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Abstract
Climate change may lead to changes in several aspects of the distribution of climate variables,
including changes in the mean, increased variability, and severity of extreme events. In this paper,
we propose using spatiotemporal quantile regression as a flexible and interpretable method for
simultaneously detecting changes in several features of the distribution of climate variables. The
spatiotemporal quantile regression model assumes that each quantile level changes linearly in
time, permitting straight-forward inference on the time trend for each quantile level. Unlike
classical quantile regression which uses model-free methods to analyze a single quantile or several
quantiles separately, we take a model-based approach which jointly models all quantiles, and thus
the entire response distribution. In the spatiotemporal quantile regression model, each spatial
location has its own quantile function that evolves over time, and the quantile functions are
smoothed spatially using Gaussian process priors. We propose a basis expansion for the quantile
function that permits a closed-form for the likelihood, and allows for residual correlation modeling
via a Gaussian spatial copula. We illustrate the methods using temperature data for the southeast
US from the years 1931–2009. For these data, borrowing information across space identifies more
significant time trends than classical non-spatial quantile regression. We find a decreasing time
trend for much of the spatial domain for monthly mean and maximum temperatures. For the lower
quantiles of monthly minimum temperature, we find a decrease in Georgia and Florida, and an
increase in Virginia and the Carolinas.

Keywords
Bayesian hierarchical model; climate change; non-Gaussian data; US temperature data; warming
hole

1 Introduction
A vast literature on climate change research has emerged in recent years. One aspect of
climate change research that has received considerable attention is global warming, which
refers to increasing trends in the mean temperature. However, climate change may lead to
changes in several aspects of the distribution of climate variables, including changes in the
mean (e.g., Soloman et al, 2007), increased variability (e.g., Katz and Brown, 1992;
Chandler, 2005), and severity of extreme events (e.g, Easterling et al., 2000). Simultaneous
analysis of many aspects of climate change is a challenging statistical problem. In this paper,
we propose using spatiotemporal quantile regression as a flexible and interpretable method
for detecting changes in the distribution of climate variables.

We illustrate this method by analyzing monthly temperature data for the southeast US for
years 1931–2009. Despite a global increase, this region has experienced little to no increase
in mean summer temperature (Folland et al., 2001; Robinson, Reudy, and Hansen, 2002;
Pan et al., 2004; Kunkel et al., 2006). Pan et al. (2004) describe this as a “warming hole”,
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and suggest this may be due to a feedback process in the hydrological cycle. Here we extend
the analysis of US temperatures beyond the mean to other features of the distribution. Each
month of each year we observe the monthly minimum, maximum, and mean temperatures
for 191 locations covering Florida, Georgia, North Carolina, South Carolina, and Virginia.
For example, Figure 1 plots the minimum temperature for July by year for a representative
location. This plot suggests that the distribution of temperature is gradually changing with
time at this location. A simple linear regression with covariate year gives an estimated
increase of 0.04 degrees (F) per year (the p-value for the test that the slope is zero is 0.053)
in the mean. Quantile regression provides a more comprehensive analysis. In a linear
quantile regression, the 100τth percentile in year t is modeled as q0(τ) + q1(τ)t. By studying
the slopes q1(τ) for different quantile levels τ, we analyze changes in different aspects of the
temperature distribution. For example, Figure 1b shows that there is a statistically significant
increase in distribution’s lower tail (10th percentile), but not the center of the distribution
(50th percentile, i.e., median) or the magnitude of extremely high temperatures (90th

percentile). Combining these results suggests there is less variability in the current climate.
Of course these results are specific to this spatial location, and the distribution of
temperature may be evolving differently in other locations. The objective of our analysis of
these data is to identify distributional changes in temperature over time and compare these
changes across different spatial locations.

We develop a spatiotemporal model that allows the entire distribution of the response to
vary over space and time. Several nonparametric Bayesian methods have been developed to
model a spatially-varying distribution function (Gelfand et al., 2005; Griffin and Steel, 2006;
Reich and Fuentes, 2007; Dunson and Park, 2008). These methods treat the conditional
distribution of the response at each spatial location as an unknown quantity to be estimated
from the data. Although it may be possible to extend these nonparametric methods to allow
the distribution to vary with both space and time, we elect to follow Reich, Fuentes, and
Dunson (2011; henceforth RFD) and model the distribution via its quantile function.

Rather than restricting the analysis to changes in the mean response, quantile regression
permits simultaneous analysis of several features of the response distribution, including the
median, variance, and severity of extreme events. Our spatiotemporal quantile regression
model assumes that each quantile level changes linearly in time, permitting straight-forward
inference on the time trend for each quantile level. Classical quantile regression (Yu, Lu,
and Stander, 2003; Koenker, 2005) uses model-free methods to analyze a single quantile or
several quantiles separately. This approach of analyzing single quantile levels has recently
been extended to handle spatial data (Lee and Neocleous, 2010; Lum, 2010; Oh, Lee, and
Nychka, 2011; Sobotka and Kneib, 2011). In contrast, we take a model-based approach
which jointly models all quantiles, and thus the entire response distribution. This has been
shown to provide more accurate coefficient estimation and higher power for detecting
important predictors than analyzing individual quantiles separately (Bondell et al., 2011;
Reich et al., 2011; Tokdar and Kadane, 2011). In the spatial quantile regression model, each
spatial location has its own quantile function that evolves over time, and the quantile
functions are smoothed spatially using Gaussian process priors.

The proposed spatial quantile regression model differs from RFD in several important ways.
Although the RFD model for the quantile function has a relatively simple form, the resulting
probability density function (i.e., the derivative of the inverse quantile function) does not
have a closed form. As a result, the likelihood does not have closed form, which leads to
computational difficulty. RFD resort to a two-stage model rather than a fully-Bayesian
analysis for large datasets. In constrast, the model for the quantile function in this paper
permits a closed-form expression for the response distribution and leads to conjugate full
conditional distributions for the parameters in the quantile function. This allows the fully-
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Bayesian model to be fit to large spatiotemporal datasets. Also, although RFD allow the
quantile process to vary over space and time, residual spatiotemporal correlation given the
quantile process is ignored. As a result, the model performs well for prediction, but the
posterior credible sets of model parameters have undercoverage in the presence of strong
spatiotemporal association. This is problematic because the primary objective in this paper is
to test for trends the quantile process, and the data exhibit strong spatiotemporal association.
Therefore, we propose a spatiotemporal copula model to account for residual spatiotemporal
association. We show that the quantile regression model is amenable to the copula approach,
since it is the quantile function that is required for inverse transform sampling. The proposed
copula model gives conjugate full conditional distributions, which leads to straight-forward
MCMC coding and tuning.

The remainder of the paper is organized as follows. Section 2 details the spatiotemporal
quantile regression model. Section 3 describes the computational algorithm. The method is
applied to southeast US temperature data for years 1931–2009 in Section 4. Section 5
concludes.

2 Spatiotemporal quantile regression
Let yt(s), the response at spatial location s ∈ ℛ2 and time t ∈ [0, 1], be yt(s) = μt(s) + εt(s),

where μt(s) is the true value at time t and location s, and  is small-scale
error. For example, the temperature data analyzed in Section 4 are rounded to the nearest
degree, and so the small-scale errors may include these rounding errors. As such, we treat
these measurement errors as independent and attribute all spatial and temporal dependence
to μ. Classical quantile regression with independent observations focuses on estimating the
quantile function of the response, yt(s). However, in the presence of strong spatial or
temporal correlation, it is possible to bypass the error process and directly model the
quantile function of the true underlying spatiotemporal process of interest, μt(s), as is the
norm for geostatistical analysis of Gaussian data (Cressie, 1993; Banerjee et al., 2004;
Gelfand et al., 2010). Therefore, we develop a model for the quantile function of μt(s).
However, including small-scale error is not required, and Appendix A.1 outlines an
approach for modeling the quantiles of yt(s) directly.

The quantile function q(τ|s, t) is the function that satisfies P[μt(s) < q(τ |s, t)] = τ ∈ [0, 1].
To test for changes in the quantile function over time, each quantile is a linear function of
time, q(τ|s, t) = q0(τ|s) + tq1(τ|s). We note that a bounded time variable t is required. If the
time variable is unbounded, then the only valid quantile model is the location-shift model
with q1(τ|s) constant for all τ, as discussed further below. Both the intercept function, q0,
and the trend function, q1, are taken to be linear combinations of L basis functions,

(1)

where βk(s) is the center (the median in the specification in Section 2.1) of the quantile
function at location s, Bl(τ) are fixed basis functions, and θkl(s) are unknown coefficients
that determine the shape of the quantile functions. Both βk(s) and θkl(s) are modeled as
spatial processes, so the center and shape of the quantile functions vary spatially.

Before describing the proposed quantile regression model, we consider the important special
case with L = 1 and B1(τ ) = Φ−1(τ), where Φ−1(τ) is the standard normal quantile function.
In this case
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(2)

and similar to Chandler (2005), the responses are Gaussian with spatially-varying mean
β0(s) + β1(s)t and standard deviation θ01(s) + θ11(s)t. In Section 2.1, we generalize the
model for the quantile process by allowing L > 1, while maintaining this heteroskedastic
Gaussian model as an important special case. This generalization allows us to characterize
the entire quantile function with a flexible model, rather than modeling only the mean and
standard deviation as functions of the covariates (here time) as in classical regression.
Another consequence of this model for the quantile process is that it can accommodate non-
Gaussianity, such as asymmetry and skewness, in μt(s) and thus yt(s).

2.1 Semiparametric model for the quantile process
The intuition for this model is that rather than specifying the mean and standard deviation as
linear functions of time as in (2), we specify the quantile function for quantile levels 0 = κ1
< … < κL+1 = 1 as linear functions of time, i.e., q(κl|s, t) = q0(κl|s) + tq1(κl|s), as in the
classical analysis in Section 1. By allowing the coefficients q1 to vary by κ, we characterize
the evolution of different quantile levels, and thus different aspects of the response density.
In contrast with the classical analysis in Section 1, these quantile levels are analyzed
simultaneously with a hierarchical Bayesian model. This requires a model not only for the
quantiles at the κj, but also a model for the quantile function for all τ ∈ [0, 1]. To specify a
complete density with the given quantile levels in a way that generalizes (2), we make use of
piece-wise Gaussian basis functions to interpolate the quantile function at the κl to other
quantile levels. By doing so, we obtain a semiparametric prior for the quantile function over
all quantile levels. Other basis functions are possible, for example piecewise linear or spline
basis functions. However, these piece-wise Gaussian basis functions have several attractive
features including a natural centering on the heteroskedastic Gaussian model, a closed form
for the density function, and a wide span of possible quantile functions.

If L = 1, then we define B1(τ) = Φ−1(τ) as in the heteroskedastic Gaussian model (2). To
define the basis functions for L > 1, let 0 = κ1 < … < κL+1 = 1 be a grid of equally-spaced
knots covering [0, 1]. Then for l with κl < 0.5,

(3)

and for l such that κl ≥ 0.5,

(4)

Figure 2a plots Bl(τ) for L = 6. For these basis functions, q(τ|s, t) is continuous in τ for any
θkl(s).

If θ01(s) = … = θ0L(s) and θ11(s) = … = θ1L(s), then q(τ|s, t) = β0(s) + tβ1(s) + [θ01(s) +
tθ11(s)]Φ−1(τ), and μt(s) is Gaussian with mean β0(s) + tβ1(s) and standard deviation θ01(s)
+ tθ11(s). This permits prior smoothing towards the heteroskedastic Gaussian spatial model.
If θ11(s) ≠ … ≠ θ1L(s), then the quantile function is no longer Gaussian. However, in this
case if L is even then Bl(0.5) = 0 for all l, and thus the median of μt(s) is q(0.5|s, t) = β0(s) +
tβ1(s), identifying β0(s) and β1(s) as the intercept and slope, respectively, of the median.
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To define a valid density function, the quantile function must be increasing in τ. Since
dΦ−1(τ)/dτ > 0 and the derivative of the quantile function is

(5)

where κj ≤ τ < κj+1, q(τ|s, t) is increasing in τ if and only if θ0l(s) + tθ1l(s) > 0 for all l and t.
This facilitates specifying a prior that yields an increasing quantile function, as described in
detail below. We note again that if t was unbounded then θ1l(s) would have to be zero to
satisfy this constraint for all t, but with t bounded to [0,1], non-zero θ1l(s) are possible.

This model spans a wide class of quantile functions. For example, if we restrict attention to
the quantile function at quantile break points κ2,…,κL and time points t = 0, 1, then
Appendix A.2 shows that this model spans the entire set of valid quantile functions defined
on this support. Therefore, for large L it should be possible to approximate a wide class of
quantile functions.

To graphically illustrate the flexibility of the model, Figure 2b plots the quantile function

 for three choices of coefficients b = (b1, … bL). The first quantile
function (solid line) with all coefficients equal to 2 is the familiar Gaussian quantile function
with mean zero and standard deviation 2. The second quantile function (thin dashed) is
skewed with the final three coefficients larger than the first three coefficients. The third
quantile function (thick dashed) is heavy-tailed with large first and last coefficients.

These basis functions also permit a closed-form expression for the density of μt(s). The
quantile function (1) can be written

(6)

where bl(s, t) = θ0l(s) + tθ1l(s) and al(s, t) = q(κl+1|s, t) − bl(s, t)Φ−1(κl+1) if κl < 0.5 and al(s,
t) = q(κl|s, t) − bl(s, t)Φ−1(κl) if κl ≥ 0.5. Recalling that the quantile function of a normal
random variable with mean a and standard deviation b is a + bΦ−1(τ), the density becomes

(7)

where N(·|a, b2) denotes the density of a normal with mean a and standard deviation b. We
refer to this as a multiply-split normal density. Here again the need for the constraint that
bl(s, t) = θ0l(s) + tθ1l(s) > 0 for all l and t is apparent. Figure 2c plots the density function for
several examples. Unlike the quantile function, the density function may have
discontinuities at the breakpoints q(κl|s, t). Discontinuity in the density is a common artifact
of Bayesian density estimation, for example, Dirichlet process (Ferguson, 1973, 1974),
Polya tree (Lavine, 1992, 1994), and quantile pyramid (Hjort and Walker, 2009) priors.
Although discontinuity in the density may not be ideal, our primary objective is to study the
quantile function, which is continuous in all cases.

The quantile function is allowed to vary spatially by allowing both the intercepts βk and
basis function coefficients θkl to be spatial processes. The βk are independent Gaussian

processes with mean β̄k and exponential covariance .
The θkl are also modeled as spatial processes, however, these coefficients must satisfy the
constraint that θ0l(s) + tθ1l(s) > 0 for all l and t. Since it is assumed that t ∈ [0, 1], this
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constraint is satisfied for all t if θ0l(s) > 0 and θ0l(s) + θ1l(s) > 0. To satisfy the constraints,
an unconstrained Gaussian processes  is introduced, and

(8)

for small constant ε > 0. In Section 4, ε = 0.01. The latent processes  are independent
Gaussian processes with mean θ̄kl and exponential covariance

. The variances  control the amount of spatial

variability in the quantile process. If  then the shape of the quantile function is constant
across space and determined by the spatial means θ̄kl. The spatial means have hyperpriors

. Setting both the hypervariance  and the spatial variances  gives
θkl(s) = θ̃k. As shown in Figure 2, constant coefficients gives the Gaussian model with mean
β0(s′) + tβ1(s′) and standard deviation θ̃0 + tθ̃1. Therefore, the spatial quantile regression
model is centered on the usual Gaussian spatial model with spatially-varying time trend.

2.2 Residual correlation model
Allowing the quantile function, and thus the density, to vary spatially accounts for some of
the spatiotemporal association in the data. However, there may be additional residual
correlation present after accounting for spatial variation in the density function. To account
for this source of correlation while preserving the marginal quantile function q(τ|s, t), we
implement a spatial copula (Nelson, 1999), which is often used to account for correlation in
multivariate data with fixed marginal distributions. Specifying the marginal distribution via
its quantile function is conducive to the copula approach, and the piece-wise Gaussian basis
function in (3) and (4) leads to convenient computation. Let υt(s) be a latent Gaussian
process, modeled using the dynamic spatial model

(9)

where |ψυ| < 1 and wt are independent spatial processes with mean zero and covariance
Cov[wt(s),wt(s′)] = exp(−‖s − s′‖/ψw). Then υt(s) has the standard normal marginal
distribution for all s and t, and ut(s) = Φ[υt(s)] ~ Unif(0,1). Using the probability integral
transformation, q(ut(s)|s, t) has quantile function q(τ|s, t), as desired. Therefore, we fit the
model μt(s) = q(ut(s)|s, t).

Substituting into (6),  , and thus

(10)

where Dl = [κl−1, κl). Therefore, as discussed further in Section 3, the full conditional
distribution of υt(s) is a mixture of truncated normals, which permits Gibbs updates for these
parameters.

The marginal density of μt(s) in (7) is discontinuous. However, μt(s) constructed using
copula methods may be a smoothly-varying spatial process. Smoothness of spatial processes
is often quantified using mean square continuity (Banerjee and Gelfand, 2003; Banerjee et
al, 2003). The process μt(s) is mean square continuous at s if limh→0 E[μt(s) − μt(s + hu)]2

= 0, where h ∈ ℛ and u ∈ ℛ2 is a unit vector. The latent process υt(s) relates to μt(s) via the
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continuous piecewise linear function , which is
Lipschitz continuous. Therefore, if the latent process υt is mean square continuous, then
μt(s) is also mean square continuous.

3 Computational details
We perform MCMC sampling using R (http://www.r-project.org/), although it may be
possible to use WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/). Gibbs sampling is used
for all parameters except for the spatiotemporal range parameters ρ, ϕ, ψυ, and ψw; these
parameters are updated using Metropolis sampling with Gaussian candidate distribution
tuned to give roughly 40% acceptance rate. The full conditionals for the latent
spatiotemporal effects, υt(s), and parameters that control the shape of the quantile process,

, are given below. The remaining parameters have standard full conditionals from
normal/normal or normal/gamma models. For the analysis of the climate data in Section 4,
we generate 25,000 samples and discard the first 10,000 samples as burn-in. Convergence is
monitored using trace plots and autocorrelation plots for several representative parameters.
R code is available upon request.

The full conditional of the quantile curve coefficient  is a mixture of two truncated
normals. Denote  ’s prior given all other values of  as N(M1, V1). The mean and

variance are functions of P, the inverse covariance matrix of ’.  is

the diagonal element of P corresponding to location s, and , where C is
the column of P corresponding to s, and C(−s) and θ*(−s) are the vectors C and θ* after
removing the element corresponding to s. The posterior is also a function of xt = Bl(ut(s))
[I(k = 0) + tI(k = 1)], the residual not accounting for term l, rt(s) = yt(s)−β0(s)−tβ1(s)−Σj≠l Bj
[ut(s)][θ0l(s) − tθ1l(s)] − Bl(ut(s))(1 + t)ε, and residuals accounting for all terms except the
term corresponding to θkl, . Twice the negative log of the full
conditional for  is the sum of a constant that does not depend on  and

(11)

where c = max{ε, ε − θ1l(s)} if k = 0 and c = ε − θ0l if k = 1. Sampling proceeds by first
determining if  or . If , then  ; otherwise

 , where , M2 = V2[Σt xtRt(s)/σ2 + M1/V1], and
NA(a, b2) is the truncated normal density with location a, scale b, and domain A. From (11),
the probability that  is

(12)

Sampling from υt(s) is similar. Denote υt(s)’s prior conditioned all other values of the latent

process as , , and

. Let g = j if υt(s) ∈ j = [Φ−1(κj),Φ−1(κj+1)]. We
sample υt(s) by first drawing g, and then υt(s)|g. The full conditional probability of g = j is
proportional to
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(13)

Given g, υt(s) ~ N g (Mg, Vg).

4 Analysis of southeast US temperature data
4.1 Description of the data and exploratory analysis

To illustrate the proposed method, we analyze monthly climate data from the Florida,
Georgia, North Carolina, South Carolina, and Virginia for the years 1931–2009. The data
are downloaded from the National Climate Data Center at http://www7.ncdc.noaa.gov/CDO/
cdo. We analyze separately three monthly responses: monthly mean temperature (F) and
monthly extreme maximum and minimum temperature (F). We restrict analysis to
observations from June, July, and August, and to locations missing less than 80% of the
observations, leaving 188 sites for mean temperature, 191 sites for minimum temperature,
and 190 sites for maximum temperature. The locations are plotted in Figure 3. To study
more recent trends, we also consider an analysis of data from 1980–2009. Applying the
same missing data threshold leaves 343, 359, and 358 sites for mean, minimum, and
maximum temperature, respectively.

We begin presenting the analysis using standard frequentist quantile regression,
implemented by the rq function in R, separately by spatial location and quantile level.
Figure 3 plots the estimated linear time trend by quantile level for data in July. The estimates
show considerable variation across both space and quantile level. For example, in the
western Carolinas there is an increasing trend in minimum temperature for τ = 0.1 (Figure
3c) but not τ = 0.9 (Figure 3d). Similarly in northern Georgia there is a decreasing trend in
maximum temperature for τ = 0.1 (Figure 3e) but not τ = 0.9 (Figure 3f). Also, several
locations show a statistically significant time trend, but significance often differs between
nearby sites. Temperature is a fairly smooth spatial process, so a spatial model that pools
information across sites is desirable.

4.2 Priors and model-fitting
Section 2 outlines a general model for spatial quantile regression. This model is slightly
modified for these temperature data. Rather than assuming a single quantile function for
each month, we allow the quantile function to vary by month. Define ytm(s) as the
observation in year t and month m ∈ {1, 2, 3} for June, July, and August. Then ytm(s) ~
N(μtm(s), σ2), where μtm(s)’s quantile function is q0m(τ|s) + tq1m(τ|s) and

. Since the quantile functions are likely to be similar, but
not identical across month, we pool information across month by replacing the constant
means E[βkm(s)] = β̄k and E[θklm(s)] = θ̄kl with spatial processes E[βkm(s)] = β̄k(s) and
E[θklm(s)] = θ̄kl(s). The remaining parameters in the coefficient processes are the same, i.e.,
the variance and correlation parameters are shared across month. The average median
processes are modeled as Gaussian processes with mean E[β̄k(s)] = X(s)T γk and covariance

, where X(s) are spatial covariates for the intercept,
scaled latitude and longitude, and log elevation; the θ̄kl(s) are modeled similarly. Finally,
since the analysis only includes three of twelve months, we assume the residual process
follows the dynamic model in (9) within each year, and is independent across years.
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We use uninformative priors for most of the hyperparameters. The regression coefficients in
the mean of β̄k(s) and θ̄kl(s) have N(0,102) priors, and all variances have InvGamma(0.1,
0.1) priors. The autocorrelation has flat prior ψυ ~ U(−1,1). The spatial range is notoriously
difficult to estimate, and we therefore choose a mildly informative prior. To apply a
stationary spatial model we first project the spatial locations to a two-dimensional surface
using the Mercator projection, and then scale them to the unit square [0, 1]2. Each of the log
spatial ranges have priors N(−2,1), which implies a (0.1, 1.5) prior 80% interval for the
effective spatial range ρ log(1/0.05), i.e., the distance corresponding to correlation 0.05. This
prior distributes mass for the effective range over short (10% of the spatial domain) and long
ranges (150% of the spatial domain).

We fit the heteroskedastic Gaussian model with L = 1, as well as non-Gaussian models with
L = 4 and L = 10 basis functions. These models are compared using several model
comparison criteria, described below. To compare models, we randomly (across space and
time) withhold 10% of the observations as a test set. For the test set, we compare mean

squared error, , and mean absolute deviation

, where the sum is over the N withheld observations and ŷtm(s) is
the posterior predictive mean. We also report the coverage probability of the predictive 90%
intervals.

In addition to test-set criteria, the models are compared using several model-fit criteria for
the training set. The deviance information criteria (DIC; Spiegelhalter et al., 2002) is

where D̄ is the posterior mean of the deviance, pD = D̄ − D̂ is the effective number of
parameters, and D̂ is the deviance evaluated at the the posterior mean of the parameters in
the likelihood, (10). The model’s fit is measured by D̄, while the model’s complexity is
captured by pD. Gelfand and Ghosh (1998) propose the expected posterior deviation (EPD)

criterion. Let  be a replication of the ith observation drawn from (10) at iteration l = 1, …,
L in the MCMC algorithm. EPD is defined as

where  measures goodness of fit, 

measures predictive variance, and . We take a = ∞ to give equal weight to G
and P. Gneiting et al. (2007) consider the continuous ranked probability score (CRPS).
CRPS is defined as

where ỹi and ýi are independent replicates from the model. CRPS can be approximated

using MCMC output as . Models with smaller DIC,
EPD, and CRPS are preferred.
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The results are in Table 1. For the 1931–2009 data, all five model comparison criteria are
minimized using L = 4 basis functions for mean temperature. There is discrepancy between
the criteria for minimum and maximum temperature. The cross-validation criteria favor L =
1 and L = 10 basis functions, respectively, for minimum and maximum temperature, while
the remaining criteria favor L = 10 and L = 1 basis functions, respectively. The DIC criteria
accounts for the entire fit of the model to the data, while the cross-validation criteria focus
primarily on estimating the center of the distribution. Since the objective is to identify
changes in the entire distribution over time, we present the results for number of basis
functions minimized by DIC. For the 1980–2009 data, DIC favors L = 4 basis functions for
all three responses.

4.3 Results
Figures 4–6 plot the posterior mean of the time trend q1m(s|τ) by quantile level τ and month
for the 1931–2009 data. Since the time variable is scaled to the unit interval, these estimates
represent the change in temperature (F) quantiles from 1931 to 2009. For all three variables
the quantile estimates have the same general pattern as in the classical quantile regression
approach in Figure 3. For example, there is a negative trend for the lower quantile of the
mean temperature distribution in most of the spatial region, but an increasing trend in
southern Florida. However, using the Bayesian spatial model, the estimated time trends are
much smoother across space and there are more sites identified as having a statistically
significant time trend since information is pooled across spatial locations and months.

For states other than Florida, there is a slightly decreasing trend in mean temperature,
especially for lower quantile levels. For example, the site in central North Carolina
(longitude −79.3, latitude 35.8) in Figure 4a shows a statistically significant (represented by
solid symbols) decreasing trend for lower quantile levels, and no significant trends for
quantiles above the median.

The time trends for minimum temperature in Figure 5 display the most variability across
space and quantile level. For τ = 0.1, there is an increasing trend in the northern part of the
domain, and a decreasing trend in the south. This pattern varies significantly by quantile
level. For example, the site in central Florida (longitude 81.5, latitude 28.1) in Figure 5a has
a significant decreasing trend for lower quantiles, and a significantly increasing trend for
upper quantiles for June and August. In contrast, the site in northern Georgia (longitude
−83.8, latitude 34.8) in Figure 5a has a significant increasing trend for lower quantiles, and
smaller effects for upper quantiles.

Unlike minimum temperature, the trends for maximum temperature in Figure 6 are relatively
stable across space and quantile level. For most of the spatial domain there is a decreasing
trend for all quantile levels. The decreasing trend is the most pronounced in northern
Georgia and central North and South Carolina.

Figure 7 plots the posterior mean of the time trend for the 1980–2009 data for July. Again
the time variable is scaled to be between zero and one, so that these estimates represent the
change in temperature quantiles from 1980 to 2009. The slopes are similar to the full data
analysis. Mean and maximum temperature show a decreasing trend for all states other than
Florida. Estimates for minimum temperature display the most variability across quantile
level and mean. There is an increasing trend in North Carolina and Virginia, especially for τ
= 0.1. The trend in northern Georgia is positive for τ = 0.1 and negative for τ = 0.9.
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5 Discussion
This paper presents a new method for spatiotemporal quantile regression. The quantile
function is allowed to vary with space and time to detect local climate changes. The form of
the quantile function permits convenient Bayesian computation. For the southeast US data,
there is a decreasing trend in mean and maximum temperature for most of the spatial domain
and most quantile levels. The exception is Florida, which shows an increasing trend for
mean temperature and no trend for maximum temperature. Minimum temperature displays
more spatial variability and non-linear effects. For example, in Northern Georgia and the
western Carolinas, the lower quantiles and median of minimum temperature show an
increasing trend, but the trend in the upper quantiles are less pronounced. Also, in Florida
the extremely low temperatures are becoming more extreme, while the median and upper
quantiles show no change over time.

Several interesting modeling extensions are possible. For example, the quantile function
could be a non-linear function of time, perhaps a polynomial function of time. This gives a
more flexible model, but would require more complex constraints to ensure an increasing
quantile function for each spatiotemporal location. Also, a multivariate extension which
simultaneously analyzes several climate variables would provide a more powerful method
for detecting climate change. This should be possible by using multivariate spatial priors for
the parameters in the quantile functions and latent residual process.
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Appendix A.1 - Likelihood for the model without small-scale errors
Modeling the quantile process of the responses directly by setting εt(s) = 0 requires a
different computational algorithm. In this case, we derive an expression for the joint density
of all observations over space and time as a function of β and θ, and then update β and θ
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using Metropolis sampling. First define the cumulative distribution function corresponding
to (7) as

where κl < yt(s) < κl+1 Then υt(s) = Φ−1{F[yt(s)]}, and the joint density for all observations
(over space and time), y = {yt(si)|t, i}, is

where p(v) is the multivariate normal density corresponding to the spatial-temporal model
for v = {υt(si)|t, i}, f is given by (7), and ϕ is the standard normal density function.
Computing p(v) may be slow for large spatiotemporal datasets, but using a separable space-
time correlation structure eases this computation.

Appendix A.2 - Span of the quantile function
Consider the quantile function at the breakpoints κ2, …, κL and times t = 0, 1. Let dkj = q(τj|
t = k) and assume L is even. We show that any valid dkj (i.e., with dkj > dkj−1 for all k and j)
can be obtained within the constraints of the proposed model. Since β0 and β0 + β1 define
the median at t = 0 and t = 1, respectively, we may assume without loss of generality that βk
= q(0.5|t = k) = 0 for k = 0, 1, and thus dkj = 0 if κj = 0.5 and dkj > 0 if κj > 0.5 and vice
versa. Also, since the model is symmetric in τ, we deal only with dkj above the median, and
results follow by symmetry for quantiles below the median.

For l so that κl > 0.5, the basis function (3) at the breakpoints κ2, …, κL reduces to Bl(κj) =
clI(j > l), where cl = Φ−1(κl+1) − Φ−1(κl) > 0. Therefore, the quantile functions at t = 0 and t
= 1, omitting notational dependence on (s), become

where p = min{j|κj > 0.5}. Then for j = p we have d0p = cp−1θ0p−1 and d1p = cp−1(θ0p−1 +
θ1p−1). Thus θ0p−1 = d0p/cp−1 > 0 and θ1p−1 = (d1p − d0p)/cp−1, which satisfies θ1p−1 + θ0p−1
= d1p/cp−1 > 0. Next, for j > p, assume that θkq for q < j − 1 are fixed to match dkq for q < j.
Then d0j = d0j−1 + c0j−1θ0j−1 and d1j = d1j−1 + cj−1(θ0j−1 + θ1j−1). Thus θ0j−1 = [d0j − d0j−1]/
cj−1 > 0 and θ1j−1 = ([d1j − d1j−1] − [d0j − d0j−1])/cj−1, which satisfies θ1j−1 + θ0j−1 = [d1j −
d1j−1]/cj−1 > 0. Therefore, by recursion, θjk that satisfy model constraints are defined that
match the quantiles at the breakpoints for t = 0 and t = 1.
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Figure 1.
July minimum temperature data by year for a site in northern Georgia with long/lat (−83.71,
34.85). Panel (a) shows the classical linear quantiles estimates q̂0(τ)+ q̂1(τ)t, fit separately
by quantile level and ignoring spatiotemporal dependence. Panel (b) plots the estimate of the
time trend q̂1(τ) (±2*se) for various quantile levels.
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Figure 2.

Basis functions Bl(τ) for L = 6 (left), and the quantile function (middle)
and corresponding density functions (right) for several coefficients b = (b1, …, b6).
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Figure 3.
Classical quantile regression estimates for the time trend by location and quantile level. The
coefficients represent the change in temperature (F) quantiles from 1931 to 2009. Circles
represent data locations, closed circles indicate a p-value less than 0.05 for the time trend,
and the shading represents the estimated time trend coefficient.

Reich Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2013 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Posterior mean trend coefficients q1m(s|τ) by quantile level τ and month for 1931–2009
mean temperature (F). The coefficients represent the change in temperature (F) quantiles
from 1931 to 2009. Panels (b)–(d) map the trend for July. Shaded symbols indicate the
corresponding 95% interval excludes zero.
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Figure 5.
Posterior mean trend coefficients q1m(s|τ) by quantile τ level and month for 1931–2009
minimum temperature (F). The coefficients represent the change in temperature (F)
quantiles from 1931 to 2009. Panels (b)–(d) map the trend for July. Shaded symbols indicate
the corresponding 95% interval excludes zero.
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Figure 6.
Posterior mean trend coefficients q1m(s|τ) by quantile level τ and month for 1931–2009
maximum temperature (F). The coefficients represent the change in temperature (F)
quantiles from 1931 to 2009. Panels (b)–(d) map the trend for July. Shaded symbols indicate
the corresponding 95% interval excludes zero.
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Figure 7.
Posterior mean trend coefficients q1m(s|τ) by quantile level τ of July for 1980–2009
temperature (F). The coefficients represent the change in temperature (F) quantiles from
1980 to 2009. Shaded symbols indicate the corresponding 95% interval excludes zero.
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