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Abstract
Background—Extreme temperatures have been associated with increased mortality worldwide.
The extent to which air pollutants may confound or modify this association remains unclear.

Methods—We examined the association between mean apparent temperature and total mortality
in 9 cities across the United States during the warm season (May to September) from 1999 to
2002. We applied case-crossover and time-series analyses, adjusting for day of the week and
season in time-series analysis. City-specific estimates were then combined using a meta-analysis.
A total of 213,438 deaths for all causes occurred in these cities during the study period.

Results—We found that mortality increased with apparent temperature. A 5.5°C (10°F) increase
in apparent temperature was associated with an increase in mortality of 1.8% (95% confidence
interval = 1.09% to 2.5%) when using case-crossover analysis and with an increase of 2.7% (2.0%
to 3.5%) using the time-series analysis.

Conclusions—This study provides evidence of increased mortality due to elevated apparent
temperature exposure, with no confounding or effect modification due to air pollution.

Greenhouse gas emissions from human activity are projected to increase overall average
temperatures, as well as the frequency of extreme weather events such as heat waves, across
the world.1-5 These changes will have potentially serious implication for human health, and
the evaluations of the links between climate change and health in terms of describing and
quantifying the impact of these changes, can help identify vulnerable populations and aid
policy makers in formulating preventive actions.6-9 In colder climate, the increase of global
temperature may benefit health,10 although studies have suggested that the wintertime
increase in mortality is due to infectious disease, and not direct effects of cold weather.11

Because climate change will likely increase the average temperature, our study focused on
the effects of weather in the warm season.

The effect of temperature extremes in association with increased mortality are well
studied12-21; greater susceptibility has been reported for the elderly and for those with a
lower socioeconomic status.14,17,20,22,23 The underlying mechanisms for the increase in
mortality may be related to the stress placed on the respiratory and circulatory systems to
increase heat loss through skin surface blood circulation.12,24 This stress coupled with an
increase in blood viscosity and cholesterol levels with high temperatures25 may increase the
risk for cardio-respiratory deaths.

What is less clear is the extent to which these previously reported associations are
confounded by air pollution. O’Neill et al26 examined this issue in 2 Mexican cities, and
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reported a moderate degree of confounding by air pollution, but this issue and the parallel
issue of effect modification have not been thoroughly explored. Moreover, examination of
effect modification has generally used simple multiplicative interaction terms, whereas with
thin plate splines, it is possible to examine more complex types of interactions.

Our hypothesis is that increases in apparent temperature are associated with increases in
total mortality, and that the effect is independent of air pollution.

We examined the association between temperature and mortality in 9 US cities with a range
of climatic and pollution patterns. We focused on apparent temperature and on the summer
season, and examined confounding and modification of risk by air pollutants using both
time-series and case-crossover analyses.

METHODS
Data

Mortality Data—We selected 9 US cities outside of California that had sufficient mortality
and daily air pollution data and were representative of both cold and warm climates:
Birmingham, Alabama; Boston, Massachusetts; Chicago, Illinois; Detroit, Michigan; Dallas,
Houston, Texas; Minneapolis/St. Paul, Minnesota; Philadelphia, Pennsylvania; and Phoenix,
Arizona.

These cities represent a range of summer temperatures (with the average apparent
temperature ranging from 20°C to 32°C) and a range of particulate air matter with
aerodynamic diameter less than 2.5 mm (PM2.5) coexposures (with an average across all
cities ranging from 8 to 26 μg/m3).

Analyses were conducted on the city level, which in most cases was restricted to a single
county. However, we used multiple counties for Minneapolis-St. Paul (Ramsey and
Hennepin), and Boston (Middlesex, Norfolk, Suffolk), where the city’s population extends
beyond the boundaries of 1 county.

Individual mortality data were obtained from the National Center for Health Statistics
(NCHS) for the years 1999 and 2000, and for the years 2001 and 2002 from the state public
health departments of Massachusetts, Michigan, Minnesota, Texas, and Pennsylvania. The
mortality files provided information on the exact date of death and the underlying cause of
death.

For this study we selected all-cause daily mortality excluding any deaths from accidental
causes (ICD-code 10th revision: V01-Y98, ICD-code 9th revision: 1-799).

Environmental Data—We obtained PM2.5 and ozone data from the US Environmental
Protection Agency’s Air Quality System Technology Transfer Network for the same years
of the mortality data. In most cities particulate air matter with aerodynamic diameter less
than 2.5 mm (PM2.5) monitoring started in 1999. For the Boston area we used daily PM2.5
concentration extracted from the Harvard School of Public Health monitor located in
downtown Boston, as there data were more complete. For ozone we used 8-hour daily mean
concentrations during the hours of 8 AM to 5 PM.

When multiple monitors were present in a city we estimated an average daily value for the
city. Since all monitors do not report on each day, simple means could vary based on which
monitor is missing, rather than true variation from day to day. To avoid this, we used an
algorithm previously described27,28 that averages the monitors while accounting for the
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different monitor-specific means and variances. However, before applying this algorithm,
we obtained multiple correlation coefficients for each monitor (correlated with all other
monitors in the city). Those monitors falling in the low 10th percentile of the distribution of
the median values, across all cities, were excluded from the analyses. If no monitor reported
on a given day, the pollution value was missing.

We obtained local meteorological data such as mean, maximum, minimum temperature, and
dew point temperature, from the United States Surface Airways and Airways Solar
Radiation hourly data.29 In this study we used apparent temperature, which is a composite
index of human discomfort due to combined heat and high humidity; this index should
characterize the physiologic experience better than temperature alone because it takes into
account the effect of humidity on the body. It was developed by Steadman30 and is based on
physiological studies of evaporative skin cooling for various combinations of ambient
temperature and humidity. When the dew-point temperature is 57.2°F (14°C), the apparent
temperature equals the actual air temperature. At higher dew-points, the apparent
temperature exceeds the actual temperature and measures the increased physiologic heat
stress and discomfort associated with higher than comfortable humidity. When the dew-
point is less than 57.2°F the apparent temperature is less than the actual air temperature and
measures the reduced stress and increased comfort associated with lower humidity and
greater evaporative skin cooling. Apparent temperatures greater than 80°F are generally
associated with some discomfort. Values approaching or exceeding 105°F are considered
life-threatening, with severe heat exhaustion or heatstroke possible if exposure is prolonged
or physical activity high. Apparent temperature (AT) is defined as an individual’s perceived
air temperature given the humidity. Apparent temperature was calculated with the following
formula30,31:

where Ta is air temperature and Td is dew point temperature.

Apparent temperature has been used in previous studies26,32 to examine extreme
temperature effects; while in this study we present the effect of the more typical temperature
exposure that is commonly experienced during summer; however, we performed sensitivity
analyses using alternative definitions (mean temperature, maximum temperature) to ensure
our results were robust to the exposure definition.

Statistical Methods—To investigate the association between weather and mortality we
used both time-series and case-crossover analyses.

The case-crossover design was developed as a variant of the case-control design to study the
effects of transient exposures on acute events.33 This design compares each subject’s
exposure experience in a time period just prior to a case-defining event with that subject’s
exposure at other times. Since there is perfect matching on all measured or unmeasured
subject characteristics that do not vary over time, there can be no confounding by those
characteristics. If in addition, the control days are chosen to be close to the event day,
subject characteristics that vary slowly over time are also controlled by matching.

Bateson and Schwartz34,35 demonstrated that by choosing control days close to event days,
even very strong confounding of exposure by seasonal patterns could be controlled by
design in the case-control approach. Levy and Lumley36 showed that a time-stratified
approach to choosing controls resulted in a proper conditional logistic likelihood, and
Schwartz and coauthors37 demonstrated with simulation studies that this approach gave
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unbiased effect sizes and coverage probabilities even with strong seasonal confounding. We
used this same stratified approach in our analysis. We defined the hazard period as the day
of death; we chose as control days every third day in the same month and year as the case.

The data were analyzed using conditional logistic regression analysis (PROC PHREG in
SAS, SAS software release 8.2. 2001, SAS Institute, Cary, NC).

The time series of daily counts of mortality and daily weather were investigated with a
generalized additive model, with a quasi-Poisson link function to account for overdispersion.
In the model we controlled for season using natural splines with 4 degrees of freedom per
year and subsetting for summer months, and day of the week with indicator variables.

These models were fit in R (The Comprehensive R Archive Network: http://cran.r-
roject.org/).

Data Analysis
Exploratory Analysis—We first conducted exploratory analyses to determine whether
the use of linear temperature terms for the warm seasons was appropriate. This was
accomplished by fitting time series models for the full year in each city, using natural
splines for apparent temperature with 4 degrees of freedom. These models used 4 degrees of
freedom per year to control for season. If the exploratory plots from those models looked
roughly linear for warm temperatures, the remaining models, restricted to the warm season,
were created using linear temperature terms, which facilitate the reporting of odds ratios.

Main Analysis—The analysis was first conducted in each city separately; we used
individual deaths in the case-crossover study and aggregated counts of daily deaths for the
time-series analysis. In each model we controlled for day of the week with indicator
variables. For time-series analyses we also controlled for long term time trends using natural
splines with 4 degrees of freedom per year for time trend, and subsetting on the May to
September period.

We investigated the association between weather and mortality during the summer period
(May to September) using a linear term for apparent temperature on the same day in the
model. We examined confounding and effect modification by each pollutant. We added each
pollutant separately in the model to see if they confounded the association between apparent
temperature and mortality.

We analyzed effect modification and nonlinearity in the association with temperature by
including in the model a bivariate thin plate regression spline of apparent temperature and
pollution and then investigated possible interactions by looking at the 3-dimensional plots. If
any plot was suggestive we considered multiplicative interaction terms between the
temperature and the pollutant. We considered an interaction to be significant if the
multiplicative interaction term was statistically significant or if a thin plate spline with more
than 2 degrees of freedom was significant in a likelihood ratio test, compared with a model
with linear terms for pollution and temperature. The degrees of freedom for the thin plate
spline were chosen using cross-validation.

Sensitivity Analyses—We applied several sensitivity analyses. First, we considered the
possibility that moving averages over a period longer than 1 day are better predictors of the
temperature-mortality association. We compared the effect of the same-day temperature
exposure (lag 0) to moving averages of the same day and previous 3 days (lag 03), or the
previous 3 days (lag 13). We then looked at other temperature definitions, replacing
apparent temperature with the combination of either mean, minimum, and maximum
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temperature with dew point temperature. We used adjusted deviance to choose the best
fitting among these models. We also analyzed only days with apparent temperature greater
than 23.8°C (75°F). Finally we considered a regional analysis.

If a linear term is used for pollution, to control for confounding, several aspects of
confounding could be missed. If the association with the confounder is nonlinear, or if it
varies over time, there may be residual confounding. To protect against these risks, we used
an alternative approach of matching control days to the same concentrations of air pollutants
as case days.23

Combined Results—In a second stage of the analysis, the city-specific results were
combined using the multivariate meta-regression technique of Berkey and coworkers.38 To
be conservative we report the results incorporating a random effect, regardless of whether
there was significant heterogeneity.

We report the results as percent increases in mortality for an increase in apparent
temperature of 5.5°C, which correspond to 10°F. We provide 95% confidence intervals
(CIs) for these results.

RESULTS
In each city we first plotted the smoothing function of apparent temperature over all year to
look at possible nonlinearity (Fig. 1). From the plots it is clear that starting from an apparent
temperature of 10°C or 15°C, depending on the city, the association between mortality and
apparent temperature become linear. This is the temperature range where our summertime
analysis focuses.

In the sensitivity analyses, we found that lag 0 apparent temperature had the best model fit
compared with the moving averages of multiple days. We therefore report here the results
analyzing the effect of apparent temperature only during warmer months (May to
September) and used a linear term for apparent temperature at lag 0.

Tables 1 and 2 present the city-specific descriptive statistics for the months May to
September. The total population in the study consisted of 213,438 deaths for all causes. We
had 3 cities with 2 years of data, and the mean daily deaths in the 9 cities ranges between
21.3 and 110.3.

Table 2 shows the city-specific descriptive statistics for apparent temperature and the
pollutants; apparent temperature means for the 9 counties ranged from 20.1°C to 31.6°C, the
8 hour daily mean ozone concentrations ranged from 39.2 to 57.5 ppb, and PM2.5 from 8.2
to 23.3 μg/m3.

Figure 2 shows the results for each county followed by the meta-analyses estimates for all 9
counties. We found that mortality increased with apparent temperature. A 5.5°C (10°F)
increase in apparent temperature was associated with an increase in mortality of 1.8% (95%
CI = 1.09% to 2.5%) when using case-crossover analysis and with an increase of 2.7%
(2.0% to 3.5%) from the time-series analysis.

Table 3 present the results for all-cause mortality, using both methods, for apparent
temperature alone and with evaluation of confounding by each air pollutant. The results did
not change when adjusting for PM2.5, while the effect decreased when adjusting for ozone.
In the table we also present the results of a case-crossover analysis where we matched by
ozone, to reduce the possibility of residual confounding that may have resulted from simply
adding each pollutant to the model. Because the number of days with the same ozone
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concentration is very low, to include more control days we chose controls by matching with
concentrations rounded by 2 ppb of ozone. This result produced a similar estimate effect
(1.8% [95% CI =−0.3 to 4.0]) as in the original analysis.

When we included the bivariate thin plate spline between apparent temperature and air
pollution in the model to examine possible interactions, the Generalized Cross-validation
Criterion always chose 2 degree of freedom for the spline in each city, indicating that no
significant interactions were present. Figure 3 shows the 3-dimensional plot of the bivariate
thin plate spline between apparent temperature and ozone estimated with 2 degrees of
freedom for the city of Boston.

Similarly, in a parametric model with an interaction term between apparent temperature and
each pollutant no significant interactions were found.

The results of the sensitivity analyses, looking at the effect of mean, maximum, and
minimum temperature, produced similar estimates, even if the results for mean temperature
were higher using both methods (Table 4).

In regional analyses, we found that the 3 southern cities (excluding Phoenix) had a
significantly lower risk (0.2% increase [95% CI =−1.1 to 1.5]) compared with the results of
the other 5 colder cities combined (2.3% increase [95% CI = 1.7 to 2.9]). These results were
from the case-crossover analysis, although the time-series study produced similar findings.

DISCUSSION
We found an effect of apparent temperature on mortality from nonaccidental causes in
summer months, when the dose-response relationship between mortality and temperature
was shown to be linear. The same results were obtained when using other representations of
temperature, even though the effect was higher when using mean temperature; the risk was
not much increased when we examined days with temperature higher than 75°F instead of
looking at summer months. Importantly, we found no effect modification by either particles
or ozone and no confounding by particles, although we did find a moderate degree of
confounding by ozone.

When comparing the results by type of methodology, the use of time-series analysis showed
higher risks than did the case-crossover analysis, but this was not true in each county. The
reason for this could be a better control for season in case-crossover analysis; long-term
seasonal trends are an important potential confounder in the study of mortality and
temperature; in a previous time-series study,26 halving the number of degree of freedom for
the seasonal spline induced confounding. Other studies that analyzed the mortality-
temperature relationship comparing case-crossover and time-series analysis found similar
results with the 2 methods.23,39

An important feature of this analysis was the inclusion of the pollutants to examine
confounding and effect modification. An analysis40 done with similar methods but carried
out in 9 counties in California, found a 2% to 3% increase in all-cause mortality per 10°F
increase in apparent temperature, showing results comparable to ours; no effect modification
or confounding due to air pollution was found in the study. O’Neill and coauthors26 found a
small decrease in the association between temperature and mortality when adding ozone and
PM10 singly or jointly. Similarly to our analysis, Ren and coauthors41 fit a bivariate surface
model to examine effect modification due to PM10 in Brisbane, Australia, and found that
PM10 significantly modified the effects of temperature on respiratory and cardiovascular
hospital admissions, all nonexternal-cause mortality, and cardiovascular mortality at
different lags. The same authors in another study42 found that ozone positively modified the
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association between temperature and cardiovascular mortality, with stronger temperature-
cardiovascular mortality associations when the ozone concentration where higher.

We did not find confounding by fine particulates, while we observed a lower effect when
adjusting for ozone. The result of the case-crossover analysis matching by ozone instead did
not show a decrease in the temperature effect; again this could be explained by a better
control of seasonality with the case-crossover analysis, because matching by ozone in the
same year and month results in controlling not only for season but also for the interaction
between season and ozone. Differences between our study and others in terms of effect
modification by any of the pollutants could be due to several reasons such as different type
of modeling and methodology, different outcomes, and different temperature/pollution effect
in different regions.

We also found a smaller risk in the warmer southern cities (excluding Phoenix) compared
with the colder cities. This result was previously found14,18,43 and could be explained by the
fact that persons in warmer climates tend to be more acclimatized to warm weather and tend
to be more vulnerable to cold weather, while heat-related deaths occur more in cities where
extreme heat is rare; adaptation to the local climate might occur by physiologic
acclimatization, behavioral patterns, or other adaptive mechanisms.44

One limitation of this study is that we could not examine socioeconomic variables and
personal characteristics (such as race, age, income level, or air conditioning use) which have
previously been shown to modify the association.14,17,20,22,23 We focus on total mortality
and did not examine specific causes of mortality that might identify susceptible population.

In conclusion, our study provides evidence of increased mortality due to mean temperature
exposure during times other than heat wave, even when adjusting by air pollution; we also
found evidence of acclimatization. Even though further increases in high temperatures due
to climate change might be mitigated by adaptive mechanisms, the adverse impact of heat is
expected to outweigh these benefits.
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FIGURE 1.
City-specific plots of the smoothing function (solid line) of apparent temperature over all
year, with 95% CIs (dashed line).
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FIGURE 2.
Percent increase (and 95% CI) in nonaccidental mortality for an increase in mean apparent
temperature of 5.5°C (10°F) in 9 US cities; city-specific and meta-analysis results using
case-crossover and time-series analysis.
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FIGURE 3.
For Boston, MA: 3-dimensional plot of the bivariate thin plate spline between apparent
temperature and ozone lag 01, with 2 degrees of freedom.
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TABLE 3

Meta-Analysis Results for Apparent Temperature (lag 0) and Nonaccidental Mortality, Adjusted by Individual
Pollutant (lag 01) for 9 US Counties

Pooled
Time-Series Analysis

% (95% CI)
Case-Crossover Analysis

% (95% CI)

Apparent temperature 2.74 (2.01 to 3.48) 1.78 (1.09 to 2.48)

 Ozone lag 01 2.07 (1.34 to 2.81) 0.99 (0.31 to 1.68)

 Match by ozone — 1.81 (−0.34 to 4.01)

 PM2.5 lag 01 2.76 (1.75 to 3.78) 1.69 (0.88 to 2.51)

Percent increases for 5.5°C (10°F).
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TABLE 4

Meta-Analysis Results for Various Temperature Definitions and Nonaccidental Mortality for 9 US Counties

Pooled
Time-Series Analysis

% (95% CI)
Case-Crossover Analysis

% (95% CI)

Mean temperature 3.58 (1.54 to 5.65) 2.69 (0.84 to 4.57)

Minimum temperature 3.14(1.22 to 5.10) 2.09 (0.45 to 3.75)

Maximum temperature 2.27 (0.75 to 3.81) 1.85 (0.39 to 3.34)

Temperature >75°F 2.29 (0.69 to 3.92) 1.90 (−0.03 to 3.86)

Percent increases for 5.5°C (10°F).
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