Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease

Christopher G. Mayne, Ph.D.¹ and Calvin B. Williams, M.D., Ph.D.¹,*,#

¹ Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI 53226

Abstract

The mucosal immune system mediates contact between the host, and the trillions of microbes that symbiotically colonize the gastrointestinal tract. Failure to tolerate the antigens within this “extended self” can result in inflammatory bowel disease (IBD). Within the adaptive immune system, the most significant cells modulating this interaction are Foxp3⁺ regulatory T (T₉ₑｇ) cells. T₉ₑᵍ cells can be divided into two primary subsets: “natural” T₉ₑᵍ (nT₉ₑᵍ) cells, and “adaptive” or “induced” T₉ₑᵍ (iT₉ₑᵍ). Recent research suggests that these subsets serve to play both independent and synergistic roles in mucosal tolerance. Studies from both mouse models and human patients suggest defects in T₉ₑᵍ cells can play distinct causative roles in IBD. Numerous genetic, microbial, nutritional, and environmental factors that associate with IBD may also affect T₉ₑᵍ cells. In this review we summarize the development and function of T₉ₑᵍ cells, and how their regulatory mechanisms may fail, leading to a loss of mucosal tolerance. We discuss both animal models and studies of IBD patients suggesting T₉ₑᵍ cell involvement in IBD, and consider how T₉ₑᵍ cells may be used in future therapies.

Keywords

induced regulatory T cell; natural regulatory T cell; colitis; Crohn’s disease; Foxp3

Introduction

The gastrointestinal tract is the largest lymphoid organ in the body. This complex network consists of specialized epithelial cells, lymphatic vessels, dendritic cells, lymphocytes, and secondary lymphoid structures. The gut immune system mediates contact between the host and the microbes that symbiotically colonize this mucosal surface (termed the microbiota), while protecting the host against pathological invasion. Exposure to nutritional, microbial, and host antigens in the intestine creates an “extended self” that varies dynamically in this complex environment. Thus, the division between “self” and “non-self” is often indistinct, and multiple regulatory mechanisms have evolved to restrain misdirected immune responses. Failure of these regulatory pathways and/or imbalances in the composition of the

#Supported by NIH F32 AI092977 (CGM), a Senior Research Award #2858 from the Crohn’s and Colitis Foundation of America (CBW), NIH R01 AI073731 and R01 AI085090 (CBW), and the D.B. and Marjorie Reinhart Family Foundation (CBW).

*Correspondence: cwilliam@mcw.edu, 414-955-4343 (tel), 414-266-6695 (fax).

Publisher’s Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
microbiota can result in pathologic inflammatory processes such as inflammatory bowel disease (IBD), which primarily consists of ulcerative colitis (UC) and Crohn’s disease (CD).

Numerous tissues and specialized cells are involved in maintaining mucosal tolerance in the intestine. Paneth cells at the base of the intestinal crypts of the small intestine produce antimicrobial peptides and lectins, limiting direct contact between the epithelia and microbiota. M cells of the follicle-associated epithelium translocate luminal antigens across the epithelium into the dome region of Peyer’s patches (PP) and isolated lymphoid follicles (ILF) for uptake and processing by dendritic cells (DCs). Recent data suggests that a subset of goblet cells in the small intestine may also deliver antigens to DCs. The DCs within the gut lamina propria and secondary lymphoid tissues encounter and process the antigen. Alternatively, DC within the lamina propria can sample luminal antigens directly by extending dendrites between tight junctions of the epithelia, into the lumen. After encountering antigen, DCs migrate to T cell zones in the PP or mesenteric lymph node (mLN) to present antigen and activate effector T cells. Activated CD4 effector T cells can stimulate B cells, resulting in IgA-producing plasma cells. IgA plasma cells and activated effector T cells then populate the lamina propria, resulting in a low-grade inflammation that appears to be the normal state of the intestine.

IBD appears to be a primarily T cell-mediated disease. Indeed, CD4 T cells are responsible for orchestrating the excessive inflammation involved in IBD. However, T cells also appear to play the largest role in establishing and maintaining immunological tolerance by suppressing excessive or abnormal immune responses. Numerous subtypes of T cells appear to display immunosuppressive function in the gastrointestinal tract. Classical TCRαβ T cells such as CD8+ CTLs and CD4+ Tr1 cells exhibit immune suppression in the gut. In addition, more atypical CD8αα and TCRγδ+ T cells have been shown to exhibit protection against mouse models of colitis. Other innate-like T lymphocytes with invariant TCRs such as iNKT and mucosal-associated invariant T (MAIT) cells may also play immunoregulatory roles in the GI tract. Nonetheless, the most significant of the immunosuppressive T lymphocytes are TCRαβ CD4+ regulatory T (Treg) cells that are characterized by the expression of the transcription factor Foxp3. This review will focus on these CD4+ Foxp3+ Treg cells.

Global failure of Treg cell development via Foxp3 deficiency results in the lethal multi-system autoimmune disease immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) that underscores the essential nature of Treg cells in immune regulation. The most commonly affected organ in IPEX is the intestine, highlighting the essential role for Treg cells in the gastrointestinal tract. In addition to IPEX, other genetic deficiencies suggest the importance of Treg in IBD. Mutations in WASP, CD25, and IL-10 all lead to abnormal Treg cell numbers and/or function, and also increase an individual’s risk for IBD. Although these genetic defects suggest a role for Treg cells in human IBD, much of the mechanistic evidence has come from mouse models of disease. Mouse models of IBD can be separated into 4 relatively distinct categories: 1) chemically induced barrier disruption models, 2) spontaneous models due to genetic deficiency, 3) overexpression of inflammatory mediators, and 4) lymphopenic T cell transfer models (Table 1).

Commonly used chemically induced barrier disruption models include dextran sulfate sodium (DSS) and hapten-induced colitis via 2,4,6-trinitrobenzene sulfonic acid (TNBS) and oxazolone. These chemicals disrupt the epithelium, allowing microbial and immunogenic molecules to penetrate and initiate an inflammatory response. Spontaneous genetic models include IL-10 deficient mice, defective PPARG expression in SAMP1/YitFc mice, and Mdr1 deficiency. Numerous other genetic deficiencies also lead to intestinal inflammation, but IL10, PPARG, and MDRI are particularly notable in that they play roles.

Inflamm Bowel Dis. Author manuscript; available in PMC 2014 July 01.
in T_{reg} cell number and/or function and are also human IBD susceptibility loci.11, 15–17 Other mouse models utilize gene overexpression to model intestinal inflammation. Such models include TNF-α overexpression in TNFΔARE mice and STAT4 overexpression.11

Perhaps the most compelling data on the role of T_{reg} cells in IBD has come from the T cell transfer model of colitis. In this model, naïve CD4+ T cells, depleted of T_{reg} cells, (typically CD45RBhi) are adoptively transferred into mice lacking B and T lymphocytes (SCID or RAG-deficiency). These effector T cells proliferate and become activated in response to bacterial antigens in the intestine, resulting in inflammation and colitis. Disease can be both prevented and treated via elimination of the microbiota or co-transfer of T_{reg} cells.18, 19 This model offers the distinct advantage that the pathogenic and regulatory T cell subsets can be genetically targeted independently. Thus, several important inflammatory and suppressive mechanisms have been identified through transfer of T_{reg} or effector T cells (T_{eff}) from mutant mice.6

Numerous studies utilizing mouse models support a role for T_{reg} cells in IBD. In barrier models T_{reg} cells localize to the intestine and mLN in acute disease, and an absence of T_{reg} cells exacerbates disease.6, 20 A mild breech of the intestinal barrier via ethanol in the absence of TNBS does not result in colitis, suggesting regulatory responses predominate.6 Many genetic models of spontaneous IBD involve genes affecting T_{reg} function, and in treatment models T_{reg} cells home to the intestine to resolve inflammation.6, 21 Two subsets of T_{reg} cells have been described, “natural” T_{reg} (nT_{reg}) cells and “induced” or “adaptive” T_{reg} (iT_{reg}) cells. Both nT_{reg} and iT_{reg} subsets are characterized by the expression of Foxp3, and Foxp3 expression is necessary for their overall fate and function.8, 22 The nT_{reg} and iT_{reg} subsets are largely distinguished by their developmental origin and appear to play non-redundant roles enforcing gastrointestinal tolerance.

Natural regulatory T cells

“Natural” T_{reg} (nT_{reg}) cells arise as a discrete and largely stable lineage originating in the thymus. Foxp3+ cells are first detectable in a small fraction of CD4+ CD8+ double positive thymocytes, and are subsequently more frequent in CD4+ single positive thymocytes.8 The nT_{reg} subset exhibits a TCR repertoire that is distinct from Foxp3− conventional T cells (T_{conv}) and from iT_{reg} cells. Data shows that the TCRs of nT_{reg} cells may have increased affinities for self-peptides.23–26 Moreover, mutations in MHC and TCR signaling suggest that a strong TCR signal is required for nT_{reg} development. TCR signaling activates the NF-κB pathway, and several conditional mutations in NF-κB members show nT_{reg} defects.27 NF-κB family member c-Rel binds directly to the conserved non-coding sequence 3 (CNS3) region of the Foxp3 promoter, providing a link between TCR signaling and Foxp3 expression.28

TCR-ligand affinity alone does not determine Foxp3 expression.28 nT_{reg} cells also require IL-2 for their development and maintenance. In fact, regulatory T cells were first identified by their elevated expression of the high-affinity IL-2 receptor CD25 (IL-2Rα). Mice lacking IL-2 signaling via antibody neutralization or genetic deficiency of IL-2 or IL-2 receptors show nT_{reg} deficiencies and spontaneous autoimmune disease including IBD.29–32 CD25 deficiency in human patients also results in an IPEX-like disease, supporting the importance of IL-2 signaling in nT_{reg} development.33 Downstream signaling from IL-2 receptors is mediated through STAT5, and STAT5 binds to the conserved non-coding sequence 2 (CNS2) enhancer region of the Foxp3 gene. This suggests that IL-2 signaling directly promotes the initial expression and/or maintenance of Foxp3 to support nT_{reg} development.27
In addition to IL-2 signaling, normal T_{reg} development in the thymus requires autophagy. Transplant of autophagy-deficient thymi from Atg^{−/−} mice results in abnormal T cell selection and spontaneous colitis. This suggests that a subset of intestinal auto-antigens may require autophagy for proper presentation and deletion in the thymus. In fact, autophagy genes are a commonly identified class of IBD susceptibility alleles. Thus, there may be a role for autophagy defects in clinical disease, though T_{reg} specificity and function in IBD patients with autophagy mutations has not been investigated.

Adaptive or induced regulatory T cells

Whereas nT_{reg} cells are defined by Foxp3 expression that originates during thymic T cell development, “adaptive” or “induced” T_{reg} (iT_{reg}) cells are generated during the course of an immune response from naive T_{conv} cells in the periphery. In healthy mice, the majority of peripheral Foxp3⁺ cells in the spleen and lymph nodes are thymically-established nT_{reg} cells. In contrast, the iT_{reg} subset of T_{reg} cells make up a large fraction of T cells in the lamina propria (LP) and gut-associated lymphoid tissue (GALT) of the intestine. The formation of iT_{reg} cells involves the peripheral activation of T_{conv} cells in the presence of TGF-β1 (Figure 1). This conversion can also be performed in culture, resulting in Foxp3⁺ *in vitro* iT_{reg} cells. These *in vitro* iT_{reg} cells may serve as cell-based therapies for autoimmune diseases such as IBD since they can be derived in large numbers from the patient’s own cells, and can potentially be enriched for relevant antigen specificities. Indeed, clinical trials utilizing *in vitro*-derived iT_{reg} cells as a new therapy are currently underway.

In vivo, antigen exposure and/or lymphopenia can result in Foxp3 expression in up to 15% of antigen experienced T_{conv} cells. These *in vivo* iT_{reg} cells appear to be particularly prevalent at mucosal surfaces where tolerance must be expanded to antigens within the colonizing microbiota. Antigen feeding experiments identified a TGF-β1-producing CD4⁺ T cell population in the LP and GALT coined “Th3” that was important in oral tolerance. These studies were performed prior to the discovery of Foxp3, and subsequent studies have shown that most “Th3” cells express Foxp3 and are de facto iT_{reg} cells. However, a small fraction of CD4⁺ TGF-β1⁺ Foxp3[−] Th3 cells may yet exist.

Similarly to *in vitro* iT_{reg}, the peripheral induction of Foxp3 *in vivo* appears to be dependent upon TCR activation in the presence of TGF-β1. TGF-βR signaling leads to phosphorylation of SMAD molecules and the binding of SMADs to the CNS1 enhancer element in the Foxp3 locus. This association together with the binding of other transcription factors leads to the TGF-β1-mediated activation of Foxp3 transcription, which drives differentiation of the iT_{reg} lineage. The vitamin A metabolite retinoic acid (RA) further increases Foxp3 induction.

In vivo induction of Foxp3 seems to be particularly important in the gut. In fact, the GI tract is a TGF-β1 rich environment, LP and GALT dendritic cells (DCs) produce RA, and RA drives gut tropism in T_{reg} cells. Additionally, APCs derived from the intestine, including CD103⁺ DCs and CD11b⁺ CD11c[−] macrophages preferentially promote iT_{reg} development in comparison to spleen or peripheral lymph node derived APCs. These data strongly support a role for induction of iT_{reg} and iT_{reg}-mediated suppression in the gastrointestinal environment.
Distinguishing nT_{reg} and iT_{reg} cells

There are few mechanisms for differentiating nT_{reg} and iT_{reg} cells. Most molecules showing increased expression on T_{reg} cells (including CD25, CTLA4, and GITR) appear to be targets of Foxp3 transcriptional activation, and are thus expressed similarly between iT_{reg} and nT_{reg} cells. Also, both nT_{reg} and iT_{reg} cells suppress immune responses using similar antigen-dependent and antigen-independent mechanisms. Other cell types can also express ostensible T_{reg} markers, further confusing the discrimination between T_{reg} subsets. Helios is one molecule that has been suggested to differentiate nT_{reg} and iT_{reg} cells. Helios is a transcription factor that is expressed at elevated levels in nT_{reg} but not iT_{reg} cells. However, genetic deficiency of Helios does not appear to affect T_{reg} differentiation and function. Subsequent studies have suggested that Helios is a marker of activation and proliferation that can be expressed on both T_{reg} and T_{conv} cells. Furthermore, in some studies only a small fraction of in vivo-derived iT_{reg} cells lacked Helios expression and both in vitro and in vivo-derived iT_{reg} could express Helios in response to APC stimuli. Neuropilin-1 (Nrp-1) is another marker that may differentiate nT_{reg} and iT_{reg} cells. Recent studies suggest that Nrp-1 is limited to the nT_{reg} subset. The iT_{reg} cell subset expresses only low levels of Nrp-1 after in vitro conversion via TGF-β1. In vivo iT_{reg} cells differentiated via oral or intravenous antigen delivery, exposure to a peripherally-expressed antigen, or lymphopenia-induced proliferation also lack Nrp-1 expression. Interestingly, Nrp-1 expression differences are largely maintained, even when cells are activated. Conversely, iT_{reg} cells differentiated under inflammatory conditions in the lung or CNS appear to gain Nrp-1 expression. Thus, it will be interesting to examine Nrp-1 expression in mouse models of IBD. Unfortunately, Nrp-1 does not appear to be expressed by human PBMCs, so the utility of this marker for clinical studies may be limited.

Differences in the methylation status of the Foxp3 genetic locus are a more universally accepted difference between the nT_{reg} and iT_{reg} subsets. Thymus-derived nT_{reg} cells have demethylated CpG motifs in the T_{reg} cell-specific demethylation region (TSDR) of conserved noncoding sequence 2 (CNS2) in Foxp3, whereas the TSDR of iT_{reg} cells is only partially demethylated. Heritable and stable Foxp3 expression are linked to TSDR demethylation. The factors that influence the demethylation status of the TSDR in iT_{reg} cells are unknown and the level of demethylation varies depending on the nature of the iT_{reg} differentiation. Unfortunately, detection of Foxp3 TSDR methylation must be performed on the genomic DNA of large pools of cells, and thus cannot differentiate nT_{reg} and iT_{reg} cells on a per cell basis as with surface markers.

Since markers that differentiate nT_{reg} and iT_{reg} are controversial, current studies often identify all peripheral Foxp3⁺ T cells as “nT_{reg}”. This practice complicates the precise determination of nT_{reg} and iT_{reg} cell identity and function, because the peripheral Foxp3⁺ T cell pool undoubtedly contains some fraction of T_{reg} cells that induced Foxp3 after leaving the thymus. Thus, the population of cells identified as “nT_{reg} cells” are likely contaminated with in vivo-derived iT_{reg} cells. The fraction of iT_{reg} in a typical peripheral T_{reg} pool has been estimated by tracking Foxp3[−] T_{conv} cells that upregulate Foxp3 expression in vivo. In these approaches, congenically marked Foxp3[−] T_{conv} cells are transferred into lymphopenic, lymphoreplete, or Foxp3-deficient hosts. Using these transfer approaches, the overall fraction of iT_{reg} cells in the peripheral T_{reg} pool appears to be 4–15%, depending on the system used. As noted above, higher frequencies of iT_{reg} cells are generally present in the mLN and GALT than the peripheral lymph nodes and spleen, supporting a role for iT_{reg} cells at mucosal surfaces.
The size of the iT_{reg} pool was also estimated in Carma-1 deficient mice, which lack thymically-derived nT_{reg} cells but develop iT_{reg} cells in the periphery.34 The overall frequency of Foxp3^+ cells in the periphery of Carma-1^{-/-} is 3–4% of that in wild-type mice. Since Carma-1^{-/-} mice only have iT_{reg} cells yet have a higher threshold for TCR activation, 3–4% likely represents the low end of the iT_{reg} contribution to the peripheral T_{reg} pool, in agreement with transfer studies. Additionally, compared to the spleen, Foxp3^+ cells in these mice are twice as frequent in the mLN and ten times as frequent in the LP, further supporting an increased frequency and role for iT_{reg} development at these sites.34 Thus, when considering most studies, it appears that the typical contribution of the iT_{reg} subset to the peripheral T_{reg} pool ranges from 3 to 15% and is highly context-dependent. Consistently, the contribution of iT_{reg} cells increases greatly in the intestine, favoring a significant role for iT_{reg} cells in the control of IBD.

Due to the lack of a specific surface marker, it is currently difficult to identify human in vivo-derived iT_{reg} cells, although it is reasonable to assume that the iT_{reg} cell subset exists. Human T cells share a capacity for the in vitro differentiation of iT_{reg} cells and have similarly increased numbers and frequency of T_{reg} cells in mucosal locations. One important distinction between mice and humans is that activated non-regulatory human T_{conv} cells transiently express FOXP3 at low levels. Accordingly, human FOXP3^+ T cell populations are subdivided as a resting/naive T_{reg} cell subset that is CD25^hiCD45RA^+FOXP3^hi, an effector T_{reg} cell subset that is CD25^hiCD45RA^+FOX3^hi, and a non-regulatory cytokine-secreting FOXP3^+ subset that is CD25^hiCD45RA^+FOX3^lo.60 Additional markers such as low expression of CD127, and increased expression of CD39, MHCII, GITR, and CTLA-4 further distinguish human T_{reg} cells.61

Mechanisms of T_{reg} suppression in IBD

T_{reg} cells utilize numerous effector mechanisms to suppress immune responses, targeting both the innate and adaptive arms of the immune system. Interestingly, no one effector mechanism or pathway has been shown to be both necessary and sufficient for all T_{reg} mediated suppressive activities. There is a great deal of functional redundancy between T_{reg} suppressive pathways, which results in compensatory mechanisms in targeted T_{reg} cells and the need for a very strong inflammatory stimulus to differentiate phenotypes. Also, early deletion of genes involved in T_{reg} function often leads to systemic immune issues before intestinal involvement can be detected.6 Studies of IBD are particularly sensitive to slight disparities in the colonizing microbiota between mouse colonies and differing and mouse strains, leading to inconsistent results. Despite these difficulties, several effector mechanisms for T_{reg}-mediated suppression of IBD have been described (Table 2). In general they can be divided into two categories 1) immunoregulation through consumption or production of soluble mediators (primarily cytokines) and 2) immunoregulation via direct interaction with APCs or T_{eff} cells.

Among the cytokine-based approaches, TGF-β1 and IL-10 are the best studied. TGF-β1 is a pleiotropic cytokine produced by many immune and non-immune cells. TGF-β1 controls cell proliferation and differentiation in numerous tissues throughout the body. In particular, TGF-β1 plays an important role in the extra-thymic induction of Foxp3 in iT_{reg} cells. In addition, T_{reg} cells themselves produce large amounts of TGF-β1. Global deficiency of TGF-β1 results in a lethal multi-organ lymphoproliferative disease similar to Foxp3 deficiency. Since TGF-β1 deficient mice die at weaning, analysis of gut-specific effects of TGF-β1 difficult.

The intestine appears to be a particularly TGF-β1 -rich environment and apoptotic cells stimulate TGF-β1 release.62 The high cell turnover and/or acute epithelial damage in the
intestine may contribute to the secretion of TGF-β1 to prevent excessive immune responses in the chronically immune-stimulated intestinal environment. However, much of the TGF-β1 in the intestine is present in an inactive form that must be activated by integrins. Mice deficient in αv or β8 TGF-β1-activating integrins in APC populations develop spontaneous colitis, suggesting DCs and perhaps other APCs must activate TGF-β1 in the GALT.6, 34 This activated TGF-β1 likely has direct effects on T lymphocytes since depletion of T cells prolongs the survival of TGF-β1 deficient mice.63–65 Further, T cell-specific deletion of TGF-β-receptor II results in a similar autoimmune phenotype to global deficiency of TGF-β1.66, 67 In the T cell transfer model of colitis, a TGF-β1 blocking antibody eliminates the ability of a Treg-containing CD45RBlow pool to prevent colitis.68 In a similar transfer model, transferred T cells expressing an endogenous inhibitor of TGF-β1, Smad7, were unable to be suppressed by co-transferred Treg.42 This suggests that Treg-produced TGF-β1 has direct immunosuppressive effects on colitogenic T eff cells, and/or that TGF-β1-driven differentiation of iTreg is necessary for prevention of intestinal inflammation.

IL-10 is a potent anti-inflammatory cytokine produced by both non-immune and immune cells including Treg cells. IL-10 has particular significance in IBD because IL-10 and IL-10R2 deficient mice do not develop lethal systemic autoimmunity, as seen in TGF-β1 deficient mice, but instead develop colitis.12, 69 Established intestinal inflammation in mice can be ameliorated via treatment with recombinant IL-10 protein, IL-10 expressing transgenic T cells, or intestinal bacteria engineered to produce IL-10.70–72 Significantly, the IL10 gene is a susceptibility locus for human ulcerative colitis, and patients with mutations in the IL-10 receptor develop IBD at an earlier age and with higher penetrance than IPEX patients.73, 74 Treg cell-specific deletion of IL-10 results in a similar, though less severe intestinal inflammation than global IL-10 knockout mice.75 In the T cell transfer model of colitis, Treg-produced IL-10 is particularly necessary in the presence of triggering microorganisms such as Helicobacter hepaticus.76, 77 These results suggest that IL-10 production by both Treg and non-Treg cells is important in maintenance of tolerance in the GI tract, depending on the inflammatory context.

Tr1 cells are one other potential source for IL-10 in the intestine. Tr1 cells produce high levels of IL-10 and require IL-10 for their differentiation. Tr1 cells seem to share other suppressive pathways with Treg cells, but Tr1 cells are characterized by their lack of Foxp3 expression.6 In the colon LP, Foxp3+ Treg cells are the predominant IL-10 producing T cells. However, in the small intestine, the majority of IL-10-producing intraepithelial lymphocytes (IEL) do not express Foxp3, suggesting a potential role for Tr1 cells.78 Since Tr1 cells lack a specific marker, little is known about this population. However, the prevalence of Foxp3− IL-10-producing T cells in the intestine, and less severe disease in Treg cell-specific IL-10 knockout mice suggests that Tr1 cells may also contribute to IL-10-mediated suppression.

Another immunosuppressive cytokine secreted by Treg cells is IL-35. IL-35 is a newly discovered heterodimeric cytokine consisting of subunits IL12p35 and Ebi3. IL-35 is preferentially produced by Treg cells and suppresses T cell proliferation in vitro. In the T cell transfer model of colitis Treg cells deficient in either IL12p35 or Ebi3 showed decreased ability to ameliorate established disease.79 In addition, mice deficient for Ebi3 were more susceptible to EAE, and both Ebi3−/− and IL-12p35−/− mice showed increased airway hyperresponsiveness, suggesting Treg-produced IL-35 may play roles in numerous tissues.80, 81

Pericellular adenosine is another soluble immunoregulatory molecule utilized by Treg cells. Both mouse and human Treg cells express surface bound enzymes such as CD39 and CD73 that convert proinflammatory extracellular ATP into the immunosuppressive nucleoside adenosine. Adenosine produced by Treg cells binds adenosine receptors such as A2A on DCs
and Teff cells to decrease their activation and function.82, 83 Pericellular adenosine appears to play a critical role in intestinal immune tolerance. In the T cell transfer model of colitis, wild-type Treg cells could not suppress disease induced by A2A-deficient colitogenic T cells.84 Treatment with A2A agonists also ameliorated a spontaneous mouse model of ileitis.85

In addition to producing cytokines, Treg cells can also cause immunosuppression through cytokine deprivation. Treg cells express elevated levels of numerous cytokine receptors including the high affinity IL-2 receptor CD25.8, 22, 86 This increased expression of cytokine receptors is hypothesized to allow Treg cells to outcompete Teff cells for survival signals, causing Teff cell apoptosis. In the T cell transfer model of IBD, transferred Treg cells increase apoptosis in colitogenic Teff cells. In vitro provision of exogenous IL-2 or other common gamma chain cytokines decreases Teff cell apoptosis in Treg/Teff co-cultures.87 The Bcl-2 family member Bim signals apoptosis in response to cytokine deprivation. Teff cells deficient in Bim are resistant to Treg-driven apoptosis both in vitro and in the T cell transfer model of colitis, suggesting Teff cells are undergoing apoptosis due to an absence of cytokine-derived survival signals.87 But, a role for cytokine consumption by Treg cells in vivo is difficult to prove. Since Treg cells could utilize other mechanisms to initiate termination of the immune response, survival cytokines would be expected to subsequently decrease as a result of the decreasing immune response.6

Treg cells also directly interact with other immune cells to mediate immune suppression. The increased apoptosis of Teff cells via Treg cells may not only be due to cytokine deprivation, but may also be due to direct cytotoxic effects of Treg cells on Teff cells. The direct killing of numerous cell populations including CD4+ Teff, CD8+ CTL, and APCs by Treg cells via perforins and granzymes is well established in vitro.88–90 Treg-mediated killing of APCs is a particularly intriguing effector mechanism since this regulatory approach could yield antigen specificity through the TCR/MHCII interactions of these two cell types. The evidence for cytotoxicity of Treg cells in vitro is more limited. In a mouse model of transplantation tolerance, granzyme B expression by Treg cells and granzyme targeting in Teff cells was important for maintenance of the graft.91 In addition, Treg cells were shown to control CD8+ T cell responses to lung infection in a granzyme B-dependent manner.92 The extent to which cytotoxicity plays a role in Treg cell suppressive function in IBD is currently unknown. Still, it is interesting to note that the increased apoptosis of effector populations through both Treg-mediated cytokine deprivation and cytotoxicity could result in increased TGF-β1 production, further amplifying the regulatory response.

Treg cells also express numerous surface receptors that confer suppressive activity. Cytotoxic T lymphocyte antigen 4 (CTLA-4) is foremost among these receptors. CTLA-4 is a high-affinity inhibitory receptor related to CD28. CTLA-4 has greater affinity for its B7 ligands than CD28. This increased affinity seems to increase the duration of time Treg cells engage with APCs, and modulate the APC function and maturation. In fact, both in vitro and intravital imaging suggests that these stable Treg/APC contacts limit access of Tconv cells to APCs, thus limiting Teff cell activation.93, 94 In the T cell transfer model of colitis, CTLA-4 blockade limits protection by Treg cells. Also, CTLA-4-deficient nTreg cells can prevent colitis induced by wild-type naive T cells, but not disease induced by CTLA-4-deficient T cells.95 This suggests a role for CTLA-4 on nTreg and also Tconv and/or in vivo iTreg cells. Treg cell-specific CTLA-4 deficiency leads to a lethal autoimmune disorder. However, this lethality occurs much later than in Foxp3 deficiency, suggesting other Treg cell effector mechanisms can temporarily compensate for the absence of CTLA-4.96

CTLA-4 also appears to play a particularly important immunoregulatory role in the human intestine. Anti-CTLA-4 (ipilimumab or tremelimumab) treatment increases the immune
response to some cancers by presumably decreasing T\textsubscript{reg} cell function. However, data from over 4000 patients shows that these treatments can result in potentially lethal colitis.34, 97 In addition, treatment with CTLA4-Ig (abatacept) has shown negative effects including new-onset UC in arthritis patients, and exacerbation of symptoms in CD. These results suggest that CTLA-4 may not only block B7 molecules to promote regulation, but that CTLA-4 signaling may be required for T\textsubscript{reg} cell function in the gut.98

T\textsubscript{reg} cells also express several other receptors that may play a role in immunoregulation. Lymphocyte Activation Gene-3 (LAG-3) is a homologue of CD4 that binds with high affinity to MHCIII on the surface of APCs. This binding inhibits DC maturation and leads to more tolerogenic DCs.99 T\textsubscript{reg} cells are one of few cell types that express both programmed death (PD) receptors and ligands. Expression of PD-L1 and PD-1 may promote the differentiation of iT\textsubscript{reg} cells. PD-L1 and PD-1 expressed by T\textsubscript{reg} cells may also promote stable contacts between T\textsubscript{reg} cells and APCs, and modulate APC function, similar to CTLA-4 and LAG-3.100 These T\textsubscript{reg}-APC contacts may be maintained and enhanced via T\textsubscript{reg} cell expression of Nrp-1. T\textsubscript{reg} cells preferentially expresses additional receptors such as galectins, GITR, and OX40, but their contribution to T\textsubscript{reg} effector function is relatively unknown.101

Interestingly, many of these receptors have the potential to interact with both APC and T\textsubscript{conv} cells to regulate immune responses. Several studies suggest T\textsubscript{reg} cell suppression may be more important in the lymph nodes than the site of inflammation. In the T cell transfer model of colitis, deletions of gut-homing integrins such as CD103 (αE) shows that migration to the intestine is necessary only in the APC population for T\textsubscript{reg} to mediate suppression. In addition, T\textsubscript{reg} cells must express lymph node homing receptors to suppress colitis. This data argues that in the T cell transfer model of colitis T\textsubscript{reg} cells mediate most of their suppressor function through interactions with gut-homing DCs in the lymph node.102–105

Independent and synergistic roles of nT\textsubscript{reg} and iT\textsubscript{reg} cells in mucosal tolerance

It is becoming clear in mouse models of IBD that both nT\textsubscript{reg} and iT\textsubscript{reg} cells are necessary for protection and perhaps also treatment of disease.38 However, how the nT\textsubscript{reg} vs iT\textsubscript{reg} cell responses are calibrated is currently unknown. TCR repertoire and T\textsubscript{reg} differentiation studies suggest that the dual requirement for nT\textsubscript{reg} and iT\textsubscript{reg} cells may be due to differing TCR specificities between the two subsets of T\textsubscript{reg} cells. In particular, it seems that nT\textsubscript{reg} cells are necessary to confer tolerance to self antigens, whereas iT\textsubscript{reg} cells are induced at mucosal surfaces to confer tolerance to antigens in food and to the microbiota that makeup the “extended self”. Interestingly, IBD patients have increased immunoreactivity to both self and microbial antigens suggesting important roles for both nT\textsubscript{reg} and iT\textsubscript{reg} subsets and their corresponding specificities in human patients as well.106, 107

The iT\textsubscript{reg} subset develops after peripheral activation of T\textsubscript{conv} cells in the presence of TGF-β1. However, when levels of the pro-inflammatory cytokine IL-6 are also high, TCR and TGF-β1 signaling results in upregulation of ROR\textgamma t and development of pro-inflammatory Th17 cells that express the cytokine IL-17 (Figure 1). Thus, iT\textsubscript{reg} and Th17 cells both arise from T\textsubscript{conv} cells in the presence of TGF-β1. In fact, iT\textsubscript{reg} and Th17 cells may share a common Foxp3+/ROR\textgamma t+ precursor.108 Under normal conditions, Th17 cells recruit neutrophils to combat infection by fungi and extracellular bacteria. However, these cells are also associated with numerous autoimmune diseases, including IBD. In fact, increased levels of characteristic Th17 cytokines are found in biopsies from IBD patients.48 The role of Th17 cells in IBD is unclear though, as several studies have shown them to be both pathogenic
and protective.39 Mouse studies have disagreed, in particular, on the role of IL-17. Disease can be exacerbated, ameliorated, or unaffected by the absence of IL-17 depending on the method of depletion and whether the IL-17A or IL-17F isoform was targeted.48

In addition to IL-17, Th17 cells produce IL-21 and IL-22. IL-21 appears to be largely pro-inflammatory, and promotes further amplification of additional Th17 cells. IL-21 expression is upregulated in lesions of IBD patients.109 In contrast to the other Th17 cytokines, IL-22 appears to be protective in IBD. IL-22 promotes intestinal barrier integrity and prevent microbes from breaching the epithelium. IL-22 increases cell proliferation and survival of the epithelium, upregulates production of antimicrobial peptides (AMP) such as defensins, and stimulates mucus production.48

The Th17 cell phenotype is maintained through binding of IL-23 to Th17-expressed IL-23R. IL-23 appears to be necessary for the development of IBD in several mouse models, suggesting a pathogenic role for Th17 cells.77, 110–112 In contrast, one study suggests that IL-23 deficient mice have increased susceptibility to colitis induced by TNBS barrier disruption, which agrees with the role of Th17-produced IL-22 in barrier maintenance.113 Genome-wide association studies identified IL-23R as one of the genes most strongly associated with both UC and CD in human patients.5 One allele of IL-23R (R381Q) is protective for IBD. This mutation results in decreased IL-23R signaling and thus decreased numbers of Th17 cells.114 Since this allele confers about three-fold protection from CD, it appears that Th17 cells may play largely pathogenic roles in human IBD.5

Therefore, although iT\textsubscript{reg} and Th17 cells may share receptor specificities, developmental precursors, and differentiation signals, they have differing impacts on immune responses. In fact, the increased methylation of the Foxp3 locus of iT\textsubscript{reg} cells versus that of nT\textsubscript{reg} cells suggests that the iT\textsubscript{reg} subset may serve as a more flexible lineage, able to adapt to the antigenic or inflammatory environment. Determining whether iT\textsubscript{reg} cells can downregulate Foxp3 expression, becoming so-called “ex-iT\textsubscript{reg}”, and revert to alternate fates such as Th17 is an active area of research. It is likely that control of the iT\textsubscript{reg}/Th17 balance and the stability of iT\textsubscript{reg} are key immune regulatory checkpoints.115, 116 Thus, iT\textsubscript{reg}/Th17 conversion may control regulatory versus inflammatory responses to extended self and foreign antigens, while nT\textsubscript{reg} cells control responses to self-antigens in the intestine (Figure 1).

A dual requirement for both nT\textsubscript{reg} and iT\textsubscript{reg} cells in mucosal tolerance has been supported through several studies. In the T cell transfer model of colitis, disease is much more severe when induced with T\textsubscript{conv} cells that have an inability to become in vivo-derived iT\textsubscript{reg} cells.38 Mice with established colitis can be successfully treated with the transfer of nT\textsubscript{reg} cells, but only if the colitogenic T\textsubscript{conv} population can induce Foxp3. In mice lacking in vivo iT\textsubscript{reg} cells, co-transfer of nT\textsubscript{reg} cells and in vitro iT\textsubscript{reg} can cure disease, suggesting a requisite role for these cells in reversing IBD.38 Further studies demonstrated differences in TCR repertoire between the subsets and suggested the primary role for iT\textsubscript{reg} cells is to expand the antigen diversity of immunoregulatory responses.24 Though nT\textsubscript{reg} and iT\textsubscript{reg} cells appear to utilize similar effector mechanisms, iT\textsubscript{reg} cells may serve as a flexible lineage able to expand immune regulation to antigens not expressed during thymic nT\textsubscript{reg} development.117 The ability of iT\textsubscript{reg} cells to aid in peripheral tolerance appears to be particularly important at mucosal interfaces, where the majority of iT\textsubscript{reg} cell specificities are to antigens derived from the microbiota.118

Effects of the microbiota on T\textsubscript{reg} cells

The microbiota have co-evolved with the host to aid in host metabolism, and also play significant roles in host protection and immunity. The microbiota provide signals leading to
the maintenance of the epithelium, and stimulate production of antimicrobial peptides and lectins, thus preventing breech of the initial immune barrier.\(^{27, 119}\) The microbiota also directly interact with the innate immune system and aid in adaptive immunity by promoting the development of Peyer’s patches and isolated lymphoid follicles in the gut, as evidenced by GF mice lacking these structures.\(^{120}\) In turn, the host immune system limits microbial access to the epithelium via the production of antimicrobial products and the secretion of mucus and IgA.\(^{121}\)

IBD patients exhibit abnormal shifts in the taxa of their microbiota. It is not known whether this abnormal bacterial growth is a direct cause of IBD, or a side effect of increased inflammation in the intestine. Nonetheless, probiotics, antibiotics, and fecal diversion have all shown some beneficial effects in IBD.\(^{39, 122, 123}\) Thus, it seems increasingly likely that in IBD there are abnormalities in both the microbiota and the immune response, and that these dual abnormalities may be related.

The T\(_{reg}\) cell compartment seems to be particularly sensitive to changes in the microbiota. TGF-β1 and IL-10 expression by T\(_{reg}\) cells is necessary for their suppressive capabilities, but only in the presence of an activating microbiota.\(^{34}\) T\(_{reg}\) cells from GF mice are generally less suppressive, and express less Foxp3 than T\(_{reg}\) cells from mice under normal conditions.\(^{124-126}\) Though, one study has demonstrated significant IBD suppression mediated by a T\(_{reg}\)-containing population from GF mice.\(^{127}\) The presence of colonizing microbes may also affect the prevalence of T\(_{reg}\) cells in the GALT. T\(_{reg}\) cells numbers are decreased in the colons of GF mice, but are increased in the small intestine.\(^{27}\) Further, T\(_{reg}\) cell numbers in the small intestine LP increase in response to decreasing bacterial load via vancomycin treatment.\(^{128}\) Consistent with these findings, TLR9-deficient mice have increased numbers of T\(_{reg}\) cells in the small intestine, suggesting that inflammatory signals from bacterial DNA plays a role in inhibiting iT\(_{reg}\) cell differentiation or T\(_{reg}\) cell proliferation.\(^{129}\)

Mouse studies of IBD have identified *Helicobacter hepaticus* and segmented filamentous bacteria (SFB) as two particularly pro-inflammatory members of the intestinal microbiota. *Helicobacter hepaticus* is a normal member of the microbiota in many mouse facilities. *Helicobacter hepaticus* and a related species *Helicobacter bilus* normally do not cause pathology, but can trigger inflammation in susceptible hosts.\(^{6, 130}\) In the T cell transfer model of colitis, disease severity was greatly increased in the presence of *Helicobacter hepaticus*.\(^{131}\) Further, mice with a T\(_{reg}\)-specific deletion of IL-10 do not normally present any spontaneous phenotype. When infected with *Helicobacter*, these mice develop spontaneous colitis.\(^{75}\) Though *Helicobacter hepaticus* appears to drive inflammation, T\(_{reg}\) cells from animals infected with *Helicobacter hepaticus* appear to be more suppressive than T\(_{reg}\) cells from uninfected animals.\(^{132}\) Given the numerous effects of *Helicobacter spp.* on T\(_{reg}\) cells and IBD, it seems likely that the variable presence of *Helicobacter* in mouse colonies may be one potential explanation for inconsistencies in IBD studies between institutions.

In mice, segmented filamentous bacteria (*Candidatus arthromitus*) also play an important role in intestinal immune responses. SFB are able to penetrate the mucus layer and directly contact the epithelium, making them particularly equipped to impact host immune responses.\(^{121}\) SFB are approximately 25 times more prevalent in C57BL/6 mice from the vendor Taconic Farms than in C57BL/6 mice from Jackson Labs, providing sources for relatively SFB sufficient and deficient mice.\(^{133}\) In the T cell transfer model of colitis, the addition of SFB to a specific pathogen free bacterial cocktail led to severe colitis.\(^{134}\) Further studies determined that SFB likely promote inflammation by driving Th17 cell differentiation in the small intestine LP.\(^{133, 135, 136}\) Monocolonization of GF animals with...
SFB also leads to IgA production and increased numbers of IEL in the gut.135, 137 SFB induction of Th17 cells appears to be dependent on SFB production of serum amyloid A and ATP, which act on LP DCs, that in turn drive Th17 differentiation.128, 138

The impact of SFB on human IBD is unknown however, since this bacterium is rarely found in the human microbiota. This may be due to prevention of SFB colonization by specific human defensins. Indeed, transgenic expression of human defensin 5 in mice leads to a lack of SFB colonization and a subsequent elimination of Th17 cells in the intestinal LP.136 One report suggests that in addition to the induction of Th17 cells, SFB may also play a role in differentiation of iT\textsubscript{reg} cells.135 However, others found SFB did not increase T\textsubscript{reg} cells, suggesting the source of SFB may play a role.133

Though T\textsubscript{reg} cell numbers generally increase when overall bacterial load is decreased, several studies demonstrated that specific bacterial taxa may drive peripheral Foxp3 induction and/or T\textsubscript{reg} cell proliferation. In fact, the colon T\textsubscript{reg} TCR repertoire was shown to differ from the T\textsubscript{reg} repertoire at other peripheral sites, and these TCR sequences were specific for members of the microbiota. Further, these TCRs were colitogenic when expressed in the absence of Foxp3. These results demonstrate a role for peripheral differentiation of iT\textsubscript{reg} cells specific for the bacterial microbiota and provide exciting support for the hypothesized role of iT\textsubscript{reg} cells in broadening tolerance to the “extended self” of commensal microorganisms.118

Specific bacterial species may play roles in iT\textsubscript{reg} differentiation. Though GF mice lack T\textsubscript{reg} cells in the colonic LP, the colonization of GF mice with a distinct combination of 46 strains of \textit{Clostridium} spp. led to normal development of T\textsubscript{reg} cells in the gut.139 These \textit{Clostridium}-colonized mice had greater levels of intestinal TGF-\beta1 and increased levels of CTLA4 and IL-10 expression in the intestinal T\textsubscript{reg} pool. \textit{Faecalibacterium prausnitzii} is one species included in the 46 \textit{Clostridium} spp.139 \textit{F. prausnitzii} has been shown to induce IL-10 production and reduce severity of colitis in mouse models. Interestingly, this bacterium is decreased in the intestines of IBD patients and is associated with greater risk of disease recurrence in post-surgical Crohn’s disease patients.140

Numerous lactic acid bacteria and \textit{Bifidobacteria} are used as probiotics, and several strains have shown effects on T\textsubscript{reg} cells. \textit{Lactobacillus acidophilus}, \textit{Lactobacillus rhamnosus}, and \textit{Lactobacillus reuteri} have all been shown to modulate inflammation in mouse models of disease.39 \textit{Lactobacillus reuteri} were specifically shown to increase the frequency of T\textsubscript{reg} cells in the mLN and spleen of host animals.141, 142 \textit{Bifidobacterium infantis} increase the frequency and number of T\textsubscript{reg} cells in the spleen and PP and decrease intestinal inflammation induced by \textit{Salmonella typhimurium} infection.143 Consuming \textit{B. infantis} also increased the percent of Foxp3+ T\textsubscript{reg} cells in the peripheral blood of human subjects.144 VSL#3 is a probiotic mixture of numerous \textit{Lactobacillus} and \textit{Bifidobacteria} designed for the management of IBD. Treatment of mice with VSL#3 increases the production of IL-10 and number of TGF-\beta1-producing T cells, though it is unknown whether these cells are Foxp3+. VSL#3 treatment also decreases the severity of a chemically-induced model of colitis.145

Generally, the presence or absence of bacterial taxa only correlates with effects on the T\textsubscript{reg} cell pool. Administered microbes may exert their effects by modifying other members of the microbiota, and not through direct interaction with the immune system. However, \textit{Bacteroides fragilis} exhibits a distinct mechanism for direct modification of host immune development. Monocolonization of GF mice with \textit{B. fragilis} leads to increased differentiation of IL-10-producing iT\textsubscript{reg} cells.146 This induction is completely dependent upon expression of a single \textit{B. fragilis} molecule, polysaccharide A (PSA). Further, this PSA-dependent iT\textsubscript{reg} cell development requires TLR2 signaling, suggesting \textit{B. fragilis} modifies
the host APC to drive iT\textsubscript{reg} cell differentiation. \textit{B. fragilis}-produced PSA inhibits Th17 induction and promotes iT\textsubscript{reg} development, thereby protecting the host from both chemically-induced and \textit{H. hepaticus}-driven colitis.146, 147 Conversely, enterotoxigenic strains of \textit{B. fragilis}, which naturally lack PSA expression, play a role in inducing Th17 cells and promote intestinal inflammation.148

 Numerous bacterial strains can affect the host T\textsubscript{reg} cell compartment. Many of these bacteria are promising candidates for probiotic or antibiotic treatments for IBD. However, most of these taxa, including \textit{Lactobacillus}, \textit{Bifidobacterium}, \textit{Helicobacter}, \textit{F. prausnitzii}, and \textit{B. fragilis} are of low or variable abundance in the human microbiota, and SFB are largely absent in humans.39, 121 Further, probiotic and antibiotic-driven changes in the microbiota often do not endure once treatment is discontinued. Therefore, additional studies will be necessary to identify the role indigenous bacteria play on the T\textsubscript{reg} cell lineage, and how these interactions may promote or prevent IBD.

Failure of regulatory mechanisms in IBD

Since IBD involves a failure in immune regulation, it seems likely that IBD is caused in part by defects in T\textsubscript{reg} cells. These defects could be T\textsubscript{reg} cell-intrinsic, resulting from inherently defective T\textsubscript{reg} cells in the patient. Alternatively, the causes of defective T\textsubscript{reg} cells could be T\textsubscript{reg} cell-extrinsic, and a function of the abnormal intestinal environment and cytokine milieu in IBD patients. These T\textsubscript{reg}-intrinsic or extrinsic defects can lead to insufficient T\textsubscript{reg} cell suppression of IBD in at least 4 ways: 1) deficient T\textsubscript{reg} cell numbers, 2) defective T\textsubscript{reg} cell function, 3) unstable T\textsubscript{reg} cell phenotype, and 4) pathogenic T cell resistance.149

The majority of what we know about the mechanisms of T\textsubscript{reg} involvement in IBD comes from mouse models. Mouse models allow better identification and tracking of \textit{bona fide} T\textsubscript{reg} cells and easier analysis of the intestinal milieu and sites of inflammation. Complete T\textsubscript{reg} cell deficiency, such as that in scurfy or other Foxp3 mutant mice, leads to fatal autoimmunity that includes intestinal inflammation, underscoring deficient T\textsubscript{reg} number as a potential mechanism for IBD.8, 150 In T cell transfer models of colitis the colitogenic T cell population must be depleted of T\textsubscript{reg} cells in order to cause disease.19 Further, injection of both T\textsubscript{reg} cell subsets into these mice can prevent or cure IBD in a dose-dependent fashion.38 Mutations in other potentially T\textsubscript{reg} cell-intrinsic genes such as CD25, IL-2, CD28, and TGF-\beta\textsubscript{1} also lead to decreased numbers of T\textsubscript{reg} cells, though IL-2 and TGF-\beta\textsubscript{1} expression by other cell types likely contributes.2, 149 Other T\textsubscript{reg} cell-extrinsic factors also play a role in mouse models. Cytokines such as IL-6, IL-21, IL-27, and IL-23 may suppress differentiation of iT\textsubscript{reg}, suggesting a role for the intestinal milieu on T\textsubscript{reg} cell number.6

T\textsubscript{reg} cell function may also be affected by the same cytokines that lead to changes in T\textsubscript{reg} cell number. In addition, other T\textsubscript{reg} cell-extrinsic cytokines such as TNF, IL-4, IL-12, IL-7, and IL-15 may limit T\textsubscript{reg} function.149 Several molecules have been shown to play T\textsubscript{reg} cell-intrinsic roles in T\textsubscript{reg} suppressive function. Mutations in T\textsubscript{reg} surface receptors CTLA-4, CD39, LAG-3, and Fas have been shown to limit T\textsubscript{reg} cell suppression.149 In addition, T\textsubscript{reg} cells deficient in the soluble factors TGF-\beta\textsubscript{1}, IL-10, and IL-35 have decreased function (Table 2).149

Mouse T\textsubscript{reg} cells have also shown variable stability. IL-6 exposure drives a fraction of T\textsubscript{reg} cells into the Th17 lineage \textit{in vitro}.151 In the T cell transfer model of colitis, transfer of T\textsubscript{reg} cells into an IL-10 deficient host led to a loss of Foxp3 expression and conversion of T\textsubscript{reg} cells into Th1 pathogenic effector cells.152 Adoptive transfer of T\textsubscript{reg} cells into T cell deficient hosts led to the loss of Foxp3 expression and conversion of T\textsubscript{reg} cells into T follicular helper cells in the intestinal PP.153 Other lineage-tracing studies showed that T\textsubscript{reg} cells that lost Foxp3 expression converted to Th17 cells in the PP, but became more Th1-
like in the spleen and mLN. Further, these studies showed that in a mouse model of diabetes T_{reg} cells that lost Foxp3 expression could be pathogenic upon re-transfer.154 In the transfer model of colitis, the transfer of \textit{in vitro}-derived iT_{reg} cells as treatment resulted in 85\% of transferred cells losing Foxp3 expression, becoming ex-iT_{reg} cells with pathogenic potential.117 Conversely, another study utilizing an inducible cell-tracking system found T_{reg} to be rather stable.155 The differences in these studies may reflect the differences in iT_{reg} cell vs nT_{reg} cell involvement in each system. In general, these studies have shown the iT_{reg} cell lineage to be more plastic and able to become pathogenic ex-iT_{reg}, whereas the nT_{reg} cell lineage demonstrates greater stability (Figure 1).

Mouse models have shown that even in the presence of functional T_{reg} cells, pathogenic effector cells can be resistant to T_{reg}-mediated suppression. In addition to affecting T_{reg} cell function, the cytokines IL-2, IL-4, IL-7, and IL-15 can drive proliferation of effector T cells in the presence of T_{reg} cells \textit{in vitro}.156 Also, agonistic stimulation of TNF receptor family members OX40 or 4-1BB on conventional T cells leads to effector T cells that are resistant to T_{reg} suppression \textit{in vitro}.157, 158 For OX40, this action has been demonstrated \textit{in vivo} in the T cell transfer model of colitis.158

Human studies of IBD have a distinct advantage over other autoimmune diseases such as multiple sclerosis and lupus because tissue samples from the site of inflammation can be removed and studied. However, since human activated effector T cells also express Foxp3, histological analysis of T_{reg} cells in IBD patients can be difficult. Nonetheless, studies with human patients have been able to support regulatory mechanisms first discovered in mouse models. Research in human patients has similarly investigated T_{reg} cell number, T_{reg} cell function, T_{reg} cell stability, and effector cell resistance to T_{reg} as potential causes of IBD.

Numerous studies have investigated T_{reg} cell number in human IBD patients. In general, these reports observe greater numbers of Foxp3\(^+\) cells in the intestine of patients, particularly in active inflammatory lesions.77, 159–164 Numbers of T_{reg} cells in the peripheral blood are less consistent than the intestine. However, most studies identify a decreased frequency of T_{reg} cells in the peripheral blood of IBD patients. This decrease is intensified as T_{reg} cell numbers increase in the intestine during active disease, suggesting a potential redistribution of these cells in response to active inflammation.77, 162–165 Interestingly, the increase in T_{reg} cells in the intestine does not appear to be specific to autoimmune disease, as similar or greater numbers of T_{reg} cells are seen in other inflammatory conditions such as diverticulitis and enteritis.77, 162

T_{reg} cells at the site of inflammation fail to protect against IBD despite being present in increased numbers. This suggests that T_{reg} function may be compromised in these patients. To investigate this point, several groups removed T_{reg} cells from IBD patients and tested their suppressive function \textit{in vitro}. These studies showed uniformly that T_{reg} cells from the peripheral blood, mLN, and LP of IBD patients were all equally suppressive to T_{reg} cells from normal controls.159, 161–163, 166–168 Thus, T_{reg} cells from IBD patients appear to be present in sufficient numbers and function normally \textit{ex vivo}. These results suggest that there may not be an intrinsic defect of T_{reg} cells in IBD, but an extrinsic effect of the intestinal milieu on T_{reg} cells. In fact, numerous IBD susceptibility genes such as autophagy genes, NOD2, and IL23R, could play a role in creating an abnormal intestinal microenvironment that limits T_{reg} cell function \textit{in vivo}. Previous studies in mouse models suggest that cytokines within an inflammatory microenvironment may also promote T_{reg} cell instability.169 Similar results have been seen for human T_{reg} cells. Human T_{reg} cells from peripheral blood can convert to Th17 cells when stimulated \textit{in vitro} in the presence of IL-2. This conversion is increased by inflammatory cytokines IL-1\(\beta\), IL-23, and IL-21 or APCs activated by microbial stimuli.170
Effector T cell hyporesponsiveness to suppression is another T_{reg} cell-extrinsic factor that may play a role in human IBD. Two studies investigated T_{eff} responsiveness and found no difference between IBD patients and controls.159, 167 Other groups found T_{eff} cells from patients to be resistant to T_{reg} suppression. These studies suggested that T_{eff} cells from IBD patients overexpress SMAD7, thus making them resistant to TGF-β1 secreted by T_{reg} cells.42, 171 Further, T_{reg} cells may suppress disease by driving T_{eff} apoptosis, and T_{eff} cells in IBD patients are generally resistant to apoptosis.172, 173 Given the data suggesting a potential role for the intestinal milieu, it is important to note that these studies of T_{eff} responsiveness are performed on T cells outside of the inflammatory intestinal niche.

The potential for T_{reg} cells in IBD therapies

Since T_{reg} cells play a requisite role in preventing autoimmunity, these cells may be ideal targets for developing new treatments for IBD. There are currently over 50 products being tested for use in the treatment of IBD. These include small molecules, siRNA, peptides, vaccines, and numerous monoclonal antibodies and cell-based treatments.98 Several of these treatments center on T_{reg} cells. However, additional research has suggested several other potential mechanisms for T_{reg}-based therapies. In order to find new therapies that rely on T_{reg} cells, researchers must characterize T_{reg} cells during the disease process, and determine the mechanisms of impaired T_{reg} cell suppression in IBD. This knowledge will aid in developing treatments that will increase T_{reg} cell number, function, and stability.149 Developing treatments involving T_{reg} cells is particularly challenging for IBD since the precise role for T_{reg} cells in IBD patients has not been fully elucidated.

Traditional treatments for IBD appear to have effects on the T_{reg} cell compartment. Standard treatment of UC patients with aminosalicylates or glucocorticoids led to increased peripheral blood frequencies of CD4^{+}CD45RO^{+}CD25^{+} T cells, a population enriched in T_{reg} cells.164 In CD however, treatment with azathioprine or mercaptopurine led to decreased frequencies of T_{reg} cells in the peripheral blood.163 Treatment with monoclonal antibodies to TNF-α (infliximab) was shown to increase T_{reg} cells in the peripheral blood and intestinal LP by two separate groups.174, 175 However, another group did not see any difference in T_{reg} cell frequency upon infliximab treatment.176 These classically used IBD treatments have broad effects, and a disadvantage of these approaches is down-modulation of both innate and adaptive immunity and increased risk for opportunistic infection.48 Therefore, there is a need to increase the specificity of IBD treatments, with T_{reg} cells as one particular area of interest.

IBD treatments focused on T_{reg} cells fall into two categories: cell-based treatments that involve the transfer of \textit{in vitro} expanded or stimulated T_{reg} cells into patients, or pharmacological approaches that attempt to influence T_{reg} cells \textit{in vivo}. The small number of T_{reg} cells that can be obtained from a patient’s blood limits cell-based therapies. Thus numerous approaches are being investigated to expand and activate a patient’s own peripheral blood T_{reg} cells for re-transfer. Such approaches have been shown to increase the number of T_{reg} cells up to 13000 fold in 3–4 weeks. Yet, a fraction of these cells lose Foxp3 expression, indicating instability of the T_{reg} cells or outgrowth of T_{conv} cells in this population.61 Another potential source for T_{reg} cell-based treatments is the \textit{in vitro} differentiation of iT_{reg} cells from T_{conv} precursors via TCR stimulation and TGF-β1. This approach can yields an average of 240 × 10^{9} iT_{reg} cells in approximately 2 weeks in culture.177

Both \textit{in vitro} expansion of nT_{reg} and differentiation of iT_{reg} are limited by several factors. These T_{reg} cells may still have relatively few antigen specificities or the incorrect antigen specificities for proper suppression. Tetramer-based approaches could lead to expansion of
relevant T_{reg} cell specificites, but rely on knowledge of the target antigens for disease. Further, transferred T_{reg} cells may harbor potentially harmful specificities if they do not remain stably suppressive. Addition of rapamycin to cultures leads to increased numbers of T_{reg} cells for both in vitro nT_{reg} expansion and iT_{reg} differentiation. Further, rapamycin reduces the outgrowth of contaminating effector T cells, and increases T_{reg} stability. Another limitation of cell-based approaches is that transferred T_{reg} cells may not localize to the inflamed target tissue. T_{reg} cells could be engineered with receptors such as tissue-specific integrins, driving a T_{reg} cell to home the intestine. However, for these approaches to work in human patients gene therapy would have to be utilized, which raises safety concerns.

Mouse studies have utilized T_{reg} cells that become activated by a bystander Ag in the target tissue to increase T_{reg} localization.

One recent phase 1/2a clinical study demonstrated both safety and efficacy of ovalbumin-specific T_{reg} cells in a small CD patient population. Autologous T_{reg} cells were expanded in vitro, cloned by limiting dilution, and selected for IL-10 production in response to ovalbumin. Since ovalbumin is a common food antigen, ovalbumin specificity was used as a bystander antigen in an attempt to drive gut homing and local immune regulation in the intestine. Five weeks post-treatment 8/20 patients showed significant clinical improvement, with 6/8 showing improvement at one dose. However, the T_{reg} subset being used in these studies is indeterminate since they express numerous molecules associated with Tr1 cells, yet are activated in vitro and can also express Foxp3.

Cell-based treatments may also utilize populations other than T_{reg} cells. Transfer of tolerogenic DCs could drive iT_{reg} differentiation in vivo. Mesenchymal stem cells can produce IL-10 and TGF-β1, which could lead to increased iT_{reg} differentiation or overall T_{reg} function. Transfer of mesenchymal stem cell ameliorated a mouse model of chemically induced colitis and more than doubled the frequency of T_{reg} cells in the mLN of treated mice.

Recent studies underscore the need for both nT_{reg} and iT_{reg} cells for complete tolerance. Thus, clinical studies may need to utilize transfer of both nT_{reg} and iT_{reg} cells. Alternatively, nT_{reg} cells could be transferred in addition to T_{conv} cells that cannot become pathogenic, or nT_{reg} cells in combination with another cell population to drive in vivo iT_{reg} differentiation. One can also imagine utilizing either nT_{reg} or iT_{reg} cells for different clinical outcomes. For example, an inflammatory response against the extended self may benefit more from iT_{reg} cell specificites, whereas an autoimmune response may be better treated via nT_{reg} cells. However, as noted T_{reg} cell numbers are not generally decreased in human patients, and T_{reg} cells from these patients are generally suppressive ex vivo. Thus, T_{reg} cells in IBD patients may not be intrinsically flawed, but may fail to suppress disease due to local factors affecting T_{reg} cell function. Thus, other therapeutic approaches may be necessary to increase T_{reg} cell number or function in situ.

Probiotics are one approach to increase T_{reg} cell responses specifically in the intestine. Since IBD patients often display an abnormal microbiome, reshaping of the intestinal microbiota has been suggested as a potential treatment for disease. In fact, complete microbiota transplant, also known as fecal bacteriotherapy, has been used to treat Clostridium difficile-associated colitis, and has shown promise in some cases of IBD. More commonly, specific species or of bacteria are utilized as probiotics. Many of these treatments were found to increase T_{reg} cell numbers and function in both humans and mice, likely through local effects on gut-associated DCs. Probiotic strains can also be genetically engineered to better modify the inflammatory intestinal milieu.
lactis engineered to secrete IL-10 transiently colonized mice and decreased two models of colitis.\(^7\)\(^2\) A phase I clinical trial demonstrated safety of a similar approach in human patients, but efficacy has not been determined.\(^1\)\(^9\)\(^2\)

Vitamins A and D may also affect T\(_{\text{reg}}\) cells and serve as potential therapeutic agents for IBD. The vitamin A metabolite RA appears to increase T\(_{\text{reg}}\) cell induction and homing in the intestine, and RA treatment ameliorated mouse models of IBD.\(^1\)\(^9\)\(^3\) Further, RA treatment increases Foxp3 expression in human intestinal biopsies, suggesting potential therapeutic applications for vitamin A metabolites in IBD.\(^1\)\(^9\)\(^3\) Vitamin D is a sunlight-dependent precursor to the hormone calcitriol. Vitamin D metabolites and analogues have been variably shown to stimulate mouse and human T\(_{\text{reg}}\) cell and T\(_{\text{eff}}\) differentiation and function.\(^1\)\(^9\)\(^4\)–\(^1\)\(^9\)\(^6\) Interestingly, IBD risk increases significantly with increasing latitude, suggesting a role for vitamin D as an environmental risk factor in IBD.\(^1\)\(^9\)\(^7\) Also, higher predicted serum levels of vitamin D reduce the risk for IBD, and the vitamin D receptor is a potential susceptibility allele for UC and CD.\(^1\)\(^9\)\(^8\), \(^1\)\(^9\)\(^9\) Numerous mouse studies also support a protective role for vitamin D in IBD.\(^2\)\(^0\)\(^0\) However, few intervention studies treating IBD patients with vitamin D have been performed. A recent meta-analysis suggested a potential benefit to vitamin D supplementation of IBD patients, but underscored the need for randomized placebo-control studies.\(^2\)\(^0\)\(^1\)

In atopic disease allergen-specific hyposensitization is a common approach for inducing tolerance to an antigen. This involves repeated parenteral or mucosal vaccination with the antigen at increasing doses, and has been shown to be safe and decrease hypersensitivity. Significantly, this approach seems to rely on the differentiation or activation of antigen-specific T\(_{\text{reg}}\) cells.\(^7\)\(^\) These approaches have been used for food allergy, suggesting this approach is effective for intestinal antigens.\(^2\)\(^0\)\(^2\) Hyposensitization may be difficult to apply to IBD since the specific antigens for this hypersensitivity are largely unknown. Nevertheless, a recent study in a mouse model showed promising results. Oral administration of components of one specific species of the microbiota led to increased T\(_{\text{reg}}\) cell number and frequency in the mLN. Further, this treatment prevented a chemically induced model of colitis, and attenuated established disease.\(^2\)\(^0\)\(^3\)

As mentioned, the classical treatments of IBD may obtain some of their beneficial results via effects on T\(_{\text{reg}}\) cells. However numerous other pharmacologic agents are also used to treat IBD, and often have notable effects on T\(_{\text{reg}}\) cells. In mouse models, histone deacetylase inhibitors increased T\(_{\text{reg}}\) cell number and function, and decreased chemically induced colitis.\(^2\)\(^0\)\(^4\), \(^2\)\(^0\)\(^5\) Other small molecules such as siRNA and nanoparticles are currently being used to target intestinal tissue, and may also have future applications to increase T\(_{\text{reg}}\) cell number and/or function in the gut.\(^9\)\(^8\)

Monoclonal antibodies are the largest class of pharmaceuticals in development for treatment of IBD. Anti-p40 (briakinumab, ustekinumab) limits Th17 and Th1 responses in IBD patients by blocking the cytokines IL-12 and IL-23.\(^2\)\(^0\)\(^6\)–\(^2\)\(^0\)\(^8\) Anti-p40 may also have beneficial effects on T\(_{\text{reg}}\) cells since IL23Rko mice have increased T\(_{\text{reg}}\) cell numbers, particularly in the GI tract.\(^2\)\(^0\)\(^9\), \(^2\)\(^1\)\(^0\) Anti-CD3 has shown beneficial effects in mouse models of autoimmune disease, leading to deletion and anergy of pathogenic T cells, while promoting T\(_{\text{reg}}\) cell responses.\(^2\)\(^1\)\(^1\) However, one anti-CD3 monoclonal antibody (visilizumab) recently failed to show efficacy after parenteral injection, despite promising pilot studies.\(^2\)\(^1\)\(^2\) Clinical studies treating IBD patients with an oral anti-CD3 antibody (muromonab) are currently underway.\(^2\)\(^1\)\(^3\)

Other integrin-specific monoclonal antibodies are being used to limit pathogenic T cell access to intestine. Natalizumab, anti-α4 integrin (CD49d) has been approved for use in IBD
in the U.S. However, unexpected complications arose with this drug due to α4 integrin’s role in lymphocyte homing to the CNS. Thus, newer studies are utilizing vedolizumab to target the α4β7 integrin dimer, which appears to control homing only to the intestine. One concern with monoclonal antibodies targeting integrins is that they may also limit T^{reg} cell access to the site of inflammation. However, any constrains on T^{reg} access to the intestine maybe counteracted by the blockade of pathogenic T cells and the ability of T^{reg} cells to suppress autoimmune responses in the mLN and other peripheral lymphoid tissues.

In general, the development of potential treatments for IBD is outpacing the ability to test these approaches in human patients. Clinical studies are often statistically limited by the ability of a small number of willing patients to differentiate relatively small effects on disease progression. Future studies may benefit greatly from personalized medicine approaches to stratify treatment groups in a clinical study. Genetic screens and serum biomarker analysis may identify the patients most likely to respond to a T^{reg}-based therapy. Examination of a patient’s microbiota, and other non-genetic factors such as nutritional and vitamin status may also increase the success of treatments. Exciting new treatments from IBD will likely result from combining the increased ability to develop novel therapies with new technologies to identify the patients most likely to respond. A combination of genetics, microbiota, and other non-genetic/environmental influences are thought to contribute to IBD risk. Importantly, T^{reg} cells interact with, and can be affected by all three of these contributing factors. It therefore seems highly likely that future treatments for IBD will include therapies targeting and capitalizing on the potent immunomodulatory effects of T^{reg} cells.

Acknowledgments

We thank Dominic Co, Bhaskar Gurram, and Nita Salzman for critical reading of the manuscript. We apologize to the many researchers whose work we could not highlight due to space constraints.

References

Figure 1. Model of T_{reg} cell development. The nT_{reg} (green) and T_{conv} (grey) cell populations develop as separate lineages in the thymus, based in part on differences in the threshold for affinity-based selection. The result is a peripheral population of nT_{reg} and T_{conv} cells with distinct TCR (orange) repertoires. In the gut and at other environmental interfaces, TGF-β1 induces T_{conv} cells to become iT_{reg} cells (red) or Th17 cells (purple). The peripheral T_{reg} cell pool is therefore comprised of both iT_{reg} and nT_{reg} cells that share suppressive mechanisms such as IL-10 production. Increased levels of IL-6 in the local environment promote production of Th17 cells while blocking iT_{reg} cell formation. In general, iT_{reg} cells are unstable and may lose Foxp3 expression (ex-iT_{reg} cells), although certain factors may increase iT_{reg} stability.
The ex-iT\textsubscript{reg} cells (pink) are available to become Th1 (blue) or Th17 cells, or to reacquire Foxp3 expression and cycle back into the iT\textsubscript{reg} pool. Importantly, nT\textsubscript{reg} and iT\textsubscript{reg} cells act synergistically and are non-redundant, a feature based largely on their different TCR repertoires.
Table 1

T\textsubscript{reg} cell involvement in commonly used mouse models of IBD

<table>
<thead>
<tr>
<th>Category of IBD Model</th>
<th>Model Name</th>
<th>Role for Regulatory T cells</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Barrier disruption</td>
<td>DSS (chemical-induced)</td>
<td>- Absence of T\textsubscript{reg} or TGF-β1 signaling in T\textsubscript{reg} cells increases severity</td>
<td>20,217</td>
</tr>
<tr>
<td></td>
<td>TNBS/DNBS/Oxazolone (hapten-induced)</td>
<td>- Ethanol in absence of TNBS leads to resistance</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- B. fragilis PSA increases iT\textsubscript{reg} cells leading to resistance</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- T\textsubscript{reg} cells transiently decrease then home to intestine during remission</td>
<td>219</td>
</tr>
<tr>
<td>2) Genetic deficiency</td>
<td>IL-10 deficiency</td>
<td>- T\textsubscript{reg}-produced IL-10 is necessary to prevent intestinal inflammation</td>
<td>75, 76, 77</td>
</tr>
<tr>
<td></td>
<td>SAMP/YitFc (PPARG mutation)</td>
<td>- T\textsubscript{reg} cells from these mice are defective in suppressing colitis upon transfer</td>
<td>16, 220</td>
</tr>
<tr>
<td></td>
<td>Mdr1 deficiency</td>
<td>- Mutation leads to decreased in vivo and in vitro differentiation of iT\textsubscript{reg}</td>
<td>17</td>
</tr>
<tr>
<td>3) Overexpression of inflammatory mediators</td>
<td>TNFAARE (TNF-α overexpression)</td>
<td>- Increased differentiation of iT\textsubscript{reg} attenuates disease</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>STAT4 overexpression</td>
<td>- Unknown, T\textsubscript{reg} cells hypothesized to be normal</td>
<td>21</td>
</tr>
<tr>
<td>4) Lymphopenic T cell transfer</td>
<td>Naïve T\textsubscript{conv} transfer into SCID/RAG-2−/− mice</td>
<td>- Co-transfer of nT\textsubscript{reg} cells prevents disease</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nT\textsubscript{reg} + in vivo or in vitro iT\textsubscript{reg} cells treat disease</td>
<td>38</td>
</tr>
</tbody>
</table>
Table 2

T_{reg} cell suppressive mechanisms in IBD

<table>
<thead>
<tr>
<th>Regulatory Mechanism</th>
<th>Utilized by</th>
<th>Role in IBD</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nT<sub>reg</sub></td>
<td>iT<sub>reg</sub></td>
<td>Mouse Models</td>
</tr>
<tr>
<td>Soluble Mediators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IL-10</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IL-35</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Pericellular adenosine (CD39/CD73)</td>
<td>Yes</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>Sink for IL-2 (CD25<sup>hi</sup>)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cell-Cell Interaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytotoxicity (perforin/granzymes)</td>
<td>Yes</td>
<td>Yes</td>
<td>Unknown</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LAG-3</td>
<td>Yes</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>PD-1/PD-L1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nrp-1</td>
<td>Yes</td>
<td>No</td>
<td>Unknown</td>
</tr>
<tr>
<td>Galectins</td>
<td>Yes</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>GITR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OX40</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>