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Abstract
A crucial step in the analysis of spatial data is to estimate the spatial correlation function that
determines the relationship between a spatial process at two locations. The standard approach to
selecting the appropriate correlation function is to use prior knowledge or exploratory analysis,
such as a variogram analysis, to select the correct parametric correlation function. Rather that
selecting a particular parametric correlation function, we treat the covariance function as an
unknown function to be estimated from the data. We propose a flexible prior for the correlation
function to provide robustness to the choice of correlation function. We specify the prior for the
correlation function using spectral methods and the Dirichlet process prior, which is a common
prior for an unknown distribution function. Our model does not require Gaussian data or spatial
locations on a regular grid. The approach is demonstrated using a simulation study as well as an
analysis of California air pollution data.
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1 Introduction
An essential element of spatial data analysis is to estimate the spatial correlation function
that determines the relationship between a spatial process at two locations. Let y(s) ∈ ℛ be
the response at spatial location s = (s1, s2)′ ∈ ℛ2. A common spatial model is y(s) = x(s)′β
+ μ(s) + ɛ(s), where x(s) is the p-vector of known covariates with regression parameters β,

μ(s) is a spatial process, and  is error. We assume that the spatial process
μ(s) is a mean-zero Gaussian process with stationary covariance function Cov(μ(s),μ(s + h))
= τ2C(h). The standard approach to selecting the appropriate spatial correlation function
C(h) is to use prior knowledge or exploratory analysis of the residuals, such as a variogram
analysis, to select the correct parametric correlation function, e.g., exponential, spherical, or
Matérn (Cressie, 1993; Banerjee, Carlin, and Gelfand, 2004). However, this can be
challenging if the number of covariates is large, since covariate estimates can change
dramatically with different spatial models (Reich, Hodges, and Zadnik, 2006), or if the
responses y(s) are non-Gaussian, for example in a spatial analysis of binary data.

Rather that selecting a particular parametric correlation function, we treat the covariance
function as an unknown function to be estimated from the data. Directly modeling the spatial
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correlation function is challenging because it must be nonnegative definite. That is,

 for any vector (a(s1),…, a(sn))′. This requirement is
difficult to check when specifying a spatial correlation. A more convenient way to specify a
flexible model for the spatial covariance is through the corresponding spectral density,
which is directly related to the correlation function but has fewer restrictions. When the
spatial locations are on a grid, the periodogram is an asymptotically unbiased estimate of the
spectral density, and many methods have been proposed to estimate the spectral density by
smoothing the periodogram (e.g., Ripley, 1981; Schabenberger and Gotway, 2005).
Recently, Zheng, Zhu, and Roy (2010) propose a nonparametric Bayesian prior for the
spectral density of a Gaussian random field on a lattice.

As in Zheng, Zhu, and Roy (2010), we specify a nonparametric Bayesian prior for the
spectral density. Our model does not require Gaussian responses or that the spatial locations
be on a grid. We model the spectral density as in infinite mixture of simple spectral
densities. By modeling the covariance function as unknown in a fully-Bayesian model for
the spatial process, our uncertainty regarding the form of the correlation function is correctly
propagated throughout the analysis, including the posterior of the regression coefficients and
the posterior predictive distribution.

The paper proceeds as follows. In Section 2 we review spectral methods, and propose two
models for the spectral density using the Dirichlet process prior and the Dirichlet process
mixture priors in Section 2.2 and 2.3, respectively. The computational algorithm is described
in Section 3. We compare methods using a simulation study in Section 4 and a spatial
analysis of air pollution data in Section 5. Section 6 concludes.

2 Nonparametric priors for a spectral density
2.1 Review of spectral methods

In this section we provide a brief review of spectral methods for spatial statistics; a more
comprehensive review can be found in Fuentes and Reich (2009). A key result in spectral
analysis is Bochner’s theorem, which states that a stationary covariance C(h) is non-negative
definite if and only if there exists a positive, finite measure F so that

(1)

where  is a frequency. Bochner’s theorem directly relates the covariance
function to the spectrum, F(ω). We assume the spectrum permits a density with respect to
Lebesgue measure, so that F(dω) = τ2f(ω), where τ > 0 and f is the spectral density with

. Sections 2.2 and 2.3 give nonparametric priors for the spectral density, and thus
nonparametric priors for the spatial covariance function.

The spatial process is real if and only if the spectral density is even, i.e., . The
spectral representation theorem states that the real-valued process μ(s) can be written

(2)

where U and W are independent Gaussian processes with mean zero, orthogonal increments,

and . The spectral representation formulates the spatial
process as a convolution of trigonometric basis functions and stochastic processes in the
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frequency domain with independent increments. From this model, clearly μ(s) is a Gaussian
process with mean zero and covariance C(h).

2.2 Dirichlet process prior for the spectral density
The spectral density f is a density that controls the distribution of mass in the spectral
domain. Therefore, we model f using the Dirichlet process (DP) prior (Ferguson, 1973;
Ferguson, 1974) which is often used in Bayesian nonparametrics as a prior for an unknown
distribution. Using the stick-breaking representation (Sethuraman, 1994), the Dirichlet
process prior for f can be written as the infinite mixture

(3)

where the mixture probabilities pj satisfy  almost surely and δ(αj) is the point
mass distribution at αj ∈ ℛ2. The mixture probabilities have priors p1= V1 and

 for j > 1, where  Beta(1, D). The Vj “break the stick” into pieces that

sum to one, with  the proportion of the stick not attributed to
the first j − 1 terms and Vj the proportion of the remaining mass attributed to term j. The

frequencies , where fθ is a parametric centering distribution with hyperparameters θ.

To ensure that the spectral density is even, and thus a real-valued process, the prior could be
modified as

(4)

where pj and αj are modeled as before. Due to the DP’s discreteness, the stochastic integral
(2) becomes the countable sum

(5)

where , independent over j. This is equivalent to

(6)

where  and , independent over j. We use this parameterization
since it has fewer terms. The spatial process μ is a linear combination of sine and cosine
basis functions. The sine and cosine functions are random functions of the unknown

frequencies . Note that without the restriction that the spectral density is even, the
second sum in (6) would be the imaginary part of the complex process μ(s).

The spatial covariance is a random function of αj and Vj. Given αj and Vj (through pj),
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(7)

where h = s − t. Therefore the conditional covariance is stationary and V(μ(s)) = τ2 for all s.
Also, we note that although the spectral density is discrete, the resulting covariance is a
continuous function of h.

The prior mean and variance (with respect to ωj and Vj) of the covariance function are

(8)

where

(9)

are the first two spectral moments. The prior for the spatial covariance function is centered
on the covariance corresponding to the centering distribution fθ. The variance of the spatial
covariance is a function of both the variability in the centering distribution though Vθ and
the stick-breaking parameter D; large D implies small prior variance and thus strong
centering on the parametric covariance Cθ.

The infinite sum in (6) cannot be fit in practice. Although there are infinitely-many terms,
they are stochastically decreasing, e.g., the prior mean of pj is [1/(D+1)][D/(D+1)]j−1.
Therefore, for computational purposes we truncated the mixture to M terms by setting υM=
1. This finite mixture approximates the full model arbitrarily well, and the posterior
distribution of the mass on the final term, pM, can be used to determine the number of terms
needed to provide a sufficient approximation to the full model. We increase M until the
posterior mean of pM is small, say 0.001. For large data sets with strong spatial correlation,
M≪n may provide a sufficient approximation. This gives a natural dimension reduction
which is useful for large spatial data sets. A disadvantage of this truncation is that the
process μ becomes periodic, which is unrealistic in most situations. However, when interest
is restricted to a particular finite spatial domain, e.g., California as in Section 5, periodicity
is not problematic unless there is interest in projecting outside of domain of interest.

For the centering distribution we use the bivariate-t centered at zero with 2 × 2 scale matrix

 and degrees of freedom 2ν + 1, i.e., θ=(ρ, ν) and

(10)

This corresponds to the Matérn (Matérn, 1960) correlation. The Matérn has two parameters,
ρ > 0 controls the range of the spatial covariance, and ν> 0 controls the smoothness. The
Matérn has several interesting spatial cases, including the Gaussian correlation C(h)
=exp(−4||h||2/ρ2) with ν= ∞ and exponential correlation C(h) = exp(−||h||/ρ) with ν=1/2.

2.3 Dirichlet process mixture prior for the spectral density
The Dirichlet process prior for the spectral density is discrete. In some settings a continuous
spectral density is desirable, e.g., to avoid periodicity as discussed in Section 2.2. Therefore
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we also consider a Dirichlet process mixture model (Antoniak, 1974) for the spectral
density. The Dirichlet process mixture model replaces the discrete point mass distribution

δ(αj) with a continuous parametric distribution  with location αj and parameters γj.
As in (4), we restrict the spectral density to be even, and thus spatial process to be real, by

restricting each component of the mixture to be even. To do this, we select  to be a
location family with location α that is even in α, i.e., . Then

(11)

where pj and αj are modeled as in Section 2.2.

A natural choice for g is be a bivariate non-central t with location αj, scale matrix 
and degrees of freedom 2ξj + 1, so that . Clearly, this is a location family
satisfying . This mixing distribution has the advantage of reducing to

the Matérn spectral density if p1= 1 and α1= 0. Also, restricting αj so that  gives
an isotropic correlation.

To study the correlation induced by this spectral density model, let Kγ(h) = ∫ cos(h
′ω)gγ(ω|0)dω be the correlation function corresponding to the centered mixing distribution
with α = 0. For example, if g is bivariate t as above, then Kγj is the Matérn correlation with
range ϕj and smoothness ξj The Appendix shows that

(12)

The correlation is a convex combination of correlations of the form cos(α′jh)Kγj(h).
Assuming a non-central bivariate t for g, each correlation is the product of a Matérn
correlation Kγj(h) and the trigonometric function cos(α′jh). Taking ξj = 0.5 gives the
exponentially-dampened cosine function of Zastavnyi (1993). The central Matérn
correlation is always positive and decreasing. Thus a mixture of central Matérn correlations
is also positive and decreasing. In contrast, using a non-central t spectral density results in
the Matérn correlation being multiplied by cos(α′jh), and thus the non-central Matérn
correlation cos(α′jh)Kγj(h) is oscillating and can be negative. This provides greater
flexibility than the central Matérn.

Modeling the spectral density as a mixture of non-central t densities can approximation a
wide class of spectral densities, and thus a mixture of non-central Matérn correlations can
approximate a wide class of correlation functions. The even discrete DP model in (4) spans
the entire class of even distributions. Therefore, convolving the discrete DP with the mixture
distribution gives non-zero mass to any even spectral density (Hoff, 2003), and therefore
spans the full class of covariance functions for a real process.

Figure 1 plots an example covariance of the form (12) to illustrate the flexibility of this
covariance model. The mixture is truncated to a three-component mixture and the
correlations are isotropic with αj = (αj, αj)′, and are therefore plotted against h ∈ ℛ1. The
first correlation is the usual Matérn with smoothness parameter 10. The second and third are
non-central Matérn with α2= 50 and α3= 25. The resulting mixture decays rapidly at the
origin, plateaus between h = 0.10 and h = 0.25, and then descends to zero at h = 0.5.
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As in Section 2.2, we must truncate the mixture at M terms, where M is chosen so that pM ≈
0. The DP mixture model can typically be approximated by far fewer terms than the discrete
DP model, since the covariances for each mixture term are more flexible for the mixture
model than the discrete DP (a non-central Matérn compared to a single-point spectral
density).

Finally, we note that although we assume the spatial process μ is Gaussian, the prior for the
spatial covariance can easily be applied to non-Gaussian data. For example, if the
observations are binary, we may use the spatial probit model P [y(s) = 1] = Φ [x(s)β + μ(s)],
where Φ is the standard normal distribution function. With a slight modification, the
computational algorithm in Section 3 would apply to this model.

3 Computational details
The MCMC updates for all parameters are done using either Gibbs or random walk
Metropolis sampling. The most problematic parameters are the frequencies ωj in Section
2.2’s discrete DP model. Updating these parameters conditioned of the coefficients (Uj,Wj)
lead to poor MCMC mixing. Therefore, we update ωj and (Uj,Wj) simultaneously using
blocked Metropolis-Hastings sampling. We first generate the candidate frequency as

 where ωj is the current value in the chain. Then the candidate for (Uj,Wj) is

generated from the full conditional posterior of (Uj, Wj) given . We tune c to give
acceptance rate around 40%. This dramatically improved MCMC convergence.
Convergence is monitored using trace plots of the deviance and several representative
parameters. For the simulation study in Section 4 we generate 5,000 iterations and discard
the first 1,000 as burn-in; for the data analysis in Section 5 we generate 10,000 samples and
discard the first 5,000 as burn-in. Code is available from the first author by request.

4 Simulation study
We conduct a brief simulation study to compare covariance models. We generate nt

independent realizations of a spatial process at ns locations s1, …, sn with  Uniform[0,
1[2. Let

(13)

be the observation at location si for replication t, where x(si) are spatial covariates and β are
the corresponding regression coefficients, μt(s) are independent over t and correlated across

space with mean zero and variance τ2 = 1, and  N(0,0.12) is error. We include only
the intercept, i.e., x(si) = 1, and set β = 0.

We generate S = 25 data sets with ns= 100 sites and nt= 100 replications with five isotropic
spatial correlation models for μt(s), C(h), where  is spatial distance. The correlations
are:

1. Exponential: Matérn(0.2,0.5)

2. Matérn: Matérn(0.1,2)

3.
Spherical:  with ρ = 0.3

4. Wave:  with ρ = 0.1

5. Mixture: the three-component mixture plotted in Figure 1
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These correlations are plotted in Figure 2. For each data set, half of the observations are
used as training data to fit the model (selected randomly over space and replication) and the
remaining locations are used as the test set.

Since the primary objective of covariance estimation is often to estimate the underlying
spatial process, we compare models using coverage probabilities of 90% intervals and the
mean square error of the posterior mean for μt(s), separately for training and testing sets. We
fit two models. The first is Dirichlet process mixture (DPM) model described in Section 2.3.
Although much of the intuition regarding the prior for the correlation function is derived
from the discrete DP model in Section 2.2, we choose to focus on the continuous DPM
spectral density in simulation study and data analysis in Section 5. For the DPM model we

assume isotropy by fixing  and truncate the infinite sum at M = 5 terms.
Inspecting the posterior of pM suggests that this provides a reasonable approximation to the
full model. As a benchmark, we also include the usual isotropic Mat′ern. For all models we
select the following uninformative priors: N(0, 102) for the mean parameters (i.e., the
intercept) in β, InvGamma(0.1,0.1) for all variances, Unif(0,2) for all spatial ranges, and
Unif(0.5,10) for all Matérn smoothness parameters.

Table 1 presents the results. The DPM model is comparable to the Matérn correlation for the
first two simulations where the true correlation is Matérn. The Matérn correlation also
performs well under the spherical correlation, which decays like the Matérn near the origin,
but is exactly zero for large distances. The DPM model gives considerably smaller mean
squared error for the non-decreasing wave and mixture correlations. The relative mean
square error of the DPM compared to the Matérn is especially small for the training sites for
the mixture correlation and the testing sites for the wave correlation. The DPM’s coverage
probabilities are slightly less than 90% for the training sites, but near 90% for all
correlations for the testing sites.

5 Analysis of fine particular matter
We illustrate the proposed models for the spatial covariance using fine particulate matter
data. Fine particular matter, PM2.5, are particles less than 2.5 micrometers in aerodynamic
diameter. PM2.5 concentration has been linked to several adverse health outcomes (Bates,
Baker-Anderson, and Sizto, 1990; Ostro et al., 1991; Dockery, Schwartz, and Spengler,
1992; Schwartz, 1994; Pope, Dockery, and Schwartz, 1995) and is currently one of six air
pollutants regulated by the US EPA. Spatial modeling of PM2.5 is important because
monitors are typically operational only every two, three, or six days, so spatial modeling to
interpolate PM2.5 at inactive monitoring locations is needed for health studies.

The daily data are from California from June–August, 2008, obtained from the California
EPA at http://www.arb.ca.gov/homepage.htm. To apply a stationary spatial model we first
project the spatial locations to a two-dimensional surface using the Mercator projection, and
then scale them to the unit square. We analyze yt(s) = log[Zt(s) + 1], where Zt(s) is the
observed concentration on day t at site s, to justify the normality assumption. The data are
modeled as in (13), except that we include in x(s) the spatial covariates latitude, longitude,
and elevation, as well and the squares of latitude and longitude. There at ns =84 spatial
locations and nt= 92 days. Of the 84 * 92 = 7728 potential observations, 2431 (31%) are
observed. The data are plotted in Figure 3.

We fit the Matérn and DPM models described in Section 4, using the same priors as in
Section 4 except that we use M = 20 mixture terms in the DPM model. Due to the regular
sampling scheme at most stations, there are few consecutive observations to study temporal
correlation. Therefore, we model the spatial effects μt(s) as independent over time, and
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having the same spatial correlation each day. We compare correlation models by
withholding 20% of the observations as a test set, selected randomly across space and time.
We compute prediction mean squared error (MSE), mean absolute deviation (MAD), and
coverage probabilities of 90% intervals. The DPM model has slightly smaller MSE and
MAD (0.122 and 0.211) than the Matérn (0.126 and 0.214). Both models have coverage
probability 0.87.

Figure 4 plots the posterior mean of the spatial correlation for the two correlation models.
The posterior mean (95% interval) for the Matérn correlation parameters are 0.37 (0.31,
0.44) for the range and 0.52 (0.50, 0.54) for the smoothness parameter. Compared to the
Matérn, the DPM model has higher posterior mean correlation for middle distances with 0.2
< h < 0.6 and lower correlation at long distances with h >0.8. The posterior standard
deviation of the correlations is large relative to these differences, but the added flexibility of
the DPM spatial correlation results in a modest improvement in prediction MSE.

6 Discussion
In this paper, we present flexible priors for a spatial correlation by applying the Dirichlet
process prior and the Dirichlet process mixture prior to the spectral density. Using simulated
data we demonstrate that adequately modeling the correlation function can improve
estimation of the underlying spatial process. The methods are illustrated using a spatial
analysis of fine particular matter.

In our analysis of PM2.5 data we did not account for autocorrelation. It would be straight-
forward to model the spatiotemporal correlation function via the three-dimensional spectral
density. However, this would lead to a challenging computational problem. It may be
possible to use a reduced-dimensional Dirichlet Process model with M ≪ n to fit this model.

Another area of future work is allowing the spectral density to be nonstationary and
nonparametric. Several methods have been proposed to model a spatially-varying density
function (Gelfand, Kottas, and MacEachern, 2005; Griffin and Steel, 2006; Reich and
Fuentes, 2007; Dunson and Park, 2008). These priors could be used to specify a spatially-
varying spectral density, which would allow the spectral density to vary by location, but be
smoothed towards the spectral densities at nearby sites.

Appendix – Covariance of the DPM spectral density
First we consider a single mixture component, i.e., we derive the correlation function
corresponding to the spectral density 0.5g(ω|α)+ 0.5g(ω| −α). Using the sum-difference
formula cos(u ±υ)= cos(u) cos(v) ∓ sin(u) sin(υ), the induced covariance is

(14)

where ω(+) follows g with location α, ω(−) follows g with location −α, δ follows g with

 since both cos(•) and g(•|0) are even, Eδ [sin(δ
′h)] = 0 since g(•|0) is even, and Cδ is the correlation induced by g(•|0). The covariance for

the mixture is then .
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Figure 1.
Example of a mixture of non-central Matérn correlations. The three correlations (denoted
“C1”, “C2”, and “C3”) have location, scale, and smoothness (αj, ϕ,ξ) equal to (0,0.05,10),
(50,0.01,20), and (25,0.10,1), respectively.
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Figure 2.
Correlation functions used in the simulation study.
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Figure 3.
Fine particulate matter in California, June–August, 2008. The shading indicates the average
of the log(concentration+1), and the symbols indicate the number of observations.
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Figure 4.
Spatial correlation estimates for the California PM2.5 data. The left panel gives the posterior
mean correlation for the Matérn and Dirichet process mixture (DPM) model, and right panel
plots the posterior mean plus/minus two times the standard deviation for the DPM model.
The x-axis is projected distance using the Mercator projection to the unit square.
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