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Abstract
Background—A difficult issue in observational studies is assessment of whether important
confounders are omitted or misspecified. Here, we present a method for assessing whether residual
confounding is present. Our method depends on availability of an indicator with two key
characteristics: first, it is conditionally independent (given measured exposures and covariates) of
the outcome in the absence of confounding, misspecification and measurement errors; second, it is
associated with the exposure and, like the exposure, with any unmeasured confounders.

Methods—We demonstrate the method using a time-series study of the effects of ozone on
emergency department visits for asthma in Atlanta. We argue that future air pollution may have
the characteristics appropriate for an indicator, in part because future ozone cannot have caused
yesterday’s health events. Using directed acyclic graphs and specific causal relationships, we
show that one can identify residual confounding using an indicator with the stated characteristics.
We use simulations to assess the discriminatory ability of future ozone as an indicator of residual
confounding in the association of ozone with asthma-related emergency department visits.
Parameter choices are informed by observed data for ozone, meteorologic factors and asthma.

Results—In simulations, we found that ozone concentrations one day after the emergency
department visits had excellent discriminatory ability to detect residual confounding by some
factors that were intentionally omitted from the model, but weaker ability for others. Although not
the primary goal, the indicator can also signal other forms of modeling errors, including
substantial measurement error, and does not distinguish between them.

Conclusion—The simulations illustrate that the indicator based on future air pollution levels can
have excellent discriminatory ability for residual confounding, although performance varied by
situation. Application of the method should be evaluated by considering causal relationships for
the intended application, and should be accompanied by other approaches, including evaluation of
a priori knowledge.

Assessment of confounding is a challenging issue in observational studies of causal effects.
The paucity of methods that address this issue contrasts with the plethora available for
evaluating predictive models, including cross-validation, goodness-of-fit tests, Akaike’s
Information Criteria and so forth.1,2 Although not designed to address confounding, these
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methods have been used for that purpose.2 If used to assess confounding, their performance
may be uncertain because their main goal is not the evaluation of patterns of causal
relationships—yet it is the interrelationships of causes and effects that underlie, create and
even define confounding. Residual confounding is particularly difficult to detect because of
this dependency on the causal relationships and because these relationships are at the same
time what one seeks to determine.

A coherent approach to detect confounding should reflect the central role of causality and
the nature of confounding as a mixing of effects. Here, we define confounding as:
“Assuming that exposure precedes disease, confounding will be present if and only if
exposure would remain associated with disease even if all exposure effects were removed,
prevented, or blocked”.3 This definition emphasizes causal effects and considers the
counterfactual situation in which the exposure’s effects are blocked or prevented. It has been
used with causal graphs to develop (necessary) criteria for the presence of confounding and
is adopted here.

One approach to assessment of confounding, consistent with the above definition, relies on
evaluation of causal relationships based on a priori knowledge4 supplemented by
information from the study being conducted. The causal relationships postulated after this
evaluation are then assessed to determine whether confounding is suspected, possibly aided
by the use of directed acyclic graphs (DAGs).3 Merely modeling the associations between
measured variables accurately is inadequate because the association between an exposure
and outcome may not equal the causal effect, even after model adjustments for covariates.4,5

Again, background knowledge about causal relationships must guide analyses.

A basic tenet of causality is that the cause precedes the effect. This idea motivates the
method described here for assessing whether important residual confounding should be
suspected. Although not its primary goal, the method can also provide an indication of
important measurement error and misspecification of the concentration-response form.
However, better and more direct approaches for identification of these last two types of
errors are available. For example, Rothman and colleagues (2008)6 discuss measurement
error and use of validation data in Chapter 19, and model specification and dose-response in
Chapter 20.

The proposed method depends on the availability of a variable, referred to as an indicator,
with two key characteristics. First, when the model is correctly specified, the indicator must
be conditionally independent of the outcome given exposure and any other modeled
covariates. In particular, it should neither cause nor be caused by the disease. Second, it
should be associated with the exposure of interest and, like that exposure, with the (possibly
unmeasured) confounders. These characteristics imply that the indicator will tend to be
associated with disease if residual confounding or other modeling errors are present. We
present arguments below, using time-series studies of ambient air pollution as an illustrative
example, that pollutant levels measured after the health event has already occurred may
approximate these characteristics. We propose and evaluate a specific quantitative indicator
based on future air pollutant levels to assess presence of residual confounding.

The method we propose overlaps with concepts that arise in connection with Granger
causality.7,8 For example, Granger causality involves time-series, assessment of causal
relationships and the temporality of cause and effect. Important differences seem to be
present as well. In particular, the definition of causality that underlies Granger causality
depends on the “universe of all knowledge,” whereas the definitions of causality and
confounding that underlie our approach depend on counterfactual models and the related
notion of exchangeability (e.g., Greenland and Robins9). On the other hand, Robins et al.10
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and Robins11 extended Granger causality by putting it in a counterfactual framework, and
identified situations in which it might not identify true causality. Another difference
concerns the intended applications: Granger causality is intended primarily to assess the
ability of one time series to forecast or cause another, whereas our approach is intended
primarily to assess whether residual confounding is important. Although time series can be
involved, we show in the discussion how the method can also apply in other situations.
Nevertheless, there is overlap between the method we describe and the important work of
Granger. Furthermore, since causality is the underlying concern, some apparent differences
may disappear with deeper understanding.

We now provide theoretic justification for our approach, using causal graphs to represent
assumptions and causal relationships. We evaluate the ability of the proposed indicator to
correctly identify the presence of unmeasured confounding in simulations. Although our
emphasis is confounding, we briefly evaluate the indicator’s ability to identify measurement
error, another type of analytic “error.” To make the simulations realistic, we chose
parameter values using results from time-series studies of the effects of ambient air pollution
in Atlanta. We conclude with a discussion of the strengths and weaknesses of the method
and its potential for use in contexts other than time-series.

Methods
Theoretic Justification

We use DAGs to summarize our assumptions about causal relationships.3 For now, we
assume no measurement error. In these graphs, nodes or letters represent events or factors.
Some nodes are connected by arrows that represent effects, pointing from cause to effect.
The graphs are acyclic because they contain no loops: one cannot proceed in the direction of
the arrows and return to the same node, indicating that a factor cannot cause itself.

We summarize some terminology concerning DAGs. Factors in the graph which directly
cause exposure E (an arrow points from the factor to E) are called the parents of E. A
“collider” is a factor caused by two or more other factors in the graph—two or more arrows
converge at a collider. Two variables are associated if the causal relationships characterized
in the graph create an association. A potential association is represented by a path from one
variable to another that avoids colliders. A backdoor path is a path from exposure to disease
beginning with an arrow into exposure. It indicates that non-independence is possible or
expected. We make no assumption that a backdoor path necessarily implies dependence; we
do not assume that graphs are faithful.6 For example, the DAG in Figure 1 depicts an
expected association between exposure E and disease D because it includes a (backdoor)
path from E to C to D. However, it depicts no association between B and C because the only
depicted path between them goes through the collider E. We indicate analytic control for a
variable by drawing a box around it. If the model is correctly specified, such control blocks
the paths through the variable. However, if the controlled variable is a collider (as is E in
Figure 1), control (e.g., stratification) can induce an association between the variable’s
parents. We indicate an induced association by a dotted line connecting the parents.

To illustrate our method concretely, we consider health effects of ambient air pollution,
although results apply more generally. Thus, exposure is illustrated by air pollutant levels on
a specific day (say AP0), measured confounders by meteorologic factors on a specific day
(say M0), and the health outcome by asthma emergency department visits on that or a
subsequent day (say D1). Figure 2 illustrates these basic relationships. The goal is to assess
the effects of exposure (AP0) on disease (D1). Meteorologic factors (M0) affect air pollution
levels (AP0) and also affect subsequent disease (D1). For example, M0 might affect disease,
perhaps indirectly, by increasing exposure to some other factor (e.g., pollen) that
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subsequently affects disease. U0 represents an unmeasured factor present on or before day 1,
such as an additional unrecognized meteorologic factor, that also affects the air pollutant
level (AP0).

Figure 2A includes an arrow for each assumed effect: of U0 on AP0; of M0 on AP0; and of
M0 on D1. Figure 2B additionally includes an arrow from U0 to D1.

To assess whether control for M0 adequately controls confounding under the assumptions
given in Figure 2, we duplicate Figure 2 (A and B) as Figure 3, but make two changes: first,
we delete all arrows coming from AP0 to represent blocking the effects of AP0; second, we
box in M0 to represent analytic control for it and the blocking of any path through M0. In
Figure 3A it is not possible to follow an unblocked path from AP0 back to disease with
exposure effects removed, implying no confounding. Without control for M0, an unblocked
path from AP0 to D1 is present (through M0) and confounding would be anticipated. On the
other hand, with the assumptions incorporated in Figures 2B and 3B, confounding may be
present (AP0 and D1 may be associated even if AP0 has no effect on D1) because a backdoor
path is present (through U0) even after control for M0.

These DAGs incorporate our causal assumptions and allow a standard way to evaluate
confounding. We now consider an additional variable that, if the causal assumptions are
correct, is not a cause of disease but is associated with the exposure. For our motivating
example, air pollution levels on a day after the health event has already occurred should
satisfy our assumptions. An important presumption is that the health event does not affect
subsequent air pollutant concentrations. (This presumption could be invalid if, for example,
an increase in health events were noted, thus prompting officials to limit driving or
emissions from other sources. Here, we assume this scenario is incorrect.)

We now assume our basic causal structure is correct, with either an unmeasured factor U0
that is not a confounder (as in Figures 2A and 3A) or that is a confounder (Figures 2B and
3B). We also assume that air pollution (AP2) on a day after the health event (D1) is not
affected by that event, but like AP0 is affected by the unmeasured factor U0. For example,
U0 might be a persistent meteorologic condition that affects air pollution over several days.
Figure 4A illustrates that, with our assumptions, AP2 should be (conditionally) independent
of disease after control of M0—no unblocked backdoor path exists when U0 is not a
confounder. On the other hand, if U0 is a confounder (Fig. 4B) we expect an association of
AP2 with disease—an unblocked backdoor path exists even after control of M0. These
arguments suggest that we can use a variable, such as air pollutant levels on a day after the
health event, as an indicator of unmeasured confounding. Briefly stated, our central assertion
is this: if unmeasured confounding is present and our basic causal assumptions reasonably
approximate reality, then future air pollution (AP2) can be associated with past disease,
whereas in the absence of unmeasured confounding (and given our causal assumptions), AP2
should be independent of past disease. These assertions continue to hold if AP0 is an
additional cause of AP2 (i.e., if we add an arrow from AP0 to AP2 in Figures 2 and 3, AP2 is
still independent of D0 conditional on AP0 and other measured covariates if confounding is
absent, but not necessarily if present). This additional effect is potentially relevant when the
indicator used is future exposure.

We show in Appendix 1 that under alternative, more complicated causal assumptions,
inclusion of additional, future variables may be useful.

Our arguments have emphasized residual confounding, which is our focus. This might be
viewed as a particular type of model misspecification, that due to omission of important
factors whose effects mix with and distort the association of interest. Although the primary
purpose of the proposed method is decidedly identification of residual confounding, other
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types of analytic errors could also lead to an association between an “indicator” variable and
disease. Hernán and Cole12 note the importance of considering not only confounding but
also other types of bias. This is particularly relevant here, as the indicator we propose cannot
distinguish between residual confounding, measurement error and misspecification of the
dose-response. Any of these biases can lead to an association of the indicator with the
outcome; we illustrate this possibility for measurement error in Appendix 2.

Proposed Indicator
We now propose a quantitative indicator for residual confounding based on the presumption
that the future ambient air pollutant levels should tend to be associated with disease in the
presence of confounding but not associated in its absence. This presumption should be
approximated provided the causal relationships discussed above and summarized in Figures
2 and 3 adequately approximate the true relationships.

To use future air pollutant levels as a quantitative indicator, we first fit a model that includes
the exposure of interest (air pollutant level prior to disease occurrence, APt) and the relevant
covariates, written in general form in Equation (1):

(1)

where E(Yt) is the expected value of the count of emergency department visits on day t; APt
is a (linear) term for the air pollutant level before or on day t; covariatest is a vector of
factors selected for control measured on or before day t; α, β and γ are parameters.

We also fit the same model, but additionally include the indicator (air pollution measured
after disease occurrence, APt+1). If residual confounding is absent and the model correctly
specified, APt+1 should be unassociated with disease after adjustment for the other variables,
and the estimated rate ratio for APt should be little affected by inclusion of APt+1, except
perhaps for change in precision. An observed association between APt+1 and disease
suggests residual confounding or other potential bias. Although other formulations are
possible, here we evaluate the following statistic as an indicator of residual confounding:

(2)

where β̈f is the estimated slope for the indicator (e.g. APt+1), when added to the model being
assessed for possible misspecification; δ̂f is its estimated standard error. We interpret the
statistic I as an approximate z-score, providing a statistical test for confounding.

Simulation Approach
We assess the ability of this approach to detect model misspecification using data from
ongoing time-series studies of air pollution and daily emergency department visits. We use
simulations so that the true causal relationships will be known, and we use the actual
estimated parameters to calculate the “true,” expected daily number of emergency
department visits to make the simulations realistic. We base expected counts on daily EDV
for asthma over a recent 10-year period in Atlanta (the health event) and use 8-hour
maximum ozone levels lagged 1 day as the air pollutant of interest (Table 1). To reduce
heterogeneity, we restrict analyses to the warm season (May–October).

Analyses use the model given in Equation 1. Covariates include: linear, quadratic and cubic
terms for time ( day numbered from 1 to 185 for each 6-month period); linear, quadratic and
cubic terms for the moving average of minimum temperature lagged 1–2 days; indicators for
temperature on day t (1°C); indicators for day-of-week; indicators for month and year; and
product terms between the year and time terms. Emergency department visits counts (Yt) are
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assumed to be Poisson with mean given by Equation 1. This model is similar, but not
identical, to models we have used previously.13

We fit this Poisson model to the observed counts to obtain model-predicted daily counts,
which we treat as the truth. For simulations with an assumed non-null air pollution effect,
we include APt as a linear term in calculating the expected daily count; for simulations with
no assumed air pollution effect, we omit APt+1. We next generate simulated daily counts of
emergency department visits with a Poisson distribution and mean given by the model-
predicted values. We then analyze each simulated data-set using models that include APt but
not APt+1, and models that include both APt and APt+1. Analyses are then conducted that
misspecify the analytic model in one of two ways: first, we omit one or more covariates
(scenarios 2–6) and, second, we simulate independent (classical) measurement error in the
exposure (scenario 7). We calculate the magnitude of confounding in our simulations as the
(median) log odds ratio (β̂) estimated with the misspecified model (e.g., a covariate omitted,
without the future indicator) minus the true β, where the true β is the coefficient for APt in
the model used to generate the simulated data. For scenarios 1A–7A, ozone has no effect in
the true model, and for 1B–7B, it does (RR ≈ 1.026 per standard deviation).

To evaluate the ability of the statistic I to detect confounding, we calculate the proportion of
simulations in which its absolute value exceeds 1.96, corresponding to rejection of the null
(βf=0). We also evaluate its discriminatory ability using the area under the ROC curve
(AUC). We calculate the AUC using 500 simulations: we compare (pairwise) I from each
generated dataset analyzed with an incorrectly specified model, with I from each generated
dataset analyzed with the correctly specified model. The AUC estimate is the proportion of
pairs for which I from the incorrectly specified model exceeds I from the correctly specified
model, in absolute value.

Results
As shown in Table 2, a small to moderate bias in the log rate ratio was introduced in
scenarios 2A – 5A by dropping: day-of-week; time; maximum temperature; and both time
and month variables, respectively(column 3 of Table 2). Use of the ozone level one day after
the health event discriminated at least somewhat between the correctly and the incorrectly
specified model in each scenario. It had weak discriminatory ability in scenario 5A (AUC =
0.60), but the bias in this scenario was relatively small. The ability to discriminate
incorrectly from correctly specified models for the other scenarios was better and for
scenarios 2A and 4A excellent (AUC ≥ 0.96). The proportion of simulations in which the
null (no confounding) is rejected (column 4) tended to increase in parallel with the AUC.
Addition of the future meteorologic factor as another control variable tended to weaken the
ability of the indicator to distinguish an incorrectly from a correctly specified model
(rightmost column, Table 2).

When the exposure had an effect in the “true” model (RR ≈ 1.026), results were generally
similar (Table 3): the statistic I had some ability to distinguish misspecified from correctly
specified models, but again this differed by scenario. In scenario 5B, omission of maximum
Temperature led to little bias and discriminatory ability was weak (AUC = 0.51), likely due
in part to the weak confounding.

We also evaluated a formulation of the indicator based on the change in the coefficient (β)
for the exposure of interest (APt) in models with and without APt+1 divided by its standard
error in the model without APt+1,(β̂1 − β̂2)/δ̂1. The discriminatory ability of this alternative
indicator was similar to that for I (data not shown).
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We chose ozone and emergency department visits related to asthma in order to illustrate and
evaluate performance of the method because we previously found13 a strong link between
ozone and asthma. For completeness, we also simulated results for visits related to
cardiovascular disease and lag 0 (same day) carbon monoxide (CO). The ability of the
indicator to detect confounding for this disease and exposure was less, sometimes essentially
absent (data not shown). This likely occurred for three reasons: first, the degree of
confounding for each scenario was substantially less than the corresponding scenario for
asthma-ozone; second, the correlation of the indicator with the exposure was weaker for CO
than for ozone (0.33 vs. 0.51, respectively); and finally, the correlation of the future
indicator (future CO) with the omitted factors also tended to be substantially less (e.g., for
Maximum Temperature: −0.04 vs. 0.49 with CO and ozone, respectively).

Discussion
The proposed method can detect important, residual confounding—its primary purpose. For
some types and degrees of residual confounding, the discriminatory ability was excellent,
but it was weak for others. However, situations in which discriminatory ability was weakest
tended to be those with less confounding, at least for the examples considered. The indicator
may be most useful for comparing competing models—for choosing between models that
seem reasonable based on a priori considerations of causal relationships. The model with the
weakest indication of misspecification might be preferred, although sensitivity analyses
would nevertheless remain useful. Models with stronger indications of misspecification
might be less preferred.

As noted previously, the proposed indicator cannot distinguish among confounding,
measurement error and misspecification of the dose-response, all potentially important
sources of bias. However, if interest is in characterizing ambient air pollutant levels,
measurement error is arguably relatively lower by definition: even if ambient pollutant
levels imperfectly measure actual exposures, they can be feasibly measured with better
accuracy than true exposures (e.g., for all residents of a city), and then regulated and
changed. Thus, ambient levels can be conceptually valid exposures and appropriate objects
of study.14 Furthermore, if measurement error estimates are available, then correction for
measurement error is possible,15 although utility of the many applicable methods may be
limited by the information available.

The proposed method is firmly rooted in the concepts of causality and confounding. In
particular, we have assumed that the causal patterns summarized in the DAGs appropriately
reflect the important relationships; if not, the approach may fail. The described application
to time series also hinges on the requirement that a cause must precede its effect so that an
association with a factor that occurs after the outcome cannot be its cause. If we also assume
that the disease does not affect the indicator, then associations between such a factor and the
outcome must reflect an association other than a direct causal effect of the indicator on
disease (or the reverse). Likely explanations are residual confounding or perhaps
measurement error or misspecification of form of the concentration-response. We reiterate
that the primary purpose of the proposed approach is not identification of measurement error
or misspecification of form because other, more direct methods are available to identify
these problems.6,16 Our method provides an indicator for detecting the more elusive residual
confounding, possibly due to unmeasured or unrecognized factors.

We have justified and evaluated the proposed method in the context of time-series studies of
the effects of air pollution (ozone and CO) on emergency department visits (asthma and
cardiovascular disease), but the method applies to other types of studies as well. If a factor is
available that does not cause the outcome of interest, but that is associated with the exposure
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and any omitted confounder, one can evaluate applicability of the method by using DAGs.
As general examples, the method may be applicable in certain other types of time-series
studies and in genetic studies. In genetic studies, the indicator might be the genotype of a
spouse or offspring of the subject whose disease risk is assessed in the study. If there is no
confounding, say by population stratification, then neither the spouse’s nor the child’s
genotype should be associated with the presence of (many types of) disease in the subject,
conditional on that subject’s genotype. The presumption is that a spouse’s or child’s
genotype does not affect the subject’s disease; conditional on the subject’s genotype, that of
the spouse or child is irrelevant. However, if an unmeasured cultural factor is associated
with the genotype under investigation and is also a risk factor, leading to residual
confounding, then that factor should be associated with the spouse’s genotype—and should
manifest as an association between the genotype of the child or spouse and the subject’s
disease, even conditional on the subject’s genotype.

In review, Dr. Robins pointed out that our proposed approach can be justified using results
of the G-computation algorithm.17 In particular, we can consider the Disease (Dt) as a
treatment. In the absence of confounding, the G-formula for the effect of Dt on APt+1,
conditional on covariates through time t, is the regression of APt+1 on Dt conditional on
measured covariates. An association of Dt with APt+1 suggests violation of the no
confounding assumptions whereas no association is consistent with that assumption. This
approach provides another way to justify our conclusions. We note that we are not the first
to use this future indicator. For example, some of us13 as well as others18 used it previously
but without providing the theoretical justification (apart from a presentation and abstract19).
After we submitted this manuscript, Lipsitch et al20 described a “negative control exposure”
for detecting confounding. Their concept of a negative control exposure (it “should ideally
have the same incoming arrows as [the exposure]”20) overlaps with ours of an indicator
(“when the model is correctly specified [it] must be conditionally independent of the
outcome given exposure and any other modeled covariate[,]… associated with the exposure
of interest and, like that exposure, with the (possibly unmeasured) confounders”). But the
concepts also differ, perhaps because Lipsitch and colleagues did not consider future
exposure as a possible indicator. Our indicator is likely not an ideal negative control
exposure, particularly if based on future exposures or the child’s genotype as in the
examples above. We now explicitly note above that causes of the indicator can validly
include exposure itself, implying that the restriction (negative control exposure and exposure
itself have the same causes) can be relaxed. Thus, the two concepts are similar, yet
nevertheless have important differences.

Although our method generalizes to other kinds of studies and situations, our simulation
results may not. Other pollutants, outcomes and models would have different discriminatory
ability; simulations specific to those situations should yield more directly applicable
estimates of discriminatory ability. We could calculate the AUC to evaluate the predictive
ability of the indicator because we specified the true model for the simulations; in analyses
of actual data, the AUC would not be available because the true model is unknown.
Nevertheless, the indicator can be calculated to assess and test model misspecification.
Simulations could also be done to evaluate the indicator under conditions similar to those
arising in actual analyses.

The method can be modified by including future values of factors other than those for the
exposure, such as meteorologic factors, either as a control or as an additional indicator
variable. In our simulations, however, we assessed whether additional discriminatory ability
accrued by controlling for future meteorologic variables while still using future air pollutant
levels as the indicator. These simulations suggested the discriminatory ability of the
indicator was weakened by controlling for future meteorologic variables, but this result may
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be sensitive to the situation considered. On the other hand, we did not evaluate use of the
future meteorologic variable itself as the indicator. The indicator used here (I = β̂f)/δ̂f )
should have an approximate Gaussian distribution for large studies. However, this
distribution might not directly apply for some other indicators, such as the change in the
estimated slope for the exposure of interest induced by including the indicator. Furthermore,
the approach hinges on the assumed causal relationships, the validity of which is not readily
captured by a P-value. Thus, we encourage full consideration of all causal relationships,
available a priori information, the magnitude of the indicator I and sensitivity analyses in
addition to the z-score calculated from I when assessing confounding. More evaluation
remains for different outcomes, pollutants and indicators and for applications in other fields,
such as genetics.

In the situations considered, the method tended to provide the strongest indication of
misspecification when it was due to unmeasured confounding; discriminatory ability was
weak for detecting measurement error and even weaker for misspecification of the dose-
response (data not shown). In a few scenarios with a relatively large rate ratio (e.g., 1.15)
and no lag for the exposure of interest, such that the correlation between the indicator and
exposure was strong, the indicator had discriminatory ability for classical exposure
measurement error (AUC as high as 0.9; data not shown). However, we do not view the
greater discriminatory ability for unmeasured confounding as a weakness, because this
situation is consistent with the primary purpose of the proposed approach. Rather, we note
that, if the indicator suggests a problem, we must also consider these other sources of
analytic error, because the indicator does not distinguish among them.

In summary, we have proposed and evaluated an approach for identifying residual
confounding. It is justified by appeal to causal models, requiring availability of a factor that
cannot plausibly cause the outcome, but that should be associated with the exposure of
interest and, like it, with potential confounders as described in the causal diagrams.
Simulations suggest that it can have discriminatory ability for the identification of residual
confounding due to unmeasured risk factors, but the strength of this ability will vary
according to the situation. It provides an additional tool for assessment of residual
confounding—one that uses a priori knowledge in a novel way and that builds on the causal
nature of confounding.
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Appendix 1 Other Causal Relationships
We now consider a slightly more complicated situation in which a second, unmeasured
factor (say, Uo

*) affects both disease and future meteorological factors, as shown in Figure
5. In this case, no confounding path involving Air Pollution (AP0) is present, as there is no
unblocked backdoor path from AP0 to disease (D1) although a confounding path from M0 to
D1 is present.

If we use the association of emergency department visits with AP2 as an indicator of
unmeasured confounding, we would expect to find an association by the path from AP2 to
M2 to U0

* to D1 (dotted, curved line in Figure 6). However, if we also include the future
meteorologic variable (M2) as a control variable, then this backdoor path is blocked once we
control for M2, and we would expect to find no unblocked path and therefore no association
between AP2 and disease, D1 (Figure 7). Thus, the “test” should correctly not indicate
residual confounding involving AP0, provided we control for M2. In summary, assuming the
causal situation in Figure 7 in which there is no confounding, we expect no association
between the indicator (AP2) and disease, provided we also control for the future
meteorologic variable (M2), but would expect an association even without confounding by
Uo if we did not control for M2. On the other hand, if there is confounding as represented by
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an effect of Uo on D1, we would expect an association between the indicator (AP2) and
disease even if we control for M2 (Figure 8). Control for the additional meteorologic
variable (M2) can improve the ability to correctly distinguish absence of a confounding path
involving AP0 from its presence.

Appendix 2 Measurement Error
We now consider the impact on the indicator of measurement error, that is use of an
exposure that is measured with error, another possible source of bias. In the presence of
measurement error, exposure measured after disease has already occurred could be
correlated with the underlying (but mis-measured) true exposure on previous days, even
conditional on the measured exposure for previous days, and be associated with disease.
This possibility is illustrated in Figure 9, which shows a backdoor path from M2, the
measured value of future air pollution, to D1 even after control for the measured value (M0)
of the air pollution of interest (AP0). Yet another type of misspecification would involve
inclusion of the wrong form of an exposure or covariates (e.g., the exposure is included in
the model as a linear term but the correct dose-response is nonlinear). Again, exposure
measured after disease has already occurred could be correlated with the correct exposure
term and be associated with disease. Thus, we expect that the indicator may be associated
with disease, not only if an important confounder is omitted, but also if the model is
misspecified or measurement errors of important causal factors are correlated with the
indicator.
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Figure 1.
Basic Directed Acyclic Graph (DAG); factors B and C affect E. C also affects D.
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Figure 2.
A, the Unmeasured Factor (U0) affects air pollution (AP0) but not disease (D1): B, indicates
the same relationships, but U0 also affects Disease.
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Figure 3.
As is Figure 2, but arrow from AP0 to disease is removed. A, the unmeasured Factor (U0)
affects air pollution (AP0) but not disease (D1): B, indicates the same relationships, but U0
also affects Disease.
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Figure 4.
A, as in Figure 3A, but also include future value of air pollution (AP2); B, as in Figure 3B,
but also include future value of air pollution (AP2).
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Figure 5.
The Unmeasured Factor (U0) affects air pollution (AP0) but not disease (D1), and the
unmeasured factor (U0*) affects meteorology (M0), future meteorology (M2) and disease.
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Figure 6.
Indicates the association between future air pollution (AP2) and disease (D1), due to
presence of the unmeasured factor U0

*. The (other) unmeasured Factor (U0) affects air
pollution (AP0) but not disease (D1); U0* affects meteorology (M0), future meteorology
(M2) and disease.
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Figure 7.
Control for the future meteorologic factor (M2) eliminates the association between future air
pollution (AP2) and disease.
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Figure 8.
As in Figure 7, U0 also affects disease (D1), so confounding is suspect. Control for the
future meterologic factor (M2) no longer eliminates the association between future air
pollution (AP2) and disease.
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Figure 9.
Measurement error (E0 and E1) affects the measured air pollution levels (M0 and M1,
respectively). The true air pollution level (AP0), affects disease, but the future level (AP2)
does not have this effect.
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Table 1

Description of Observed Data

Variable Mean (SD) Median/Min/Max

Daily Asthma ED visits 50.2 (21.2) 46/6/144

Daily 8-hour, O31 2.28 (0.81) 2.27/0.28/4.91

Daily Max Temp (C) 28.4 (4.44) 29/11/39

Daily Min Temp (F) 18.2 (4.33) 19/1/26

1
O3 is measured in units of 25 ppb, approximately equal to its standard deviation.
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