed and projected average number of high temperature days
and heat wave days per year in Birmingham Alabama. Similar patterns were observed in the
other two cities.

7 Discussion
Uncertainty in climate projections can arise from various sources. We described a statistical
calibration approach that models the distributional discrepancy between model outputs and
historical observations. This allows us to calibrate future projections, as well as propagating
its uncertainty in a health impact analysis. This differs from previous studies where future
exposures from climate model outputs are assumed to be deterministic. We chose daily
maximum temperature as the motivating example; however the proposed approach can be
applied to other weather variables such as precipitation, solar radiation, or cloud cover that
may be associated with adverse health outcomes through various pathways. In our study
region of Alabama, we found the disagreement between observed and modeled temperatures
to be the greatest at the lower tail of the distribution. Consequently, the estimated health
impacts due to future extreme temperatures were similar between the calibrated and the
original model projections. This result may to vary across locations, especially if other
weather variables or climate models are examined, and should be systematically explored in
future analysis.

Our health impact calculations also suffer from many common limitations in estimating
future disease burden due to climate change. For example, we did not account for the
expected changes in population structure, behaviors, size, or other factors that may influence
the underlying health status of the population. Moreover, studies have shown that the
temperature-mortality relationships exhibit heterogeneity across different NMMAPS regions
[Anderson and Bell, 2011; Curriero et al., 2002]. While the attributable deaths calculation
was not based on future population size, the IPCC scenario used for climate modeling
includes population growth. We also recognize that our findings may be dependent on the
chosen climate model and emission scenario. It is straightforward to conduct similar analysis
with calibrated projections from different climate models following a recent exemplary
effort by Peng et al. [2011]. Nonetheless, we report a significant increase in mortality
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attributable to future temperature extremes even in a region that is characterized by hot and
humid summer seasons.

NARCCAP conducted 12 sets of climate projections with different combination of RCM-
GCM pairs. RCMs are downscaled version of GCM for studying climate evolution at a finer
spatial resolution driven by initial values and boundary conditions from the GCM outputs.
Recent studies have shown that the choice of both GCM and RCM can influence projections
across space and time [Kaufman and Sain, 2010]. Various methods have been proposed for
assessing intermodal variability [Jun et al., 2008; Smith et al., 2009] and for combining
model outputs [Sain et al., 2011]. We only utilized one set of the NARCCAP experiment
and applying calibration across multiple models raises several interesting research questions.
For example, do calibrated projections exhibit less intermodal variation? Also, can the
degree of discrepancy between modeled and observed values serve as a guide for
determining averaging weights for different projections?
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APPENDIX A. Fitting the Generalized Pareto Distribution to the tails
When κ = 0, the GPD distribution defined as (8) reduces to an exponential distribution with
mean 1/ω. Now we concentrate on the more diffcult case where κ ≠ 0. The idea is to make
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full use of the information contained in both central tendency and tails. Note that all the
discussions below are aimed at analyzing upper tails, and it can be similarly applied on the
lower tails.

If the likelihood is given by (9), we first calculate the derivative given μU as

(11)

Because , thus κ ≤ 1.

Based on the likelihood, we transform the overall order statistics z(u+1), z(u+2),…, z(T) to the

partial order statistics on the upper tail as: , where , i = 1, 2,
…, q, and q = T − u. Such order statistics are evaluated by first equating the CDF at the
observed order statistics to their corresponding percentile values:

(12)

where  if q ≠ 1.. Substituting the corresponding CDF of (8) to (12) we have:

(13)

where Ωi = − ln(1 − pi:q) > 0. Consider the following function of κ:

(14)

which is defined in (−∞, ]. Then (13) is equal to:

(15)

Subsequently, we use the resulting equation (15) as a basis for obtaining initial parameters
for κ. By taking the derivative of h(κ), we have:

(16)

Let , we have . In general, the function h(κ) is increasing when κ ∈ (−∞,

κ*) and decreasing when . Considering κ’s constraints, h(κ) has the following
properties:

1. κ* = 0 if . Therefore the function h(κ) is increasing when κ ∈ (−∞, 0)

and decreasing when . Addition ally, the solution for (15) is κ̂
= 0.

2. κ* > 0 if , where 0 < d < 1. Then  and h(κ*) > 0. The

solutions of (15) are: (1) κ* ≥ 1 ⇒ κ̂ = 0; (2) for κ* < 1 and , if h(1) < 0, we
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use the bisection method to determine the solution in (κ*, 1), otherwise κ = 0; (3) if

, we use the bisection method to determine the solution in ( ).

3. κ* < 0 if , where d > 1. Given a negative number of large magnitude Δ,
the solutions of (15) are: (1) κ* < Δ ⇒ κ̂ = 0; (2) κ* > Δ and h(Δ) < 0, we use the
bisection method to obtain the solutions in (Δ, κ*).

These estimates of κ̂ are computed for , then combined in a suitable way to obtain final
estimates (i.e., use the median of each of the foregoing set of estimators to obtain a
corresponding overall estimators of κ). Subsequently, if τ > τz(u), the τth quantile for the

model output Z is obtained by the  quantile of the GPD distribution with κ̂.
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Figure 1.
A process chart for our two-stage estimation. We first obtained the calibration model by
comparing the original NARCCAP data with the corresponding observations through their
underlying spatial-quantile processes in year 2000. Meanwhile, we fitted the health model to
investigate the relationship between heat waves and mortality. Finally, we evaluated the
future heat wave excess mortality based on the calibrated NARCCAP maximum temperature
from 2041 to 2050.
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Figure 2.
Locations of the monitoring sites (blue triangles), centers of the NARCCAP grid cells (red
dots) and NMMAPS communities (green circles) within Alabama.
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Figure 3.
An example of the integrated spline (I-spline). The I-splines are defined on [0, 1] of order
h=3 and associated with interior knots 0.2, 0.8. Each I-spline is piecewise cubic, and a
monotonic curve is obtained by the linear combination of these M=5 splines with
nonnegative coefficients (1.2,2,1.2,1.2,0.4)/6. The I-spline functions ensure non-crossing
quantiles with both flexibility and constrains at different percentiles.
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Figure 4.
Likelihood estimation without specifying a density function a priori. The blue curve is a
density plot of simulated data. The likelihood function expressed as a quantile-based central
tendency and a generalized Pareto tail is able to characterize unbounded response variables.

Zhou et al. Page 18

J Agric Biol Environ Stat. Author manuscript; available in PMC 2013 September 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
At three urban communities Birmingham (birm), Mobile (Mobi), and Huntsville (hunt), we
plot τth quantile curves of NARCCAP outputs, observations, our Bayeisan calibrations and
the simple linear regression (LM) of daily maximum temperature in year 2000, unit in
Celsius (C).
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Figure 6.
τth quantile curves of the historical NARCCAP data, the corresponding observations, the
uncalibrated future model output and the calibrated daily maximum temperature, unit in
Celsius. Note that the discrepancies mostly occurred at the lower tail of the distribution.
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