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Abstract
Biomedical studies have a common interest in assessing relationships between multiple related
health outcomes and high-dimensional predictors. For example, in reproductive epidemiology, one
may collect pregnancy outcomes such as length of gestation and birth weight and predictors such
as single nucleotide polymorphisms in multiple candidate genes and environmental exposures. In
such settings, there is a need for simple yet flexible methods for selecting true predictors of
adverse health responses from a high-dimensional set of candidate predictors. To address this
problem, one may either consider linear regression models for the continuous outcomes or convert
these outcomes into binary indicators of adverse responses using pre-defined cutoffs. The former
strategy has the disadvantage of often leading to a poorly fitting model that does not predict risk
well, while the latter approach can be very sensitive to the cutoff choice. As a simple yet flexible
alternative, we propose a method for adverse subpopulation regression (ASPR), which relies on a
two component latent class model, with the dominant component corresponding to (presumed)
healthy individuals and the risk of falling in the minority component characterized via a logistic
regression. The logistic regression model is designed to accommodate high-dimensional
predictors, as occur in studies with a large number of gene by environment interactions, through
use of a flexible nonparametric multiple shrinkage approach. The Gibbs sampler is developed for
posterior computation. The methods are evaluated using simulation studies and applied to a
genetic epidemiology study of pregnancy outcomes.
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1. Introduction
Biomedical studies routinely collect multiple quantitative health outcomes and investigate
how the risk of having adverse values for these outcomes is associated with predictors. The
typical approach in such setting is to 1) use multivariate normal linear regression in which
the mean of the response distribution varies linearly with predictors; 2) first categorize the
responses based on pre-specified cutoffs and then fit a logistic regression. The former
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approach is insufficiently flexible to accommodate settings in which the predictors do not
simply shift the response by a fixed amount for all individuals, while the latter approach is
extremely sensitive to cut-point choices. In this article, we propose a simple alternative
approach for adverse subpopulation regression (ASPR) relying on a two component mixture
model that incorporates a logistic regression for the risk of falling into the minority
component in the mixture, with the logistic regression model accommodating high-
dimensional predictors. We focus on the case when researchers are interested in
dichotomizing the subjects into two classes: healthy and unhealthy group (corresponding to
the majority and minority of the population); and each component is modeled by the
multivariate normal distribution whose mean vector and covariance matrix change with
latent class membership. This model is purposefully chosen to be simple to facilitate
analyses and interpretations in settings involving high-dimensional predictors, though
generalizations to multiple latent classes is straightforward as discussed in Section 6.

Our approach is motivated by the Healthy Pregnancy, Healthy Baby (HPHB) Study, a
prospective cohort study of pregnant women residing within Durham County, NC with the
goal of identifying environmental, social and genetic factors that contribute to racial
disparities in birth outcomes [1]. Here we focus on assessing how predictors - a large
number of maternal candidate gene single nucleotide polymorphisms (SNPs), environmental
exposures, and their interactions - impact the risk of low values of infant birth weight and
gestational age at delivery. Such research questions cannot be addressed by the standard
linear regression with continuous responses, where one models the predictor effects on the
response means. The standard approach is instead to dichotomize the quantitative outcomes
into binary indicators, such as low birth weight (LBW, birth weight<2500g), preterm birth
(PTB, gestational age at delivery<37weeks) and small for gestational age (SGA, birth
weight less than 10th percentile for that gestational age), and then apply logistic regression.
While such analyses are easily implemented, they rely on pre-defining thresholds with the
analysis results varying significantly according to the threshold choice [2].

We propose an alternative method for adverse subpopulation regression, which relies on a
two component latent class model [3, 4, 5], with the component weights dependent on
predictors via logistic regression. Related approaches are considered by Gage [6], Gage et
al. [7] and Schwartz et al. [8], but they focused on models with fixed component weights
and with the means varying with predictors. In addition, our emphasis is on applications
involving high-dimensional predictors in which maximum likelihood can be expected to
have poor performance. Stegle et al. [9] presented a Bayesian model for mapping expression
quantitative trait loci (eQTLs) jointly contributed from genotype as well as known and
hidden confounding factors. This approach is suitable for the subjects sampled from one
population group, while our approach focuses on the population with subpopulation
admixture (such as healthy versus unhealthy groups).

In such settings, it has become quite common to rely on either Bayesian methods or
penalized likelihoods with penalties incorporated to favor having many coefficients
estimated at or near zero, leading to variable selection and an effectively lower dimensional
model. In linear regression and generalized linear models, such methods have become
standard, with the Lasso [10], elastic net [11] and relevance vector machine [12] providing
popular examples. These methods have been applied in genome-wide association studies to
cope with large number of SNPs and to select multiple SNPs simultaneously [13, 14, 15].
The penalized likelihood estimators have a Bayesian interpretation in corresponding to the
mode of the posterior distribution obtained under carefully chosen priors on the coefficients,
with the Laplace leading to the Lasso [16] and a t-distribution with low degrees of freedom
leading to the relevance vector machine. MacLehose and Dunson [17] recently proposed a
new class of multiple shrinkage priors that allow shrinkage towards not only zero but also
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other values, leading to improved performance in estimating non-zero coefficients. We will
consider these and other shrinkage priors in the context of our ASPR model.

The remainder of the paper is organized as follows. In Section 2, we introduce the proposed
Bayesian adverse subpopulation regression model, describing both fully Bayes and fast two-
stage approaches for inference. Section 3 provides details of an Markov chain Monte Carlo
(MCMC) algorithm. Section 4 presents the simulation results, evaluating and comparing the
proposed methods with existing methods. In Section 5, we apply the model to pregnancy
outcome data. The article concludes with a discussion in Section 6.

2. Bayesian Adverse Subpopulation Regression
2.1. Model Formulation

Suppose we collect the data (yi’xi), for subject i, i = 1, 2,…, n, where yi is an s × 1 vector of
outcomes and xi is a p × 1 vector of predictors. We make the simplifying assumption that
there are two types of individuals, with zi = 0 denoting healthy individuals and zi = 1 for
potentially unhealthy individuals. In addition, we assume for identifiability that the
unhealthy individuals are in the minority, with the specific constraints and prior information
included for identifiability discussed in detail in Section 2.2. This is a simplification which
is made for ease in interpretation, assessment of risk, and scaling to higher dimensions while
accommodating the curse of dimensionality that arises. In many cases, such a simplification
is made in advance of the analysis by taking one or more response variables and defining
cutoffs to dichotomize the data prior to analysis. However, it is well known that results are
quite sensitive to the choice of cutoff [18], and hence we prefer allowing zi to be an adverse
health status latent variable. By using a Bayesian approach, we can fully accommodate
uncertainty in imputing zi and avoid forcing any hard threshold on the observed quantitative
traits.

Denote ω1(xi) = Pr(zi = 1 | xi) as the probability of allocating subject i to the unhealthy
population and let ω2(xi) = 1 – ω1(xi). We then express the conditional density of the
response yi given predictors xi as

(1)

where Ns(yi | θh, Σh) is the s-dimensional Normal distribution with mean vector θh and
covariance matrix Σh. We note that the traits will not have a multivariate normal distribution
marginally, but will instead have a mixture of normal distributions. The primary assumption
we have made, to facilitate interpretation and implementation, is that the conditional density
of the response is well characterized as a mixture of two multivariate normals with the
weights dependent on predictors. If we instead allowed many components, we could fit any
conditional density but would lose interpretability and encounter challenging identifiability
issues. Even if the mixture of two normals assumption is violated, we expect that the
proposed approach will nonetheless be highly robust in terms of inferences on the impact of
the predictors. We fully expect this to be a rough approximation but a better one than
existing practice that dichotomizes or assumes a single normal regression. In practice, the
assumption can be checked by first estimating posterior means of the standardized residuals,

, for each subject and then applying typical tests for normality. Standard
transformations can be applied (e.g., Box-Cox) to improve fit. ω1(xi) in expression (1)
depends on predictors xi through a logistic regression model:
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(2)

where the coefficient vector β = (β1, β2,…, βp)’ characterizes the effect of predictors on the
risk of falling in the minority subpopulation. Due to the logistic regression form, the
exponentiated βj coefficients can be interpreted as odds ratios.

2.2. Prior Specification
For the ASPR model in (1)-(2), identifiability of the unhealthy subpopulation necessarily
relies on prior information. In the absence of some prior knowledge, the two subgroups
would be exchangeable, and we would encounter a label-ambiguity problem. Removal of
this problem through appropriate priors is one of the advantages of the simple two
component framework over more complex latent class regression models having unknown
numbers of components. The most common approach would place restrictions on the means
of the components; for example, ordering the components in advance by letting θ11 < θ21.
This approach assumes that low values of the first response variable are adverse, which may
be reasonable for a given study but is not so in general. Moreover, placing restriction on the
means will fail to solve the label ambiguity problem if the components are not separated
sufficiently.

Thus, we consider alternative strategies depending on the application. The first is to elicit
informative values for the means and covariance matrix in the two components from prior
empirical knowledge of the typical distribution of the responses in healthy and unhealthy
groups. In the absence of such extra knowledge, we may fit a mixture of two multivariate
normals to the data using EM for maximum likelihood estimation, defining the minority
component to be adverse. This can be done either from historical data or the current data.
Then, fix the θh, Σh at these estimates in the subsequent analysis. This runs the risk of under-
estimating uncertainty but has the advantage of simplifying interpretation and completely
eliminating identifiability concerns.

Another alternative is to specify conditionally conjugate prior distributions for θh, Σh and γ
as follows,

where NIWs(θh, Σh | θ0, ψ0, ρ0, Σ0) is the Normal-inverse-Wishart distribution proportional

to . As weakly informative
empirical Bayes priors, the hyperparameters θ0 and Σ0 are chosen to be the sample means
and covariance matrix for all subjects, and we set ψ0 = 1 and ρ0 = s + 2 to reduce the prior
information. Additionally, we place an informative prior on the intercept in the logistic
regression model (2) after centering the predictors, γ ~ N1(γ | γ0, λ0). For example, by
choosing γ0 = −2.20 and λ0 = 2.42 for the intercept, the expected baseline probability (a
priori) of an adverse response is 10% and falls in the range between 3% and 30% with 0.95
probability.

As for the priors for β, if xi is low-dimensional, we can rely on standard choices, such as
independent Gaussian distributions with modest variance. However, as the number of
predictors increases, we need some approach for addressing the high dimensionality. A
common strategy in the frequentist literature is to use sparse penalized regression (e.g.,
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Lasso, elastic net, etc) to favor many elements of β that are equal to zero while shrinking the
non-zero elements toward zero. In the Bayesian literature, a rich variety of shrinkage priors
have been proposed for high-dimensional regression coefficients, with most approaches
relying on priors that are centered at zero, potentially with a point mass incorporated to
allow variable selection. Hierarchical shrinkage priors that are centered at zero can
potentially lead to over-shrinkage of coefficients that are not close to zero. Such over-
shrinkage can be reduced by choosing a prior which is concentrated near zero with very
heavy tails, but in that case there is no borrowing of information or incorporation of prior
knowledge in estimating the coefficients that are not close to zero.

As an alternative approach that had excellent performance in high-dimensional logistic
regression, MacLehose and Dunson [17] proposed a multiple shrinkage prior (MSP) for the
jth coefficient βj ~ ∫ DE(βj | μj, τj)dP(μj, τj), where DE(βj | μj, τj) is the double exponential
(Laplace) distribution with location parameter μj and scale parameter τj; the mixture
distribution P is assigned a modified Dirichlet process prior that incorporates a mass at μj =
0 for the first component. Specifically, the MSP is expressed as

(3)

where Gamma(τ | a, b) = 1/[baΓ(a)]τa−1 exp(−τ/b) with mean a × b; δθ (·) is the probability
measure with all its mass at θ; following MacLehose and Dunson [17], we choose c = 0, a0
= b0 = 30, a1 = b1 = 6.5 and α = 1. Note that the MSP (3) is represented in the stick-breaking
form [19], which starts with a unit probability “stick” and sequentially breaks off random
proportions of the stick, with each of these pieces corresponding to the probability πt placed
on one mixture component . This formulation allows infinitely many components,
with only a relatively small number occupied by the p predictors, effectively bypassing the
difficult issue of estimating the number of mixture components. In addition, the stick-
breaking form facilitates MCMC sampling. The discrete form of P leads to ties between (μj,
τj), j = 1, 2,…, p and hence clusters corresponding to multiple (μj, τj) equal to .
Consequently, through MSP, the coefficients β will be shrunk to multiple locations ,
including zero in the first cluster (t = 1), corresponding to the usual Bayesian Lasso prior,
while the other components are centered at unknown locations away from zero. For βj and

βj’ belonging to the same cluster t, βj ≠ βj’ with  and

. In our application of the ASPR model, it is unlikely that any of the
predictors being considered have a log-odds ratio of falling in the adverse sub-group outside
of βj ∈ [−1, 1], corresponding to an interval of [0.37, 2.72] for the odds ratio. In most
genetic epidemiology studies involving complex health conditions, one expects at most a
modest deviation from a log-odds near zero for single SNPs or SNP × environment
interactions. This small signal-to-noise ratio is one aspect that makes detection of important
variants so challenging. To express this prior information, while inflating the prior variance
somewhat to corresponding to a “weakly informative” prior [20], we let d = 0.1507, which
leads to  a priori.

3. Posterior Computation
In describing an approach for posterior computation, we focus on the approach described in
Section 2 that places a normalinverse-Wishart prior on the component-specific parameters,

Zhu et al. Page 5

Stat Med. Author manuscript; available in PMC 2013 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



an informative prior on the intercept γ for identifiability, and a mixture of double
exponential shrinkage prior on the high-dimensional vector of β coefficients. This approach
is straightforward to modify to accommodate the other approaches described in Section 2.
For example, to instead use the two-stage plug-in approach, we would run the EM algorithm
first to estimate μh, Σh for h = 1, 2 and then would hold these component-specific
parameters fixed in the proposed data augmentation Gibbs sampling algorithm to be
described below. In addition, if an alternative shrinkage prior were used for the coefficients
βj, then one could simply modify the sampling steps for updating the βj appropriately. For
scale mixture of normal priors, such as double exponentials, t priors or other standard
choices, this is straightforward.

If we observe the latent subpopulation index zi directly for each individual and are interested
in the coefficients β, then we could apply the MCMC algorithm of MacLehose and Dunson
[17] directly. However, because we do not observe zi for any of the subjects, we instead
modify their algorithm to include steps for imputing zi from the corresponding full Bernoulli
conditional posterior distribution and sampling the mean and covariance specific to each
component. We start by relating the latent subpopulation index zi = I(gi > 0) to an auxiliary
random variable gi, where I(·) is the indicator function, which equals 1 when gi > 0 and 0
otherwise. To induce expression (2) through marginalizing gi, we assume gi follows a

logistic distribution centered on . Holmes and Held [21] proposed a data augmentation
MCMC algorithm for posterior computation in logistic regression models relying on
characterizing the latent gi as a scale mixture of normals, with the square root of the scale
parameters following a Kolmogorov-Smirnov (KS) distribution. Due to lack of conjugacy of
the conditional posteriors of scale parameters specific to each subject, they recommend
using rejection sampling. However, use of a large number of rejection sampling steps can
lead to inefficiencies, so we instead apply an alternative data augmentation scheme.
Following O’Brien and Dunson [22], the logistic distribution can be almost exactly

approximated by a noncentral t-distribution 
Gamma(ϕi | ν/2, 2/ν)dϕi, when we set σ2 = π2 (ν − 2)/2ν with degree of freedom ν = 7.3.
Kinney and Dunson [23] showed that posterior distributions of gi estimated with the Holmes
and Held [21] and O’Brien and Dunson [22] algorithms are essentially completely
indistinguishable given sufficient numbers of MCMC samples. We outline the Gibbs
sampler for Bayesian adverse subpopulation regression in the following steps:

a.
Draw θh and Σh from NIWs , where

with  and

 and

.
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b. Impute component indicator zi from the conditional Bernoulli distribution by

setting zi = 1 with probability .

c. Augment auxiliary variable gi, i = 1, 2,…, n, sampled from the normal distribution

, which is truncated above (below) by zero when zi = 0 (zi = 1).

d.

Update ϕ from Gamma .

e. Update the regression coefficients β* = (γ, β’)’ given gi, ϕi and other parameters,
following the MCMC algorithm of MacLehose and Dunson [17].

Although we illustrate the algorithm focusing on the multiple shrinkage prior, the above
algorithm could be easily modified for different shrinkage priors of β by using the
corresponding sampling algorithm in the step (e). Moreover, we could combine the
shrinkage and selection method (e.g. Lasso and elastic net) for logistic regression with step
(a) and (b) to get a Monte Carlo EM algorithm [24] for the adverse subpopulation
regression.

4. Simulations
In this section, we examine the performance of our approach along with alternative simple
two-stage methods through simulation studies. The two-stage methods generate the binary
indicators for the adverse subpopulation in the first stage. For example, indicators can be
chosen as the true binary indicators (known for simulation data), estimated by the maximum
a posteriori (MAP) allocation from a simple two component mixture model with the EM
algorithm, specified by using preselected cutoffs, or identified by K-means clustering for
two clusters. In the second stage, we fit both the standard logistic regression model without
penalization (Logit-Standard) and the penalized logistic regression models with the
shrinkage methods Lasso and elastic net (Logit-Lasso and Logit-ElasticNet) [25].

One hundred datasets were simulated to represent the data observed in the HPHB data set. In
particular, we simulated 813 women with two response variables corresponding to infant
birth weight and gestational age at delivery. We used maternal genotype for 100 SNPs as
predictors that were fixed across the simulations, with only the response variable generation
varying. By using the real SNP data, we obtained simulated datasets with a realistic
dependence structure among the predictors, which is important given that the dependence
structure can have a fundamental impact on variable selection and estimation performance.
We simulated data under the model proposed in Section 2.1, with β chosen so that the first
ten elements were set equal to 0.5 (corresponding to odds ratios for the minor allele of
exp(0.5) = 1.65) and the remaining elements were set equal to zero (corresponding to no
association with risk of falling in the adverse subpopulation for SNPs 11,…, 100). In
addition, we considered another scenario with the first ten coefficients equal to 0.8 (exp(0.8)
= 2.23) and others to zero. We simulated yi based on expression (1), where the θh and Σh
were set equal to the maximum likelihood estimates from the HPHB dataset by using a two
component latent class model without predictors.

We applied the proposed ASPR model with default priors specified in Section 2.2 and the
two-stage methods to the simulated datasets. For ASPR model, we implemented the data
augmentation Gibbs sampling algorithm outlined in Section 3. The sampling ran for 11,000
iterations, 1,000 iterations were discarded as a burn-in and every 10th sample was saved to
thin the chain. The trace and autocorrelation plots of the posterior samples were examined to
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determine the convergence. We used the cyclical coordinate descent algorithm by Friedman
et al. [25] to find the Lasso or elastic net regularization paths for penalized logistic
regression models. Ten-fold cross-validations were used to select the optimal shrinkage
parameter which gave the minimal deviance.

We first compared the estimation performance measured by mean squared errors (MSEs)
which were calculated for each coefficient across 100 datasets. Table 1 presents the
averaged MSEs obtained across the first ten non-null coefficients and the remaining ninety
null coefficients. The averaged MSEs of non-null coefficients by ASPR model are smaller
than those given by the two-stage methods even with true indicators. More importantly,
when the true indicators are unknown, a common scenario in practice, the two-stage
methods rely on indicators generated either by classification algorithms (here the MAP
allocation and K-means clustering) or by medical cutoffs will inflate the MSEs of non-null
coefficients significantly. This observation indicates that if part of subjects are mis-classified
in the two-stage methods, the coefficient estimates would be affected in the standard and
penalized logistic regressions. A better solution is thus to avoid the classification or using
cutoffs in the first place.

We also compared the variable selection ability for different methods. Based on substantive
knowledge, we choose an interval null hypothesis as H0j : |βj| ≤ ∊; we chose ∊ = 0.1 in
practice as log odds ratios within ±0.1 of zero are clearly not significant from a public health
viewpoint in our motivating applications. We can then calculate the posterior probability of

the alternative  as  under the ASPR model, with

 the gth MCMC draw from the posterior after discarding a burn-in and I(·) the indicator
function. Larger values of  suggest a greater weight of evidence that the jth predictor is
significant from a public health viewpoint based on our elicited ∊ value. We further chose a
threshold c for the  with the goal of controlling the false discovery rate (FDR)[26];
selecting predictors having  as statistically significant adjusting for multiple
comparisons. For a given c, we could estimate the posterior expected FDA [27] as

, and chose a c as the smallest value such
that the FDR was less than or equal to a desired level. For the two-stage methods, the
predictor βj was selected if its 90% confidence interval did not contain zero for the standard

logistic regression model, or if the estimate  for the penalized logistic regression
models.

Based on above selection criteria, we are able to assess the variable selection ability by
using the averaged true positive rate (TPR) and false positive rate (FPR) for different
methods across multiple datasets. For a given method and simulated dataset, TPR is defined
as the number of predictors correctly selected as significant predictors divided by the
number of true non-null predictors, and similarly FPR as number of predictors falsely
selected as significant predictors divided by the number of true null predictors. As listed in
Table 1, the ASPR model achieves higher TPR and lower FPR (controlling FDR at 50%)
than the alternative methods for most scenarios. The only exception is the Logit-ElasticNet
method in the (unrealistic) case in which the true sub-population indicators are assumed
known. One may argue that it is arbitrary to control FDR at 50% in the ASPR approach and
use 90% confidence intervals in the two-stage method, with different values leading to
different comparisons of TPRs and FDRs. To obtain a more fair comparison, we varied the
values of FDR, confidence interval value, and threshold ∊’ (previously assumed to be zero)
for penalized logistic regression and calculated a series of TPRs and FDRs, which are
plotted in Figure 1 as receiver operating curves (ROCs). It it clear that the ROC curves by
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ASPR model stay above the other curves and are closer to the top left corner, indicating a
better tradeoff between the TPRs and FPRs. In addition, we may calculate AUCs (area under
the curves), which is approximated by applying the trapezoidal rule for a series of TPRs and
FPRs. The AUCs by various methods under different scenarios are given in Table 1 with
ASPR model showing the largest AUC. It suggests that in general the method by ASPR
model achieves a better performance in variable selection than the alternative methods.

5. Application to Pregnancy Outcomes
There is increasing appreciation that interactions between the genetic and environmental
factors contribute to adverse birth outcomes. In this analysis, we investigated the effects of
maternal genotype and their interaction with lead and tobacco exposure on adverse birth
outcomes in the infant, adjusting for several confounding factors. The dataset included 813
non-Hispanic black pregnant women who had singleton pregnancy and were less than 28
weeks gestation at the time of enrollment in HPHB study. Based on published studies, we
focused on 31 candidate genes which are involved with maladaptive inflammatory
regulation, maternal-fetal circulation, stress response, and environmental contaminant
metabolism. For those candidate genes, we selected 275 haplotype tagging SNPs which
effectively capture the genetic diversity of these genes. Please see Swamy et al. [28] and
Ashley-Koch et al. [29] for further details on genotyping approaches. A detailed description
of the SNPs and genes used in this analysis can be found in the Web Appendix. For the
purpose of this analysis, we assumed that the risk for adverse birth outcomes would be
associated with minor alleles. The value of each SNP was recorded as one if the mother
carried the less frequent allele and as zero otherwise. In addition to the genetic data, we
measured maternal blood levels of lead and cadmium. The interaction of lead and cadmium
with the SNPs in relation to gestational age and birth weight is an important research
question. We also controlled confounding factors by including them in the analysis. These
confounders are mother’s age, recorded as age group 18-20, 21-35 vs 35+; education, as no
college vs some college; insurance, as private vs others; parity, as zero vs others; infant sex,
as male vs female.

We fit the ASPR model with default priors after checking the composite normal assumption.
The MCMC algorithm was run for 11,000 iterations with the first 1,000 iterations discarded
as burn-in and every 10th remaining draw retained for analysis. The trace plots and the
autocorrelation plots suggested the algorithm converged fast and mixes well. Table 2
presents the posterior summary for the component parameter θh = (θh1, θh2)’ and

. The table indicates that the healthy group in general has longer
gestational age with higher birth weight, compared to the unhealthy group. In addition, the
subjects in the healthy group are more homogeneous with the smaller values in the
components of Σh. Figure 2(a) shows shaded circles at the raw data points, with the darkness
of the shading being proportional to the estimated posterior probability of allocation to the
healthy subgroup. Standard cutoffs for defining preterm birth and low birth weight are also
shown. Although most of the children that are in the preterm and low birth weight bin have
small posterior probabilities of allocation to the healthy subgroup, there is substantial
uncertainty around the boundary region in particular. This uncertainty is taken into the
account by the ASPR model but not by the other two-stage approaches. Figure 2(b) plots the
raw data and also demonstrates the contours of posterior predictive density based on the
MCMC samples of ASPR model. There seems no systematic discrepancy between the
observations and the contours of posterior predictive density, suggesting the ASPR model
fits the data well.
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Figure 3 shows the posterior means and 90% credible intervals for the coefficients of SNPs
and their interactions with lead and cadmium. Although all the credible intervals cover zero,
the posterior means of coefficients of SNPs rs2420620, rs10107390 and rs7017402, given in
Table 3, stay clearly away from zero in the main effect (the top panel). This result is also

supported by Web Figure 1, which plots , the posterior
probability that jth predictor have an effect based on G samples of βj. The larger the
posterior probability  suggests a stronger effect. When we take ∊ = 0.1, coefficient of SNP
rs2420620 stands out with the value 0.123 and coefficients of SNPs rs10107390 and
rs7017402 with the value 0.098 and 0.092, while the majority of other posterior probabilities
are around 0.05. SNP rs2420620 is located in gene GRK5 and SNPs rs10107390 and
rs7017402 in gene NAT1. GRK5 is a member of the G protein-coupled receptor kinase
family which is involved in regulating the activity levels of G protein-coupled receptors.
Polymorphisms in GRK5 have been previously linked to risk for heart failure in African
Americans [30]. The N-acetyltransferase genes (NAT1 and NAT2) are involved in the
metabolism of xenobiotics. NAT1 has been shown to be expressed in early placenta [31].
We also analyzed the data using two-stage methods, in which the penalized logistic
regressions were applied with the indicators generated by maximum a posteriori method.
The results are presented in Table 3. Both penalized logistic regression methods identifies
the SNP rs2420620 in GRK5 and SNP rs7017402 in NAT1, since their coefficients are not
equal to zero. These two SNPs are also selected by the ASPR model. For ASPR model,
additional SNPs in genes CR1 and IGF1 are interesting but not consistent across the three
approaches. This may suggest that these are false positive results.

6. Discussion
In this article, we propose an adverse subpopulation regression model for investigating the
relationship among multiple quantitative outcomes and high-dimensional predictors. Unlike
the traditional two-stage methods, the proposed method does not require dichotomizing the
continuous outcomes into binary indicators and thus avoids information loss. Two stage
methods are outperformed with smaller MSE and higher area under the ROC curve for
variable selection as demonstrated by the simulation studies. The new model has been
applied to examine the effect of gene and environment interaction on adverse pregnancy
outcomes. The results suggest the gene GRK5 and NAT1 may influence the occurrence of
low birth weight and preterm delivery. Our focus is on defining a simple approach for
assessing the impact of high-dimensional predictors on the risk of an adverse outcome when
data consist of multiple quantitative traits. By using a two component mixture model, we
can use a binary response logistic regression model, a framework that is very familiar to
epidemiologists, to characterize non-linear genetic and environment associations with
potentially complex multivariate quantitative traits. The proposed framework provides a
parsimonious alternative to normal linear regression and logistic regressions based on
preliminary categorization of quantitative traits, and should be able to detect associations
that would not be detected with these methods. The proposed ASPR framework has
purposefully been chosen to be a simple and parsimonious model that is easy to interpret and
is scalable to high-dimensional predictors. We are aware that dealing with hundreds of
thousands or millions of SNPs will cause serious computational burden for ASPR model.
This limitation is shared by most of existing shrinkage methods. The popular solution is to
reduce the dimensionality of the predictors first by using sure independence screening [32]
or strong rules for discarding predictors [33]. We choose Normal-inverse-Wishart
distribution as a conjugate prior for the parameters of multivariate normal distribution. The
closed forms in the MCMC step a) lead to computational efficiency. With a large number of
traits, it however may be computational expensive to evaluate the posterior Normal-inverse-
Wishart density. For sake of simplicity and parsimony, we have avoided fully nonparametric
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Bayesian density regression models [34] that allow unknown numbers of latent classes.
Although generalizations in such directions are conceptually straightforward, for each
additional latent class, one introduces an additional p regression coefficients and
corresponding hyperparameters, and difficult issues in identifiability, label switching and
computational complexity arise. For our pregnancy outcome application, the ASPR model
provides a good fit to the data, as illustrated by the posterior predictive density.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Receiver Operating Characteristic (ROC) curves for different methods: —— by ASPR-MSP
method,  by the two-stage methods with true indicators,  by the two-stage methods
with subjects allocated by maximum a posteriori,  by the two-stage methods with
indicators defined by cutoffs and  by the two-stage methods with indicators generated
by K-means.

Zhu et al. Page 13

Stat Med. Author manuscript; available in PMC 2013 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Scatter plots of birth weight (grams) and gestational age (days) overlaid with (a) the
posterior mean of allocation weights ω2(xi) with the cutoffs (dash lines) at 257 days for the
gestational age and 2500 grams for the birth weight; (b) posterior predictive density contours
of observations (○) at the levels of 0.77, 0.82, 0.87, 0.92 and 0.97.
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Figure 3.
Posterior mean and 90% credible interval for coefficients β in ASPR model. The
coefficients are illustrated for the SNPs main effects and their interactions with lead and
cadmium respectively.
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Table 1

Simulation results to compare coefficient estimation and variable selection by the ASPR model, the standard
logistic regression models without penalization and the penalized standard logistic regression models with
shrinkage methods for true non-null coefficients being equal to 0.5 and 0.8 (in parentheses), respectively.

ASPR-MSP Truth Classification Cutoff K-means

Logit-standard

MSE

Non-null/Nulla 0.117/0.005 (0.223/0.007) 0.283/0.620 (0.630/0.692) 0.572/0.818 (1.503/1.065) 0.212/0.340 (0.280/0.476) 0.881/0.541 (1.593/0.555)

TPRb 0.642 (0.867) 0.428 (0.685) 0.378 (0.571) 0.346 (0.527) 0.360 (0.519)

FPRc 0.095 (0.170) 0.149 (0.165) 0.151 (0.172) 0.139 (0.144) 0.146 (0.154)

AUCd 0.858 (0.932) 0.686 (0.806) 0.635 (0.736) 0.632 (0.730) 0.643 (0.718)

Logit-Lasso

MSE

Non-null/Null 0.146/0.004 (0.274/0.0050) 0.224/0.003 (0.519/0.004) 0.174/0.003 (0.385/0.003) 0.310/0.002 (0.751/0.004)

TPR 0.595 (0.790) 0.498 (0.697) 0.477 (0.642) 0.489 (0.662)

FPR 0.111 (0.140) 0.085 (0.113) 0.084 (0.097) 0.079 (0.107)

AUC 0.760 (0.867) 0.717 (0.820) 0.705 (0.792) 0.714 (0.800)

Logit-ElasticNet

MSE

Non-null/Null 0.132/0.003 (0.236/0.005) 0.208/0.004 (0.475/0.005) 0.167/0.002 (0.359/0.003) 0.287/0.002 (0.704/0.004)

TPR 0.729 (0.896) 0.652 (0.829) 0.587 (0.772) 0.619 (0.778)

FPR 0.158 (0.235) 0.162 (0.213) 0.130 (0.175) 0.137 (0.181)

AUC 0.817 (0.915) 0.772 (0.872) 0.747 (0.844) 0.763 (0.847)

a
The MSEs are presented for the non-null predictors whose coefficients are not equal to zero (known in the simulation) and null predictors

separately.

b
True positive rate (TPR) is defined as the number of predictors correctly selected (under a criterion) as significant ones divided by the number of

non-null predictors.

c
False positive rate (FPR) is defined as the number of predictors falsely selected (under a criterion) as significant ones divided by the number of

null predictors.

d
AUC stands for area under the receiver operating characteristic (ROC) curve, which consists of a series of TPRs and FPRs under various selection

criteria.
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Table 2

Posterior summary for component parameters in the ASPR model. θ·1 and θ·2 are the average gestational age
and birthweight in the subgroup with corresponding variance and covariance denoted as Σ·11, Σ·22 and Σ·12.

Group Parameters Mean SD 2.5% 50% 97.5%

θ 11 237.52 4.54 228.06 237.67 245.93

θ 12 2001.55 118.19 1751.22 2002.20 2219.74

Unhealthy Σ 111 829.19 134.00 590.10 822.11 1122.02

Σ 112 19322.84 3255.32 13671.92 19100.50 26389.50

Σ 122 508531.02 88244.72 367278.25 499645.00 695598.00

θ 21 273.25 0.40 272.49 273.25 274.05

θ 22 3182.41 20.15 3141.49 3181.70 3223.60

Healthy Σ 211 96.78 6.52 85.01 96.32 110.15

Σ 212 2174.75 239.50 1719.19 2168.40 2628.22

Σ 222 235640.32 13202.36 211617.25 235185.00 262059.25
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Table 3

List of SNPs which have largest estimated SNP effects for different methods.

ASPR-MSP Logit-Lasso Logit-ElasticNet

SNP ID Chr Gene Estimate SNP ID Chr Gene Estimate SNP ID Chr Gene Estimate

rs2420620 10 GRK5 −0.048 rs2420620 10 GRK5 −0.114 rs2420620 10 GRK5 −0.065

rs10107390 8 NAT1 0.035 rs7017402 8 NAT1 0.104 rs7017402 8 NAT1 0.059

rs7017402 8 NAT1 0.028

rs4844599 1 CR1 0.026

rs5742629 12 IGF1*Lead −0.024
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