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Abstract
Many cohort studies in environmental epidemiology require accurate modeling and prediction of
fine scale spatial variation in ambient air quality across the U.S. This modeling requires the use of
small spatial scale geographic or “land use” regression covariates and some degree of spatial
smoothing. Furthermore, the details of the prediction of air quality by land use regression and the
spatial variation in ambient air quality not explained by this regression should be allowed to vary
across the continent due to the large scale heterogeneity in topography, climate, and sources of air
pollution. This paper introduces a regionalized national universal kriging model for annual
average fine particulate matter (PM2.5) monitoring data across the U.S. To take full advantage of
an extensive database of land use covariates we chose to use the method of Partial Least Squares,
rather than variable selection, for the regression component of the model (the “universal” in
“universal kriging”) with regression coefficients and residual variogram models allowed to vary
across three regions defined as West Coast, Mountain West, and East. We demonstrate a very high
level of cross-validated accuracy of prediction with an overall R2 of 0.88 and well-calibrated
predictive intervals. In accord with the spatially varying characteristics of PM2.5 on a national
scale and differing kriging smoothness parameters, the accuracy of the prediction varies by region
with predictive intervals being notably wider in the West Coast and Mountain West in contrast to
the East.
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1. Introduction
Residential predictions of ambient air quality concentrations are important for
epidemiological cohort studies, particularly those conducted on a national scale. We focus
on long-term averages of concentrations of fine particular matter, PM2.5. Predictions of
average air quality levels may be derived from spatial (Hart et al., 2009; Hystad et al., 2011;
Mercer et al., 2011; Novotny et al., 2011) or spatio-temporal models (Yanosky et al., 2009;
Paciorek et al., 2009; Szpiro et al., 2010; Sampson et al., 2011; Lindström et al., 2011). In
this paper we develop a continental U.S. national scale spatial model for year 2000 annual
average PM2.5 concentrations based on data from monitors in regulatory monitoring
networks.

As monitoring sites in national regulatory networks are relatively sparse across broad
regions of the country and as air quality levels are influenced by many small- and large-scale
spatial features, accurate prediction requires a combination of geographic covariates such as
distances from roads and other pollutant sources to capture small-scale variation and spatial
smoothing for large-scale patterns. Regression models based on geographic covariates are
traditionally termed “land use” regression (LUR, e.g. Moore et al., 2007; Ross et al., 2007;
Hoek et al., 2008). We use a data-base of 265 GIS-based geographic covariates with
multiple indirect measures of traffic, population density, land use, satellite-based vegetative
index (NDVI), nearby pollutant emissions derived from emissions inventories, and distances
to major sources of pollution. We incorporate spatial smoothing with the LUR by means of a
geostatistical correlation model in order to exploit spatial information available in the
monitoring dataset. Our model provides the basis for predictions at arbitrary spatial locations
(assuming covariate values can be computed at all spatial locations) by universal kriging or
“kriging with external drift” (see Wackernagel, 2010).

Almost all current applications of LUR in the literature, whether combined with a spatial
correlation model or not, use some kind of variable selection procedure to choose a subset of
variables that provide good, if not the optimal, predictions. As an alternative to variable
selection, we use a Partial Least Squares (PLS) approach. We develop our LUR regression
model from a small number of composite PLS scores, each defined as a linear combination
of all available covariates. This approach is conceptually related to the more widely known
method of regression on principal components (PCA); the distinction is that PLS
components are based on the maximum covariance between the covariates and the
monitoring data whereas PCA components are based on the covariance of the covariates
alone. Details are presented in the methods section below.

A geostatistical spatial correlation model is a statistical characterization of spatial variation
in pollutant levels not explained by the covariates in the regression model. This spatial
variation in (residual) pollutant levels is influenced by variation in topography and
climatological meteorological patterns that is not captured in our collection of geographic
covariates and can be difficult to model explicitly.

We consider models developed on national and regional scales (with the United States
partitioned into three large regions as shown below) for both the regression and spatial
smoothing (kriging) parts of the models. We demonstrate that the best results in terms of the
accuracy of cross-validated predictions and the coverage of cross-validated prediction
intervals are obtained using regional regressions with regional residual variogram models.

The following sections detail the monitoring data and our extensive database of geographic
covariates. We review the methods of Partial Least Squares regression and maximum
likelihood estimation of a universal kriging model. We then explain our strategy for defining
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regional analyses and assessing model fits using cross-validation. The last two sections
present results and evaluative discussion of the methodology.

2. Methods
2.1. Monitoring data

Daily PM2.5 concentration data from both the AQS and IMPROVE networks (http://
www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm/, http://
views.cira.colostate.edu/web/) were utilized to calculate an annual average at each
monitoring location with data that met minimum inclusion criteria. We required a minimum
of 14 measurements per quarter for all four quarters. Of 1211 monitors providing PM2.5 data
in 2000, we found 903 met these criteria. Two sites were dropped for erroneous scoring of
geographic covariates, leaving a total of 901. We subdivided these monitors into sets
covering the eastern two thirds of the country, called the “East” (n = 673), the “Mountain
West” (n = 120) and the “West Coast” (n = 108) as explained in Section 2.5 and illustrated
in Fig. 1.

2.2. Geographic covariates
Our analysis considered an initial set of 265 distinct GIS-based geographic covariates, which
was reduced to 171 prior to analysis. We combined some variables such as the within buffer
road lengths in census feature class codes A2 and A3, and dropped others due to sparse
discrete values (i.e. more than 85% of the values were identical). As detailed in Table 1, the
final set of geographic covariates includes: (i) population, (ii) total emissions of CO, NOx,
PM10, PM2.5, and SO2 (tons per year), (iii) percentages of land according to 12 land use
categories, (iv) summaries of the distribution of the satellite-based MODIS Normalized
Difference Vegetation Index, NDVI, (v) measures of impervious surfaces, (vi) indirect
measures of traffic influences provided by distances to major roads (major roads identified
by census feature class codes A1–A3), together with lengths of such roads in circular buffers
around sites of interest, and (vii) distances to commercial zones, airports, small shipping
ports, railroads, and railway yards. All but the distance measures are computed in circular
buffers of various radii ranging from 50 m to 30 km, as detailed in Table 1. We judged the
selected buffer sizes to be scientifically reasonable, but argue mainly that they suffice to
provide good predictions. Data sources are provided in Appendix 1.

2.3. Partial Least Squares regression
The GIS-based dataset of spatial covariates for PM2.5 concentrations provides groups of
highly correlated spatial covariates. For example, the composite lengths of A1 roads in
buffers of varying sizes from 50 to 5000 m around specified locations are necessarily highly
correlated. Furthermore these variables are highly negatively correlated with the distance to
the nearest A1 road. Percentages of property in various land use categories are similarly
correlated across buffer sizes and percentages of land classified residential in a buffer are
substantially negatively correlated with percentages of land classified as commercial. Model
specification with large sets of multicollinear predictors typically involves either (a) variable
selection (e.g. Su et al., 2009; Mercer et al., 2011), (b) shrinkage or regularization, perhaps
including variable selection as in a “lasso” approach (Tibshirani, 1996; Mercer et al., 2011),
or (c) dimension reduction via regression on a smaller number of composite covariate
scores. Our fundamental objective is high quality predictions and we prefer not to choose a
method that would select one particular buffer size for inclusion in our model while ignoring
neighboring buffer sizes, or one particular land use categorization at the expense of
correlated land use categorizations.
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The method of regressing on a small number of composite covariate scores using PLS
regression to define the composite scores is well-established, especially in chemometric
fields of application (see, for example, Garthwaite, 1994; Wold et al., 2001; or Abdi, 2010).
The description of the composite scores in terms of individual variable loadings facilitates
comparison of regression models across the three geographic modeling regions we consider
here. PLS regressions were computed using the pls package for the R system (http://cran.r-
project.org/web/packages/pls).

We summarize in brief the essentials of PLS regression following the classical notation of
Wold et al. (2001) or Abdi (2010). Let Y denote an n × 1 vector of (possibly transformed)
annual mean concentrations at n monitoring sites and let X denote the n × p matrix of
geographic covariates. To simplify the exposition in this section, we will assume that Y has
been centered to have mean zero and that the columns of X have been standardized to have
covariate variances equal to 1 (or column sums of squares equal to 1). As in a principal
components analysis (PCA), the covariate matrix is decomposed into a product of an n × p
matrix of orthogonal scores T (often considered as a set of “latent vectors”) and a p × p
matrix of loadings P so that X = TP’. The columns of the PLS scores matrix T are computed
with a sequential algorithm (most commonly the NIPALS algorithm; see Abdi, 2010) to
reflect the covariances between the Y and the columns of X, rather than to explain the
variances and covariances among the columns of X as is done in PCA.

The first column of scores, t1 is a linear combination of the geographic covariates Xw1, with
normalized weight vector w1∝X’Y. That is, the weights are proportional to the simple
covariances between the geographic covariates and the vector of annual mean
concentrations. Stated differently, the weights are proportional to the simple linear
regression coefficients (as opposed to multiple linear regression coefficients) of Y on each
of the columns of X. It follows that this vector of scores, t1 = Xw1 is the score of maximum

covariance with the vector Y subject to .

Subsequent score vectors are computed in the same simple way after replacing Y and X by

the vector and matrix of residuals from the regressions on t1:  and

, with p1 being the first vector of the loadings the matrix P, proportional to
the simple correlations of the geographic covariates with the first PLS score. In summary,
PLS provides a decomposition of the large geographic covariate matrix X into a sequence of
orthogonal PLS scores computed to maximize the covariance between Y and its prediction
by these score vectors. If we complete the iterations to obtain all p vectors ti, we obtain a re-
expression of the covariate matrix X in terms of a set of orthogonal scores, but we typically
stop with a small set of k PLS scores, k ⪡ p. Typically k is chosen by cross-validation to
give the best predictions. We chose to compute PLS scores on the entire national covariate
database in order to define them using the largest possible sample size. These definitions
were held fixed across regions in models with regionally varying regression parameters. As
discussed in Sections 2.4 and 2.5, we choose k based on 10-fold cross-validation of models
that include kriging of the residuals.

2.4. Universal kriging with PLS regression and maximum likelihood estimation
The PLS computation described in Section 2.3 does not consider the fact that residuals from
this regression will almost certainly be correlated in space, to an extent that will depend on
the number of PLS components in the model. Models were fit to annual mean PM2.5
concentrations on a square root scale since diagnostic analyses of residuals from fitted
models suggested that the assumptions for the normal likelihood model were reasonably
satisfied on this scale. The complete spatial regression or universal kriging model using PLS
scores can be written
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where we change definitions slightly to let Y represent the uncentered vector of transformed
annual mean concentrations and correspondingly add a constant vector to the matrix of PLS
scores T, now restricted to k < p scores. The vector of regression coefficients β is therefore
(k + 1) × 1, and we complete the model speci fication by assuming the errors ε are mean
zero with spatial covariance (or variogram) function depending on a parameter vector θ.
Conditional on β, we can write

where the parameter vector θ specifies the nugget, range, and sill of an exponential
variogram model. If we identify regions by the subscript j, the fully regional model, with
both PLS regression parameters β and covariance parameters θ varying by region, can be
written

where Tj denotes the rows of T corresponding to the jth region.

We estimate all the parameters, (βj,θj), j = 1,2,3, jointly by maximizing the profile log-
likelihood. In the normal log-likelihood function we replace the regression parameters by
formulae for their generalized least squares estimates in terms of the covariance parameters.
This resulting “profile” log-likelihood, a function only of the covariance parameters, is then
maximized using the R function optim (R Core Team, 2012).

We require expressions for the universal kriging (or generalized least squares) predictions of
concentrations at unmonitored sites given observations at monitoring sites. Let Ymj denote
the vector of observations at monitored sites (“m”) in region j and let Tmj denote the matrix
of PLS component scores computed at these monitored sites. Similarly, let Yuj and Tuj
denote a corresponding vector and matrix for a set of unmonitored (“u”) locations at which
predictions are desired. Furthermore, let the modeled covariance matrix among the
monitored sites be denoted by Σmm(θj) and the matrix of covariances between the monitored
and unmonitored locations Σum(θj). Then predictions of concentrations at unmonitored sites
using estimates of the regression and covariance parameters can be written

2.5. Regional analysis strategy and cross-validation
For the modeling framework described in Section 2.4, we need to determine how best to
divide the country into regions, how many (nationally defined) PLS components to use in
the spatial regressions (universal kriging), and whether either or both of the two model
components, the PLS regression model and/or the variogram model, are best defined on a
regional or national basis.

We divided the country into regions in order to account for possible differences across the
continental U.S. in the mean regression structure of PM2.5 as well as the residual
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smoothness (hence the variogram) of spatial variation. Consideration of the PLS and
variogram characteristics of preliminary models led to a final choice of three regions based
on an assessment of topology and elevation. These three regions, called East, Mountain
West, and West Coast, are illustrated in Fig. 1. Although one could argue that the large
eastern region should be further subdivided, diagnostic statistics suggest that a single
universal kriging model suffices for this region.

The decisions about the numbers of PLS components to retain, and whether to estimate PLS
regression coefficients and covariance coefficients regionally or nationally were based on
10-fold cross-validations. Monitoring sites in each of the three regions were randomly
assigned to one of ten groups. In turn, each group was set aside as a “test set” and the
remaining groups combined for a “training set” to fit the model and generate test set
predictions using the universal kriging prediction equation given above. Each group played
the role of test set until predictions were obtained for the entire data set. We assessed the
performance of each fitted model based on their cross-validated root mean squared
prediction error, corresponding R2, and the width and accuracy (percent coverage) of 95%
predictive intervals.

3. Results
Fig. 2 presents boxplots for year 2000 annual average PM2.5 concentrations at the 901
monitoring sites shown in Fig. 1. The eastern 2/3 of the country clearly demonstrates the
highest average concentration across sites while the West Coast, with the second highest
average concentration, shows much greater spatial variability.

As explained in Section 2.4, models were fit to annual mean PM2.5 concentrations on a
square root scale. Table 2 and Figs. 3–5 provide summaries of the predictive quality of the
models based on 10-fold cross-validation. Table 2 presents cross-validated R2 values for
various choices of the number of PLS components. The cross-validated R2, an out-of-sample
measure of prediction accuracy (cf. Szpiro et al., 2011b), is computed as 1-RMSEP2/
Var(Obs) where RMSEP represents the root mean-squared error of the predictions and
Var(Obs) is the variance of the observations, both on the transformed scale. While the
details of the predictions vary depending on whether the PLS regression coefficients and
variogram models are specified nationally or regionally, the cross-validated R2 values
change little. All the models show quite good performance nationally with R2 values mostly
exceeding 0.86 and surprisingly little sensitivity to the number of PLS components. Table 2
also presents cross-validated R2 statistics for PLS (only) regression models. We see that R2

values are substantially lower, with maximum values obtained for models with 6–9 PLS
components.

Fig. 3 provides the scatterplots underlying the R2 values for the 2-component model in units
of square root μg m−3. The regional coefficient/regional variogram model gives not only the
highest national R2 of 0.88, but also the highest within-region R2 values, which are 0.82
West Coast (red dots), 0.64 Mountain West (green dots), and 0.90 East (blue dots). Within-
region R2 values for the best PLS only regression models are substantially degraded,
reaching maximum values with 8 PLS components of 0.61 West Coast, 0.59 Mountain
West, and only 0.50 East.

Fig. 4 presents boxplots showing distributions of widths of 10-fold cross-validation-based
95% prediction intervals at monitoring sites. We also report the coverage of these
conventional 95% predictive intervals from the cross-validation. We see that coverage is
close to the nominal 95% level across all three regions only in the case of models with
variograms varying by region. The fully regional model with two PLS components provides
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the highest R2 values (to two decimal places) and, on average, the narrowest prediction
intervals while achieving coverage that is closest to the 95% target for all three regions. We
select this regional coefficient/regional variogram model with two PLS components as the
primary model for further discussion of results.

Fig. 5 depicts the magnitudes of cross-validation prediction errors. There is a greater range
of prediction errors, both positive and negative, in the West Coast and Mountain West
regions, but the predictions are approximately unbiased, on average, within each region.
Root mean square errors are 0.353, 0.353, and 0.144 (square root scale for PM2.5) for the
West Coast, Mountain West, and East regions, respectively.

Fig. 6 presents a graphical depiction of the elements of the 171 × 2 matrix of loadings (P)
which provides insight into the two PLS component scores. The first and most important
component is dominated by high positive loadings on the “development” land use scores,
lengths of roads, and amounts of impervious surface in contrast to high negative loadings on
“natural” land use features like shrubs, grass and evergreen, along with negative loadings on
distances to roads and pollutant sources. This score is an interpretable composite measure of
development (or urbanization) positively correlated with PM2.5 concentrations. The second
PLS component, constrained to be orthogonal to the first component, clearly contrasts the
NDVI vegetative index scores with some of the developmental measures, notably
impervious surfaces and “high development” land use. While this score is easy to
summarize conceptually, it has less straightforward interpretation since its contribution to
the prediction of PM2.5 concentrations varies in sign across regions.

Table 3 presents a summary of the parameter estimates from the likelihood fitting of the
model. The coefficients of the PLS component scores show much larger coefficients for the
dominant first PLS component in the Mountain West and West Coast in contrast to the East.
The coefficient of the second PLS component, the contrast between NDVI and
developmental measures, is clearly significant only in the East where it has a negative
coefficient.

Fig. 7 shows region-specific regional variogram estimates and Table 3 gives their associated
parameter estimates. We used the residuals from the PLS regression part of the fitted model
to compute these empirical variograms. These results indicate there is much stronger
residual spatial correlation structure in the East in contrast to the Mountain West and West
Coast where the ranges are short and the nuggets higher. Thus geostatistical smoothing is
contributing much more strongly to predictions in the East.

Finally, Fig. 8 presents an image map of predicted PM2.5 concentration evaluated on a
regular 25 km grid across the United States and smoothed for display purposes. The inset
illustrates the smaller spatial scale structure of the predictions using the example of the
southern California region around Los Angeles. There are some clear features to note at this
25 km scale. The West and Mountain West regions are generally lower in concentration, on
average, but with great variability and pockets of the highest concentrations located in urban
areas, especially notable around Los Angeles. The eastern part of the country includes a
broad region of higher concentrations generally extending east of the Mississippi with the
exception of southern Florida, northern Wisconsin and Michigan, and northern New
England.

4. Discussion
The regionalized national universal kriging model with Partial Least Squares regression
presented here provides a number of important practical and methodological results. First it
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yields predictions of annual average PM2.5 concentrations with good predictive accuracy
(cross-validated R2 value of 0.88 for our selected fully regional model; see Fig. 3) and well-
calibrated predictive intervals (Fig. 4). Second, it has demonstrated the usefulness of PLS to
simplify dimension reduction in comparison to other approaches to variables selection (e.g.
Su et al., 2009; Mercer et al., 2011). In addition, our regionalized strategy to universal
kriging has proved to be valuable in addressing aspects of large-scale nonstationarity.

Impressive as the national R2 statistic may be, it can hide regionally varying biases and
inaccuracies. We show that absolute prediction errors are substantially larger in the West
and Mountain West regions, with corresponding larger 95% prediction intervals (Figs. 4 and
5). Fortunately, our modeling accurately represents this heterogeneity in predictive intervals
that are well-calibrated in the sense of achieving near nominal 95% coverage. The greater
errors are to be expected due to the greater variation in PM2.5 concentrations in the western
part of the country and the greater spatial variability (lower spatial correlation) reflected in
the variogram models for the West Coast and Mountain West (Fig. 7). The smoother spatial
structure in the eastern two-thirds of the country leads to more accurate predictions mostly
driven by the kriging component of the universal kriging estimates.

Our regional modeling for the spatially varying structure described above results in
discontinuity in the predictions at the boundaries between regions. These discontinuities are
relatively minor except in the transition from East to Mountain West due to a near absence
of monitoring sites in the region from the southern border of the U.S. in the midwestern
region of Texas, north through the Texas panhandle, eastern Colorado, western Kansas, and
southern Nebraska. There are little data to validate the relatively sharp transition in predicted
PM2.5 concentrations illustrated in Fig. 8. (Fortunately, this area is relatively sparsely
populated and there are few target subjects in any of the epidemiologic studies of interest.)

The PLS regression component of the modeling strategy obviates the more common
approaches to variable selection in land use regression modeling. While there is no
guarantee that the PLS approach will yield better predictions than a variable selection
approach, we find it to be a convenient and scientifically attractive way to synthesize the
predictive value of a very large number of highly correlated GIS-based covariates. Cross-
validatory choice of the number of PLS components in the universal kriging model is very
important as it differs from the larger number of PLS components that were selected by
cross-validation for pure PLS regression without the kriging component (Table 2). We were
able to achieve the best calibrated model (defined in terms of the coverage of prediction
intervals) with only two PLS components.

Realistic spatial (and spatio-temporal) models on a national scale must be nonstationary in
the sense that both of the components of the universal kriging approach, the spatial
regression model and the residual spatial correlation structure, almost certainly vary
regionally. In the case of the regression model, one might argue that features like roads and
traffic should correlate with or predict pollutant levels similarly across the country, but even
here, different vehicle mixes, vehicle speeds, road surfaces and meteorology can influence
the details of these spatial predictions. Furthermore, certain types of covariates are more
relevant in some parts of the country than others, as is the scale and extent of secondary
pollutant formation. For example, in the east, there is the well-known phenomena of
secondary particle formation from oxidation of sulfur and nitrogen oxides emitted from tall
stacks by coal-fired power plants. These elevated emissions result in a regional-scale
particulate ‘haze’ rich in sulfate and nitrates that comprise major fraction of the fine particle
mass (Malm et al., 2004; Tesche et al., 2006; Hand et al., 2012). In contrast, the organic
carbon fraction of the PM2.5 is higher in the Western U.S. and is more variable over the
region (Malm et al., 2004; Hand et al., 2012).
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Our regional universal kriging models used simple stationary and isotropic spatial
covariance or variogram models. It would certainly be attractive to consider nonstationary
models for individual regions (Sampson, 2012), and it is possible that nonstationary
covariance models would help, especially in the complex western regions of the U.S.
However, results with the naïve stationary models are reasonably well-calibrated. We have
obtained similarly accurate results in applications to other annual averages and other
pollutants of interest, including NO2.

The ultimate objective of the prediction model described here is to provide exposure
predictions for epidemiologic analysis of health effects of long-term exposure to air
pollutants, estimated by average annual exposure. Our spatial model provides very accurate
predictions, but there will still be differences between the true and predicted exposures for
study subjects, resulting in covariate measurement error that can bias health effect estimates
and standard errors (Kim et al., 2009). In fact, more accurate exposure predictions do not
necessarily result in the best health effect estimates, depending on exposure assessment
study design and components of the exposure estimation errors which can lead to Berkson-
like and classical-like errors in health effect estimates (Szpiro et al., 2011b). Since we
employ likelihood-based methods to fit our universal kriging model, recently published
computationally efficient bootstrap methods are available to correct for the measurement
error and give valid health effect confidence intervals (Szpiro et al., 2011a;Bergen et al.,
2012).
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Appendix A
Data sources.

Road network http://www.teleatlas.com/OurProducts/MapData/Dynamap/index.htm

Population http://arcdata.esri.com/data/tiger2000/tiger_download.cfm

Landcover http://www.mrlc.gov/nlcd2006.php

NDVI http://glcf.umiacs.umd.edu/data/ndvi

Impervious http://www.mrlc.gov/nlcd2006.php

Emissions http://www.epa.gov/air/emissions

AQS http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm

IMPROVE http://views.cira.colostate.edu/web
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HIGHLIGHTS

• We successfully predict PM2.5 at a fine spatial scale across the U.S. using
regionalized universal kriging.

• PLS regression is an effective alternative to variable selection with over 200
geographic covariates.

• There is large-scale nonstationarity in mean and spatial smoothness of PM2.5
concentrations.

• We demonstrate accurate cross-validated PM2.5 prediction with an overall R2 of
0.88.
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Fig. 1.
U.S. topographic map with monitoring sites color coded according to the three modeling
regions defined as explained in Section 2.5: East, Mountain West, and West Coast.
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Fig. 2.
Boxplots depicting the distribution of PM2.5 concentrations on the original and square root
scale, for the entire nation and for each of the three regions illustrated in Fig. 1.
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Fig. 3.
Scatterplots of observed PM2.5 concentrations and cross-validation predictions (square root
scale) for 2 PLS component universal kriging models by regional vs. national model
specification. Points are colored coded by region (as in Fig. 1): East: blue, Mountain West:
green, West Coast: red.
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Fig. 4.
Boxplots showing distributions of widths of cross-validation 95% prediction intervals at
monitoring sites. Coverage percentages of the confidence intervals are printed below the
boxplots.
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Fig. 5.
Graphical depiction of positive (green) and negative (red) cross-validation prediction errors
(in sqrt (μg/m3)) for the model with regionally estimated PLS regression coefficients and
regional variogram models.
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Fig. 6.
Two PLS components characterized by the loadings of the 171 covariates of Table 1 on the
component scores. These loadings have been scaled as correlations with the component
score. Sets of circles with increasing radii denote a particular measure (such as sum of A1
highway road lengths, “a1”) evaluated in buffers of increasing size, as specified in Table 1.
The pollutants NOx, PM10, PM2.5, and SO2 appear in the emissions category of Table 1,
while the “dev_” variables are the “development” variables in the “land use” category of
Table 1.
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Fig. 7.
Regional exponential variogram model fits estimated by maximum likelihood for 2 PLS
component models. The three main panels are all drawn to the same distance of 500 km.
Because of the much greater range of the variogram for the east, the third panel includes an
inset illustrating the variogram drawn to a distance of 4000 km.

Sampson et al. Page 19

Atmos Environ (1994). Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Image plot of PM2.5 concentration predictions over the entire US with an inset image of the
Los Angeles area to demonstrate some of the fine scale spatial structure of the predictions.
The national map was derived from predictions computed at points on a regular 25 km grid
and the high resolution Los Angeles inset from predictions on nested 1 km and 0.5 km grids.
The raster images were computed in ArcGIS with inverse distance weighting using the five
nearest grid points.
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Table 1

Geographic covariates considered in the land use regression component of the universal kriging model.

Predictor variable category (n) Units Buffer radii (meters)

Population (3) Sum of people 5000, 10,000, 15,000

Emissions (8): NOx, PM10, PM2.5, SO2 Tons per year 15,000, 30,000

Land use (86)a: mixed forest, deciduous forest, evergreen, crop,
pasture,
 grass, shrub, water, high development, medium development,
 low development, open development

Percent 50, 100, 150, 300, 400, 500, 750, 1000, 3000, 5000

Vegetative index (NDVI) (35): winter average, summer average; 75th,
 50th, and 25th quantiles

n/a 250, 500, 1000, 2500, 5000, 7500, 10,000

Impervious surfaces (10): average within buffer n/a 50, 100, 150, 300, 400, 500, 750, 1000, 3000, 5000

Roadway (18): sum of A1 road lengths; sum of A2 + A3 road lengths Meters A1: 400, 500, 750, 1000, 1500, 3000, 5000
A2 + A3: 50, 100, 150, 300, 400, 500, 750, 1000,
1500, 3000, 5000

Proximity to features (11): commercial zone; A1, A2, A3 roadways;
 large airport; any airport; large, medium, small shipping port;
 railroad; railyard

Meters, log10 n/a

a
The number of buffers with data vary by land use category. Only the high, medium, low, and open development categories have all 10 buffer

sizes. Data sources listed in Appendix 1.
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Table 3

Maximum likelihood parameter estimates and standard errors for the universal kriging model. Regression
coefficients B1 and B2 multiply the PLS component scores depicted by their loadings in Fig. 6. Variograms
corresponding to the parameters here are illustrated in Fig. 7.

Region Coefficients Variogram parameters

Intercept B1 B2 Nugget Partial sill Range (km)

East 2.604 (0.520) 0.024 (0.002) −0.013 (0.002) 0.013 0.433 2944

Mountain West 3.069 (0.102) 0.062 (0.006) 0.014 (0.011) 0.014 0.156 35

West Coast 3.263 (0.128) 0.086 (0.009) −0.016 (0.009) 0.018 0.254 86

Notes: Standard errors, computed from the hessian of the full likelihood, are provided in parentheses only for the regression coefficients. The
variogram parameters can be described as follows: The nugget is the height of variogram at zero distance, representing the variance of differences
in observations arbitrarily close together. The sill is the limit of the variogram as the distance goes to infinity; it is twice the variance of
observations. The partial sill is the difference between the sill and the nugget. The range parameter is the exponential parameter that determines the
distance at which the variogram reaches 95% of the sill; points separated by this distance are nearly uncorrelated. For the exponential variogram,
the range is 3 times the parameter presented here.
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