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1 Spatial process models for point-referenced data
With the emergence of highly efficient Geographical Information Systems (GIS) databases
and associated software, the modeling and analysis of spatially referenced data sets have
received much attention over the last decade. Spatially-referenced data sets and their
analysis using GIS arise in diverse areas of scientific and engineering investigations
including geological and environmental sciences (Webster and Oliver, 2001), ecological
systems (Scheiner and Gurevich, 2001), digital terrain cartography (Jones, 1997), computer
experiments (Santner et al., 2003), public health (Cromley and McLafferty, 2002) and so on.
A wonderful compilation of current research trends in spatial statistics is presented by
Diggle et al. (2010).

Two base units of measure and mapping are commonly encountered: locations that are areas
or regions with well-defined neighbors (such as pixels in a lattice, counties in a map, etc.),
whence they are called areally referenced data; or locations that are points with coordinates
(latitude-longitude, Easting-Northing etc.), in which case they are called point referenced or
geostatistical. Statistical theory and methods play a crucial role in the modeling and analysis
of such data by developing spatial process models, also known as stochastic process or
random function models, that help in predicting and estimating physical phenomena. This
proposal deals with the latter: modeling of point-referenced data. The last two decades has
seen significant developments in such modeling; see, for example, the books by Cressie
(1993), Chilés and Delfiner (1999), Møller (2003), Schabenberger and Gotway (2004), and
Banerjee, Carlin and Gelfand (2004) for a variety of methods and applications.

Spatial process modeling envisions a random surface y(s) representing some variable (e.g.,
temperature, precipitation) that conceptually exists in continuum over the domain s ∈ D but
has been observed only at a finite set of locations and must be interpolated (or predicted) for
other arbitrary locations. By interpolating at arbitrarily fine resolutions, these models
estimate the random surface accounting for correlation between temperature and
precipitation levels at locations closer to each other and produce a response surface for the
dependent variable. Such interpolation from statistical models is often referred to as
“kriging” and the response surfaces are called kriged surfaces.

2 Model-based kriging
The most common geostatistical setting assumes a response or dependent variable y(s)
observed at a generic location s along with a p × 1 vector of spatially referenced predictors
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x(s). Model-based geostatistical data analysis often proceeds from spatial regression models
such as,

(1)

The residual from the regression is partitioned into a spatial process, w(s), capturing spatial

association, and an independent process, , also known as the nugget effect,
modeling measurement error or micro-scale variation. Micro-scale variation is often
modeled as a stationary spatial disturbance at a scale lesser than the minimum inter-site
distance. Often modelers separate the micro-scale variation by inserting an η(s) into (1),
whence η(s) captures micro-scale variation and ϵ(s) captures pure measurement error (see,
e.g. Cressie, 1993, p.112).

With observations y = (y(s1),…, y(sn))′ from n locations, the data are treated as a partial
realization of a spatial process modeled through w(s). The most popular specification w(s) ~
GP(0, C(·,·)) is a zero-centered Gaussian Process determined by a valid covariance function
C(si, sj) defined for pairs of sites si and sj Typically the modeler specifies C(s1, s2) = σ2ρ(s1,
s2; θ) where ρ(·;θ) is a correlation function and θ includes parameters quantifying the rate of
correlation decay and the smoothness of realizations. The data likelihood is given by y ~
N(Xβ, Σ y), where X is an n × p matrix of regressors whose i-th row is x(si)′, Σy = σ2R(θ) +
τ2IN and R(θ) is an n × n spatial correlation matrix with ρ (si, sj; θ) as its (i, j)-th element.
Likelihood-based inference proceeds by computing estimates from maximum likelihood
(ML), restricted maximum likelihood (REML), or Generalized Estimating Equation (GEE)
approaches and investigating their consistency and asymptotic properties. The books by
Cressie (1993) and Schabenberger and Gotway (2004) provide excellent expositions of such
methods.

We conclude with a few comments on stationarity of spatial processes. Stationarity is a
common assumption when modeling spatial processes. A random field w(s) is called weakly
stationary (or stationary) if it has finite second moments, its mean function is constant and
its covariance function C(s1, s2) = C(h), where h = s1 – s2. This implies that the relationship
between the values of the process at two locations only depends on the vector distance
between these two locations. An isotropic process results when C(s1, s2) = C(‖h‖), where ‖h‖
is the distance between s1 and s2. Stationarity is a desirable property for spatial processes,
but is usually a rather unrealistic assumptions for large spatial domains. There is an
extensive literature on nonstationary models, e.g., Sampson and Guttorp, (1992), Nychka et
al., (2002), Higdon et al., (1999), and Fuentes, (2002). Fuentes, (2005) introduces a
nonparametric test for stationary.

3 Hierarchical models for spatial data
A different approach that has recently gaining popularity among spatial modelers follows
the Bayesian inferential paradigm (Robert, 2001; Gelman et al., 2004; Carlin and Louis,
2008; Banerjee et al., 2004). Here one constructs hierarchical (or multi-level) schemes by
assigning probability distributions to parameters a priori and inference is based upon the
distribution of the parameters conditional upon the data a posteriori. By modeling both the
observed data and any unknown regressor or covariate effects as random variables, the
hierarchical Bayesian approach to statistical analysis provides a cohesive framework for
combining complex data models and external knowledge or expert opinion.

Bayesian hierarchical models (e.g. Gelman et al. 2004; Banerjee et al., 2004) are widely
recognized as versatile inferential tools for capturing the rich dependence structures
underlying spatial data and offering full inference on spatial processes. For an n × 1 vector
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of observed outcomes, y = (y(s1),y(s2),…,y(sn))′ with a first stage conditionally independent
Gaussian specification and associated priors, we construct a Bayesian hierarchical model

(2)

where θ = {θ1, τ2};. The parameter τ2 is called the nugget and captures unstructured noise
that may arise in the form of measurement error or micro-scale variability. Customarily,
either a flat or a multivariate Gaussian prior is assigned to β. Zhang (2004) demonstrated,
rather remarkably, that the process parameters θ1 were not consistently (in the classical
sense) estimable for a rather general class of covariance functions. This implies that the
priors’ inferential impact is not obliterated with increasing sample size; hence, weakly
informative priors will be needed to identify the process parameters.

Spatial data analysis seeks to estimate the regression coefficients β, the unknown process
parameters θ = {θ1, τ2}, which convey the nature of spatial associations and micro-scale
variability, and the spatial effects w which elicit lurking spatial patterns in the residual.
Estimating (2) customarily proceeds using Markov chain Monte Carlo (MCMC) methods
(e.g. Robert and Casella, 2004). With Gaussian likelihoods, often we integrate out the spatial
effects w. This replaces the likelihood and the prior for w by N (y | Xβ, C(θ1) + τ2In). In any
case, estimation involves n × n matrix decompositions of cubic order in the number of
locations, which become exorbitant for large n. Evidently, multivariate and spatial-temporal
settings aggravate the situation.

As modern data technologies acquire and exploit massive amounts of data, statisticians
analyzing spatially referenced datasets confront settings where the number of geo-referenced
locations is very large. This makes hierarchical modeling infeasible or impractical. The
situation is further exacerbated in multivariate settings with several spatially dependent
response variables, where the matrix dimensions increase by a factor of the number of
spatially dependent variables being modeled. It is also aggravated when data is collected at
frequent time points and spatiotemporal process models are used.

4 Hierarchical models for large spatial datasets
Modelling large spatial datasets have received much attention in the recent past. Vecchia
(1988) proposed approximating the likelihood with a product of appropriate conditional
distributions to obtain maximum-likelihood estimates. Stein et al. (2004) adapt this
effectively for restricted maximum likelihood estimation. Another possibility is to
approximate the likelihood using spectral representations of the spatial process (Fuentes,
2007). These likelihood approximations yield a joint distribution, but not a process that
facilitate spatial interpolation. Another concern is the adequacy of the resultant likelihood
approximation. Expertise in tailoring and tuning of a suitable spectral density estimate or a
sequence of conditional distributions is required and does not easily adapt to multivariate
processes.

Also, the spectral density approaches seem best suited to stationary covariance functions.
Yet another approach considers compactly supported correlation functions (Furrer et al.,
2006; Kaufman et al., 2008; Du et al., 2009) that yeild sparse correlation structures. More
efficient sparse solvers can then be employed for kriging and variance estimation, but the
tapered structures may limit modeling flexibility. Also, full likelihood-based inference still
requires determinant computations that may be problematic. Another approach either
replaces the process (random field) model by a Markov random field (Cressie, 1993) or else
approximates the random field model by a Markov random field (Rue and Tjelmeland,
2002; Rue and Held 2006). This approach is best suited for points on a regular grid. With
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irregular locations, realignment to a grid or a torus is required, done by an algorithm,
possibly introducing unquantifiable errors in precision.

In recent work Rue, Martino and Chopin (2009) propose a promising INLA (Integrated
Nested Laplace Approximation) algorithm as an alternative to MCMC that utilizes the
sparser matrix structures to deliver fast and accurate posterior approximations. This uses
conditional independence to achieve sparse spatial precision matrices that considerably
accelerate computations, but relaxing this assumption would significantly detract from the
computational benefits of the INLA and the process needs to be approximated by a Gaussian
Markov Random Field (GMRF) (Rue and Held, 2006). Furthermore, the method involves a
mode-finding exercise for hyper-parameters that may be problematic when the number of
hyperparameters is more than 10. Briefly, its effectiveness is unclear for our multivariate
genetic models with different structured random effects and unknown covariance matrices as
hyperparameters.

Adapting the above approaches to more complex hierarchical spatial models involving
multivariate processes (e.g. Wackernagel, 2006; Gelfand et al, 2004), spatiotemporal
processes and spatially varying regressions (Gelfand et al., 2003) and nonstationary
covariance structures (Paciorek and Schervish, 2006) is potentially problematic.

A versatile approach pursues models especially geared towards the handling of large spatial
datasets. Typically, these emerge from representations of the spatial process in lower-
dimensional subspaces and easily generalize to multivariate and/or spatiotemporal
processes. These are often referred to as low-rank or reduced-rank spatial models and have
been explored in different contexts (Wikle and Cressie, 1999; Lin et al., 2000; Higdon 2002;
Kamman and Wand, 2003; Ver Hoef et al. 2004; Paciorek, 2007; Stein, 2007, 2008; Cressie
and Johannesson, 2008; Banerjee et al., 2008, 2010; Crainiceaniu et al., 2008; Latmer et al.
2009). Many of these methods are variants of the so-called “subset of regressors” methods
used in Gaussian process regressions for large data sets in machine learning (e.g. Rasmussen
and Williams, 2006). The idea here is to assume that the spatial information available from
the entire set of observed locations can be summarized in terms of a smaller, but
representative, sets of locations, or “knots”. When retaining richness and flexibility of
hierarchical models is of primary interest, knot-based low rank models seem to be the
preferred option.

Sun et al. (2011) offer a very detailed review of statistical methods for massive spatial
datasets. Here, we consider one low-rank approach, referred to as Gaussian predictive
process models, in some detail. Detailed descriptions of hierarchical Gaussian predictive
process models are given in Banerjee et al. (2008), (2010) and Finley et al. (2009). Here, we
offer a brief review.

Predictive process models use a fixed set of “knots”  with n* << n, which
may, but need not, be a subset of  An optimal projection of the process w(s) at a generic
location s, based upon its realization over , is given by the “kriging equation” w˜(s) =

E{w(s) |w*}, where . We refer to w˜(s) as the predictive
process derived from the parent process w(s). Banerjee et al. (2008) discuss several
theoretical properties of the predictive process, including multivariate and spatiotemporal
extensions.

For a zero-centered parent Gaussian process, say w(s), with covariance function C (s1, s2;
θ1), the predictive process is w˜(s) = E{w(s) | w*} = c(s, θ1)′C*(θ1)−1w*, where c(s; θ1)′ is
the 1 × n vector whose j-th element is  and C*(θ1) is the n* × n* covariance
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matrix with elements . Since w* is multivariate normal with zero mean and n* ×
n* dispersion matrix C*(θ1), w˜(s) is itself a nonstationary Gaussian process arising from a
spatially adaptive linear transformation of the parent process over the set of knots. Replacing
w(s) with w˜(s) in (2), yields its predictive process counterpart

(3)

Computational gains are achieved since matrix computations now involve the n* × n*
matrix C*(θ1), where n* is chosen to be much smaller than n. Unlike several other knot-
based approaches, the predictive process does not introduce additional parameters nor does
it involve projecting data onto a grid. Thus, it avoids identifiability issues or spurious loss of
uncertainty (see, e.g., Banerjee et al. 2008). Indeed, predictive process models are attractive
since they are directly induced by the parent process without requiring choices of basis
functions or kernels or alignment algorithms for the locations.

Being a low-rank process, the partial realizations of the predictive process produce a low-
rank (degenerate) likelihood. Being smoother than the parent process, it tends to have lower
variance which, in turn, inflates the residual variability often manifested as an
overestimation of τ2. In fact, the following inequality holds for any fixed  and for any
spatial process w(s):

(4)

If the process is Gaussian then standard multivariate normal calculations yields the
following closed form for this difference for site s,

(5)

One simple remedy for the bias in the predictive process model (Finley et al., 2009;

Banerjee et al. 2010) is to use the process , where  and
ϵ˜(s) is independent of w˜(s). We call this the modified predictive process. Now, the
variance of w˜ϵ(s) equals that of the parent process w(s) and the remedy is computationally
effective – adding an independent space-varying nugget does not incur substantial
computational expenses. However, the remedy is less effective in capturing small-scale
spatial variation as it does not account for the spatial dependence in the residual process.

Hierarchical spatial models, including the predictive process models, are customarily
estimated using Markov chain Monte Carlo (MCMC) methods (e.g. Robert and Casella,
2004). Further technical details on MCMC algorithms for hierarchical spatial models can be
found in Banerjee et al. (2004) and particularly for predictive process models in Banerjee et
al. (2008) and Finley et al. (2009).

5 Illustration
We present a brief illustration of hierarchical predictive process model using a forest
biomass dataset recently analyzed by Guhaniyogi et al. (2011). Spatial modeling of forest
biomass and other variables related to measurements of current carbon stocks and flux have
recently attracted much attention for quantifying the current and future ecological and
economic viability of forest landscapes. Interest often lies in detecting how biomass changes
across the landscape (as a continuous surface) and how homogeneous it is across the region.
In the United States, the Forest Inventory and Analysis (FIA) program of the USDA Forest
Service collects the data needed to support these assessments. Here, we present a subset of
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the analysis in Guhaniyogi et al. (2011). Our outcome variable is log metric tons of forest
biomass per hectare. A July, 2003 mosaic of Landsat TM imagery, was used to calculate
tasseled cap components of brightness (TC1), greenness (TC2), and wetness (TC3) to serve
as explanatory variables. Figure 1(a) illustrates the georeferenced forest inventory data
consisting of 6,538 forested FIA plots measured between 1999 and 2006 across the lower
peninsula of Michigan.

Candidate models included a simple non-spatial regression and a predictive process model.
Knot locations were chosen by applying the k-means clustering algorithm to the observed
locations. We assumed that the parent covariance function is exponential: C(s1, s2; θ1) = σ2

exp(−ϕ‖s1 – s2‖); therefore, θ1 = {σ2, ϕ}. Based on results from an initial variogram analysis
of the non-spatial model’s residuals, the priors for τ2 and σ2 for the predictive process
models followed IG(2 0.5) distributions (mean equaling 0.5), while the prior for the spatial
decay parameter ϕ followed a U(0.006 3), which corresponds to support from 1–500 km.
This is a broad range of support, given the maximum distance between any two plots is 460

km. For all models the regression coefficients each received a flat prior, i.e.  a matrix
of zeroes.

Posterior inference was based on three chains of 25, 000 iterations (the first 5,000 iterations
were discarded as burn-in). The samplers were coded in C++ and Fortran and leveraged
Intel’s Math Kernel Library threaded BLAS and LAPACK routines for matrix
computations. All analyses were conducted on a Linux workstation using two Intel Nehalem
quad-Xeon processors. Table 1 offers parameter estimates for the predictive process
candidate models. Over the range of knot intensities, both the non-spatial and predictive
process models produce comparable estimates of the regression coefficients – several of
which explain a significant amount of variability in log biomass. The predictive process
model seems to estimate a larger nugget, τ2, and a smaller partial sill, σ2. Figure 1(b) is an
interpolated surface of the non-spatial model residuals. We would expect the fitted spatial
random effects of the candidate models to look somewhat similar to this residual surface,
which is evident from Figure 1(c).

6 Summary and discussion
We have offered a brief overview of certain recent developments in the problem of fitting
desired Bayesian hierarchical spatial modeling specifications to large datasets. To do so, we
propose simply replacing the parent spatial process specification by its induced predictive
process specification. One need not digress from the modelling objectives to think about
choices of basis functions or kernels or alignment algorithms for the locations. The resulting
class of models essentially falls under the setup of hierarchical generalized linear mixed
models.

As in existing low-rank kriging approaches, knot selection is required and some sensitivity
to the number of knots is expected (see Finley, Sang, Banerjee and Gelfand, 2009, for
details). With a fairly even distribution of data locations, one possibility is to select knots on
a uniform grid overlaid on the domain. Alternatively, selection can be achieved through a
formal design-based approach based upon minimization of a spatially averaged predictive
variance criterion (e.g., Diggle and Lophaven, 2006). However, in general the locations are
highly irregular, generating substantial areas of sparse observations where we wish to avoid
placing knots, since they would be “wasted” and possibly lead to inflated predictive process
variances and slower convergence. Here, more practical space-covering designs (e.g., Royle
and Nychka, 1998) can yield a representative collection of knots that better cover the
domain. Another alternative is to apply popular clustering algorithms such as k-means or
more robust median-based partitioning around medoids algorithms (e.g., Kaufman and
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Rousseeuw, 1990). User-friendly implementations of these algorithms are available in R
packages such as fields and cluster and have been used in spline-based low-rank
kriging models (Ruppert et al. 2003). While for most applications a reasonable grid of knots
should lead to robust inference, with fewer knots the separation between them increases and
estimating random fields with fine-scale spatial dependence become difficult. Indeed,
learning about fine scale spatial dependence is always a challenge (see, e.g., Cressie, 1993,
p.114).

It is also not uncommon to find space-time datasets with a very large number of distinct time
points, possibly with different time points observed at different locations (e.g., real estate
transactions). Predictive processes can be used to improve the applicability of a class of
dynamic space-time models proposed by Gelfand et al. (2005) by alleviating a
computational bottleneck without sacrificing model flexibility and with minimal loss of
information. Recently, Finley et al. (2011) focused on the common setting where space is
considered continuous but time is taken to be discrete. Here, data is viewed as arising from a
time series of spatial processes. Some examples of data that fit this description include: US
Environmental Protection Agency’s Air Quality System which reports pollutants’ mean,
minimum, and maximum at 8 and 24 hour intervals; climate model outputs of weather
variables generated on hourly or daily intervals, and; remotely sensed landuse/landcover
change recorded at annual or decadal time steps.

Finally, we conclude with some remarks on computing. With multiple processors,
substantial gains in computing efficiency can be realized through parallel processing of
matrix operations. We intend continued migration of our lower-level C++ code to the
existing spBayes (http://cran.r-project.org; Finley et. al. 2007) package in the R
environment to facilitate accessibility to predictive process models.
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Figure 1.
Forest biomass dataset and associated estimates for the 50 knot predictive process models:
(a) location of forest invetory plots; (b) interpolated surface of the non-spatial model
residuals; and (c) predictive process model estimated spatial random effects with knot
locations.
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Table 1

Nonspaial and predictive process candidate models’ parameter posterior credible intervals (50 (2.5 97.5)) and
model fit criterion for the forest biomass dataset. Run time is in hours for a single chain of 25,000 interations
on a single non-hyperthreaded processor.

Non-spatial Predictive process

50 100 200

β0 10.98 (10.95, 11.01) 10.99 (10.71, 11.26) 11.00 (10.68, 11.30) 11.01 (10.97, 11.06)

βTC1 0.07 (0.02, 0.12) 0.03 (−0.02, 0.09) 0.03 (−0.02, 0.09) 0.05 (0.00, 0.11)

βTC2 −0.03 (−0.09, 0.02) −0.00 (−0.07, 0.06) −0.01 (−0.07, 0.06) −0.02 (−0.08, 0.04)

βTC3 0.45 (0.41, 0.49) 0.43 (0.39, 0.48) 0.43 (0.39, 0.48) 0.44 (0.39, 0.48)

σ2 – 0.17 (0.09, 0.33) 0.14 (0.08, 0.24) 0.28 (0.16, 0.48)

τ2 1.01 (0.97, 1.04) 0.93 (0.84, 0.98) 0.96 (0.87, 1.00) 0.74 (0.53, 0.86)

ϕ 0.016 (0.009, 0.051) 0.011 (0.007, 0.062) 0.016 (0.011, 0.023)

G 5935 5804 5759 5640

P 5939 5842 5830 5810

D 11874 11646 11590 11450

Run time (hours) – 9.44 19.31 37.08
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