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Abstract
Extreme environmental phenomena such as major precipitation events manifestly exhibit spatial
dependence. Max-stable processes are a class of asymptotically-justified models that are capable
of representing spatial dependence among extreme values. While these models satisfy modeling
requirements, they are limited in their utility because their corresponding joint likelihoods are
unknown for more than a trivial number of spatial locations, preventing, in particular, Bayesian
analyses. In this paper, we propose a new random effects model to account for spatial dependence.
We show that our specification of the random effect distribution leads to a max-stable process that
has the popular Gaussian extreme value process (GEVP) as a limiting case. The proposed model is
used to analyze the yearly maximum precipitation from a regional climate model.

Keywords
Gaussian extreme value process; generalized extreme value distribution; positive stable
distribution; regional climate model

1. Introduction
Spatial statistical techniques are crucial for accurately quantifying the likelihood of extreme
events and monitoring changes in their frequency and intensity. Extreme events are by
definition rare, therefore estimation of local climate characteristics can be improved by
borrowing strength across nearby locations. While methods for univariate extreme data are
well-developed, modeling spatially-referenced extreme data is an active area of research.
Max-stable processes (de Haan and Ferreira, 2006) are the natural infinite-dimensional
generalization of the univariate generalized extreme value (GEV) distribution. Just as the
only limiting distribution of the scaled maximum of independent univariate random
variables is the GEV, the scaled maximum of independent copies of any stochastic process
can only converge to a max-stable process. Max-stable process models for spatial data may
be constructed using the spectral representation of de Haan (1984). Max-stable processes
built from this representation were first used for spatial analysis by Smith (1990). Since
then, a handful of subsequent spatial max-stable process models have been proposed,
notably that of Schlather (2002) and Kabluchko et al. (2009), who proposed a more general
construction that includes several other known models as special cases. Applications of
spatial max-stable processes include Coles (1993), Buishand et al. (2008), and Blanchet and
Davison (2011).

Because closed-form expressions for the likelihoods associated with spatial max-stable
processes are not available, parameter estimation and inference is problematic. Taking
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advantage of the availability of bivariate densities, Padoan et al. (2010) suggest maximum
pairwise likelihood estimation and asymptotic inference based on a sandwich matrix
(composed of expected derivatives of the composite likelihood function) to properly account
for using a pairwise likelihood when computing standard errors (Godambe and Heyde,
1987). Recently, Genton et al. (2011) extend this approach using composite likelihood based
on trivariate densities. The problem of spatial prediction, conditional on observations, for
max-stable random fields (analogous to Kriging for Gaussian processes) has also proven
difficult. The recent conditional sampling algorithm of Wang and Stoev (2010a) is capable
of producing both predictions and prediction standard errors for most spatial max-stable
models of practical interest, subject to discretization errors that can be made arbitrarily
small.

Bayesian estimation and inference for max-stable process models for spatial data on a
continuous domain has been elusive. Implementing these models in a fully-Bayesian
framework has several advantages, including incorporation of prior information and natural
uncertainty assessment for model parameters and predictions. Approximate Bayesian
methods based on asymptotic properties of the pairwise likelihood function are possible.
Ribatet et al. (2012) use an estimated sandwich matrix to adjust the Metropolis ratio within
an MCMC sampler, while Shaby (2012) rotates and scales the MCMC sample post-hoc and
Smith and Stephenson (2009) use pairwise likelihoods without adjustment. Bayesian models
that are not based on max stable processes have been used for analysis of extreme values
with spatial structure. Cooley et al. (2007) uses a hierarchical model with a conditionally-
independent generalized Pareto likelihood, incorporating all spatial dependence through
Gaussian process priors on the generalized Pareto likelihood parameters. Spatial dependence
has also been achieved through Bayesian Gaussian copula models (Sang and Gelfand, 2010)
and through a more flexible copula based on a Dirichlet process construction (Fuentes et al.,
2012).

We develop a new hierarchical Bayesian model for analyzing max-stable processes. The
responses are modeled as independent univariate GEV conditioned on spatial random effects
with positive stable random effect distribution. Positive stable random effects have been
used to model multivariate extremes with finite dimensions (Fougerès et al., 2009;
Stephenson, 2009). We extend this approach to accommodate data on a continuous spatial
domain. We show that the resulting model is max-stable marginally over the random effects,
and that a limiting case of this construction provides a finite-dimensional approximation to
the well-known Gaussian extreme value process (GEVP) of Smith (1990), often referred to
as the “Smith process”. Lower-dimensional representations have previously been proposed
for high-dimensional extremes in various settings (Pickands, 1981; Deheuvels, 1983;
Schlather and Tawn, 2002; Ehlert and Schlather, 2008; Wang and Stoev, 2010a,b; Oesting et
al., 2011; Engelke et al., 2011). Our construction permits analysis of the joint distribution of
all observations, and thus can produce straight-forward predictions at unobserved locations.
Because we use a hierarchical model to represent the spatial max-stable process, a Bayesian
implementation is a natural choice. This allows us to model underlying marginal structures
as flexibly as we like, in addition to automatic pooling of information and uncertainty
propagation. Also, the proposed framework permits representing the the spatial process
using a lower-dimensional representation, which leads to efficient computing for large
spatial data sets.

The remainder of the paper proceeds as follows. Section 2 describes the model, which is
compared to the GEVP in Section 3. The method is evaluated using a simulation study in
Section 4. In Section 5, we use the proposed method to analyze yearly maximum
precipitation using regional climate model output from the North American Regional
Climate Change Assessment Program (NARCCAP) in the eastern US. Section 6 concludes.
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2. The hierarchical max-stable process model
2.1. Spatial random effects model

Let Y (s) be the extreme value at location s, defined over the region . Here we
describe a max-stable model for Y (s) assuming that it is a block-maximum, that is, the
maximum of many observations taken at location s, such as the yearly maximum of daily
precipitation levels. However, we note that max-stable models are increasingly being used to
model extreme individual observations using a points above threshold approach (Huser and
Davison, 2012), and the residual max-stable process model described here may be
applicable to this type of analysis as well. We describe a model for a single realization of the
process, and extend to multiple independent realizations in Section 2.3.

Assuming the process is max-stable, then the marginal distribution of Y (s) is GEV[μ(s),
σ(s), ξ(s)], where μ(s) is the location, σ(s) > 0 is the scale, and ξ(s) is the shape (GEV
distribution is described in Appendix A.1). Equivalently (Resnick, 1987), we may express

, where X(s) is the residual max-stable process with unit Fréchet
margins, i.e., X(s) ~ GEV(1,1,1). To allow for both non-spatial and spatial residual
variability, we model X(s) as the product X(s) = U(s)θ(s). Borrowing a term from
geostatistics, we refer to U(s) as the nugget effect since it accounts for non-spatial variation
due to measurement error or other small-scale features. The nugget is modeled as

, where, as described in detail below, the parameter α ∈ (0, 1) controls
the relative contribution the nugget effect.

Residual spatial dependence is captured by θ(s). We express the spatial process as a function

of a linear combination of L kernel basis functions wl(s) ≥ 0, scaled so that  for

all s. The spatial process is , where Al are the basis function
coefficients. To ensure max-stability and Fréchet marginal distributions, the random effects
Al follow the positive stable distribution with density p(A|α) which has Laplace

transformation . We denote this as Al ~ PS(α). Although

p(A|α) has no closed form, it possesses the essential feature that if , then
(A1 + ... + AT)/T1/α ~ PS(α). Appendix A.2 verifies that this model for X(s) is max-stable
with unit Fréchet marginal distributions.

Marginalizing over the nugget terms U(s) gives the hierarchical model

(2.1)

where , σ*(s) = ασ(s)θ(s)ξ(s), and ξ*(s) = αξ(s). The responses
are conditionally independent given the random effects A. The effect of conditioning on A =
(A1, ..., AL)T, and thus the spatial process θ, is to move spatial dependence from the
residuals to a random effect in the GEV parameters. Marginalizing over the random effects
induces spatial dependence. The joint distribution function of the residual process X at n
locations s1, ..., sn is

(2.2)
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Therefore, although this is a process model defined on a continuous spatial domain, the
finite-dimensional distributions are multivariate GEV (MGEV) with asymmetric logistic
dependence function (Tawn, 1990).

Spatial dependence is often summarized by the extremal coefficient (Smith, 1990). The
pairwise extremal coefficient ϑ(si, sj) ∈ [1, 2] is defined by the relationship

(2.3)

If X(si) and X(sj) are independent, then ϑ(si, sj) = 2; in contrast, if X(si) and X(sj) are
completely dependent, then ϑ(si, sj) = 1. The extremal coefficient introduced by (2.1) is

(2.4)

Therefore, the extremal coefficient is the sum (over the L kernels) of the L1/α norms of the
vectors [wl(si), wl(sj)].

To see how α controls the nugget effect, consider two observations at the same location, si =
sj. The two observations share the same kernels, wl(si) = wl(sj) and thus θ(si) = θ(sj), but
have different nugget terms U(si) ≠ U(sj). In this case, the extremal coefficient is 2α. If α =
1, then the nugget dominates and ϑ(si, sj) = 2 for all pairs of locations, regardless of their

spatial locations (since  for all s). If α = 0, then ϑ(si, sj) = 1 when si = sj, and
there is no nugget effect. The characteristics of the model are shown graphically in Figure 1.
In these random draws from the model, we see the process is very smooth for α = 0.1 and
has little discernable spatial pattern with α = 0.9.

The parameter α clearly plays an important role in this model. It determines the magnitude
of the nugget effect, the form of spatial dependence function in (2.4), and the shape and
scale of the conditional distributions in (2.1). To illustrate the links between the contribution
of α to these aspects of the model, we consider the extreme cases with α = 0 and α = 1.

With α = 1, p(A|α) concentrates its mass on A = 1, and thus . In this
case, the conditional and marginal GEV parameters are the same, e.g., μ*(s) = μ(s), there is

no residual dependence with θ(si, sj) = 2, and thus . On the
other hand, if α ≈ 0 then the conditional scale σ*(s) ≈ 0 and Y(s) ≈ μ*(s), a continuous
spatial process with strong small-scale spatial dependence θ(s, s) ≈ 1.

Spatial prediction (analogous to Kriging) at a new location s* is straight-forward under this

hierarchical model. Predictions are made by simply computing ,
and then sampling Y(s*) from the independent GEV in (2.1). Repeating this at every
MCMC iteration gives samples from the posterior predictive distribution of Y(s*).

2.2. Kernel and knot selection
Although other kernels are possible, we use a scaled version of the Gaussian kernel

(2.5)
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where  are spatial knots and τ > 0 is the kernel bandwidth. To ensure that the
kernels sum to one at each location, the kernels are scaled as

(2.6)

The knots are taken as a fixed and regularly-spaced grid of points covering the spatial
domain. Section 3 shows that this choice of kernel function and knot distribution gives the
GEVP as a limiting case. Even with a regular grid of knots, the extremal coefficient is non-
stationary, i.e., ϑ(si, sj) is not simply a function of ∥si – sj∥. For example, w(si) may not
equal w(sj) if si is close to a knot and sj is not. This discretization artifact dissipates for large
L.

While the extremal coefficient does not fully characterize spatial dependence, it is useful for
guiding knot selection. Knot selection poses a trade-off between computational burden with
too many knots and poor fit with too few knots. Consider the case of a Gaussian kernel with
bandwidth τ = 1 and knots on a large rectangular grid with grid spacing d. Figure 2 plots the
extremal coefficient for points (0, 0) and (0, h) as a function of separation distance h. The
extremal coefficient has nearly an identical shape for all d less than or equal to τ. For d =
1.25τ, the extremal coefficient differs slightly from the fine grids, and for d > 1.25τ the
extremal coefficient deviates considerably from the fine grids, especially for small α. These
results will scale for other τ, therefore a rule of thumb is to select the knots so that the grid
spacing is approximately equal to the kernel bandwidth. Knot selection is discussed further
in Section 4.

2.3. Adaption for the NARCCAP data
In Section 5 we analyze climate model output for T > 1 years, which requires additional
notation. Denote Yt(s) as the response for year t and site s. Assuming the years are
independent and identically distributed (over years, not space), gives

(2.7)

where  is the spatial random effect for year t,

, , and ξ*(s) = αξ(s). Note that while the
GEV parameters conditioned on θt(s) in (2.7) vary by year, marginally, Yt(s) ~ GEV[μ(s),
σ(s), ξ(s)] for all t.

Gaussian process priors are used for the GEV parameters μ(s), γ(s) = log[σ(s)], and ξ(s).
The Gaussian process μ has mean x(s)Tβμ, where x(s) includes the spatial covariates such as
elevation. The spatial covariance of μ is Matérn (Banerjee et al., 2004; Cressie, 1993;

Gelfand et al., 2010) with variance , range ρμ > 0, and smoothness νμ > 0. The other
GEV parameters γ(s) and ξ(s) are modeled similarly. In some applications, it may also be
desirable to allow for the GEV parameters to evolve over time, perhaps following a separate
linear time trend at each location, which would be a straight-forward modification of this
model. The MCMC algorithm used to sample from this model is described in Appendix A.3.
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3. Connection with the Gaussian extreme value process
The GEVP of Smith (1990) is a well-known spatial max-stable process. In this section, we
show that the proposed positive stable random effects model in Section 2 contains this
model as a limiting case. The GEVP construction for the residual process is

(3.1)

where {(h1, u1), (h2, u2), ...} follows a Poisson process with intensity λ(h, u) = h–2I(h > 0),
and K is a kernel function standardized so that ∫ K(s|u, τ)du = 1 for all s. The construction
(3.1) is a special case of the de Haan (de Haan, 1984) spectral representation. A useful
analogy is to think of X(s) as the maximum rainfall at site s, generated as the maximum over

a countably-infinite number of storms. The kth storm has center , intensity hk > 0,
and spatial range given by K(s|uk, τ).

Under this model, the joint distribution at locations s1, ..., sn is

(3.2)

The GEVP has extremal coefficient

(3.3)

which simplifies to  for the Gaussian kernel (2.5). This does not include
a nugget effect, since ϑ(si, sj) = 1 if ∥si – sj∥ = 0.

The connection to the model in Section 2 is made by restricting the storm locations to the set
of L knot locations {v1, ..., vL} and rescaling the kernels to sum to one as in (2.6), giving

(3.4)

This amounts to truncating the de Haan spectral representation. If hl~ GEV(1,1,1), then X(s)
is max-stable with joint distribution

(3.5)

which implies that the marginal distributions are unit Fréchet. For equally-spaced knots, this
distribution converges weakly to the full GEVP distribution function (3.2) as L increases.
We note that this finite approximation could be applied to other max-stable models such as
those in Schlather (2002) and Kabluchko et al. (2009) by allowing the functions K to be
suitably scaled Gaussian processes, unlike the current approach where K is a kernel
function.

Using the model described by (3.5) directly is problematic because it may not yield a proper
likelihood. The process (3.4) at n locations X(s1), ..., X(sn)} is completely determined by the
intensities {h1, ..., hL. Therefore, the likelihood for {X(s1), ..., X(sn)} requires a map from
{X(s1), ..., X(sn)} to {h1, ..., hL}. This map may not exist, for example if L < n, and
generally does not have a closed form. This is common in dimension reduction methods for
Gaussian process models (for example, Higdon et al. (1999), Banerjee et al. (2008), and
Cressie and Johannesson (2008)).
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As with the Gaussian process dimension reduction methods, the model in Section 2 includes
both a spatial process (θ) and a non-spatial nugget term (U). Comparing (2.2) and (3.5), we
see a result of the nugget effect is that the L∞ norm (the maximum) in (3.5) is replaced with
the L1/α norm, and that (2.2) converges weakly to (3.5) as α goes to zero. Including a nugget
aids in computation as the likelihood becomes a simple product of univariate GEV densities.
Including a nugget term also has advantages beyond computation. The GEVP has been
criticized as unrealistically smooth (Blanchet and Davison, 2011), and so a nugget may
improve fit. Analogously, in the geostatistical literature for Gaussian data a nugget is not
required, but is used routinely to account for small-scale phenomena that cannot be captured
with a smooth spatial process (Cressie, 1993; Banerjee et al., 2004; Gelfand et al., 2010).

4. Simulation study
In this section, we conduct a simulation study to verify that the MCMC algorithm produces
reliable results, to investigate sensitivity to knot selection, and to determine which
parameters are the most difficult to estimate. Data and knots are placed on m × m regular
grids covering [l, u] × [l, u], denoted . For each simulation design, we generate
data from the model described in Section 2.3 at the n = 49 locations  and T = 10
independent years. The GEV location parameter varies by site following Gaussian process
with mean zero, variance one, and exponential spatial correlation exp(–∥si – sj∥/2). Unlike
the analysis of the NARCCAP data in Section 5, the GEV scale and shape parameters are
assumed to be the same for all sites and fixed at σ(s) = 1 and ξ(s) = 0.2. We fix these
parameters in the simulation study for computational purposes, and because these spatially-
varying parameters will likely be hard to estimate for these moderately-sized simulated
datasets. The simulations vary by the nugget effect (α), the kernel bandwidth (τ), and the
number of knots used to generate the data (L0). The simulation designs are numbered

1. L0 = 49 knots at , α = 0.3, τ = 3

2. L0 = 49 knots at , α = 0.7, τ = 3

3. L0 = 25 knots at , α = 0.3, τ = 3

4. L0 = 25 knots at , α = 0.7, τ = 3

5. L0 = 10, 000 knots at , α = 0.4, τ = 1

For the first four designs, the number of knots used to generate the data is small enough to
permit fitting the model with the correct number of knots. We use these examples to explore
sensitivity to knot selection. The final design with L0 = 10, 000 knots represents the limiting
case with more knots than can be fit computationally. Here we fit several course grids of
knots and compare performance as the number of knots increases to provide
recommendations on the number of knots needed to provide a good approximation to the
limiting process.

M = 50 datasets are generated for each simulation design. For each simulated data set, we fit
the model with varying number of knots. For the first four designs we compare L = 25 knots
at  and L = 49 knots at  to compare fits with the true knots and either too
few (L = 25 for designs 1 and 2) or too many (L = 49 for designs 3 and 4) knots. For the
final design we compare fits with 8 knot grids: L = 25 knots at , ..., L = 144
knots at . The spatial covariance parameters for the GEV location have priors

 and range ρμ ~ InvGamma(0.1,0.1); for this relatively small
spatial domain we fix the smoothness parameter νμ = 0.5, giving an exponential covariance.
The design matrix X includes only the intercept with βμ ~ N(0, 1002). The GEV log scale
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and shape are constant across space and have N(0, 1) and N(0, 0.252) priors, respectively.
The residual dependence parameters have priors τ ~ InvGamma(0.1,0.1) and α ~ Unif(0,1).

The results are presented in Figure 3. For each dataset, we compute the posterior mean of
the GEV parameters at each location, and the mean squared error (MSE) of the posterior
means (averaged over the n sites for the spatially-varying GEV location). Figure 3 plots the
M = 50 root MSEs and coverage probabilities (averaged over sites for the GEV location).

For the data generated with L0 = 25 or L0 = 49 knots in Figure 3a, the coverage probabilities
are generally near the nominal level. With L = 49 knots, the coverage probabilities range
from 0.90 to 0.94 for the GEV location. For the first two designs, the model with L = 25
knots has fewer knots than were used to generate the data. This does not have a substantial
impact on the estimation of the GEV location. However, using too few knots leads to
increased RMSE and under-coverage for the GEV log scale, especially for design 1 with
strong spatial dependence. For simulation designs 3 and 4, the model with L = 49 knots has
nearly twice as many knots than were used to generate the data. In these cases, the L = 49
model performs nearly as well as the correct L = 25 model. For these simulation settings, we
conclude that using too few knots can lead to poor results, especially for the scale parameter,
but that including too many knots does not degrade performance.

For the data generated with L0 = 10, 000 knots in Figure 3b, we use knots grids with L = 25,
36, ..., 144 points. For comparison with the kernel bandwidth, rather than plotting the results
by L, we plot results by the spacing between adjacent knots in same column or row, which
ranges from 0.70 for L = 144 to 2.00 for L = 25. The coverage probabilities are near or
above the nominal level for all grid spacings at or below the bandwidth, τ = 1.0, and the
RMSE appears to be fairly constant for all grid spacings at least as small as the bandwidth.
Therefore, this appears to be a reasonable rule of thumb for selecting the number of knots.

We also computed RMSE for the spatial dependence parameters α and τ (not shown in
Figure 3) for this final case. For α, the average (over data sets) RMSE was 0.049 (coverage
percentage 96%), 0.060 (88%), and 0.101 (40%) for grid spacings 0.7, 1.0 and 2.0,
respectively. For τ, the average RMSE was 0.102 (88%), 0.107 (90%), and 0.233 (38%) for
grid spacings 0.7, 1.0 and 2.0, respectively. As with the GEV parameters, the approximation
with the grid spacing at least as small as the bandwidth appears to provide reasonable
estimation of the spatial dependence parameters. When too few knots are used, the
bandwidth is often over-estimated to compensate for the lack of knots, and thus RMSE is
high and coverage is far below the nominal level.

5. Analysis of regional climate model output
To illustrate the proposed method, we analyze climate model output provided by the North
American Regional Climate Change Assessment Program (NARCCAP). Our objective is to
study changes in extreme precipitation under various climate scenarios in different spatial
regions while accounting for residual spatial dependence remaining after allowing for
spatially-varying GEV parameters. The data are downloaded from the website http://
www.narccap.ucar.edu/index.html. We analyze output from two timeslice experiments. Both
runs use the Geophysical Fluid Dynamics Laboratory's AM2.1 climate model with 50km
resolution. The model is run separately under historical (1969–2000) and future conditions
(2039–2070). Observational data is used for the sea-surface temperature and ice boundary
conditions in the historical run. The boundary conditions for the future run are perturbations
of the historical boundary conditions. The amount of perturbation is based on a lower
resolution climate model. The perturbations assume the A2 emissions scenario (Nakicenovic
et al., 2000) which increases CO2 concentration levels from the current values of about 380
ppm to about 870 ppm by the end of the 21st century.
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We analyze data for n = 697 grid cells in eastern US shown in Figure 4. For grid cell i with
location si and year t, we take the annual maximum of the daily precipitation totals as the
response, Yt(si). NARCCAP provides eight 3-hour precipitation rates each day, and we
compute the daily total by summing these eight values and multiplying by three. To explore
the form of residual spatial dependence, we use the madogram (Cooley et al., 2006) function
in the SpatialExtremes package in R (www.r-project.org). The madogram converts the
observations at each site to have unit Fréchet margins using a rank transformation, and then
estimates the pairwise extremal coefficients. Figure 4 plots the estimated extremal
coefficients against ∥si – sj∥. This plot clearly shows residual spatial dependence.

The data from the two runs are analyzed separately using the model described in Section 2.
We assume that the process is stationary in time during each period, i.e., the GEV marginal
density at each location is constant over time in each simulation period. We use n = L terms
with knots at the data points s1, ..., sn. The residual dependence parameters have priors τ ~
InvGamma(0.1,0.1) and α ~ Unif(0,1). For both scenarios, all three GEV parameters vary
spatially following Gaussian process priors. The covariates for the mean of the GEV
parameters, x(s), include the intercept, grid cell latitude, longitude, elevation, and log
elevation. The elements of βμ have independent N(0, 1002) priors. The spatial covariance

parameters have priors , range ρj ~ InvGamma(0.1,0.1), and
smoothness νj ~ InvGamma(0.1,0.1) for j ∈ {μ, γ, ξ}.

Figure 5 shows the estimated GEV parameters for the historical simulation. The estimated
location and log scale parameters are highest in the southeast. The posterior mean of the
GEV shape is generally positive, indicating a right-skewed distribution with no upper
bound. The estimated shape is the largest in Florida. Comparing the posterior means and
standard deviations, there is evidence that all three GEV parameters vary spatially. Figure 6
shows that there is strong positive dependence between the shape and scale as one might
expect since for shape in (0,0.5) both the mean and variance of GEV includes the ratio of the
scale and shape. For locations with large shapes, there is a negative dependence with the log
scale.

To formally assess the need for spatially-varying GEV parameters, we also refit the model
for the historical simulation using the Bayesian variable selection prior of Reich et al. (2010)

to test whether the variance  equals small constant . The test is carried out using

the mixture prior , where gj ~ Bernoulli(0.5) and

. The intuition behind this prior is that if gj = 1, then

 and the GEV parameter varies spatially; in contrast, if g0 = 0, then

, and spatial variation after accounting for spatial covariates x is negligible. Therefore,
the posterior mean of gj can be interpreted as the posterior probability that the jth GEV
parameter varies spatially, which can be used to approximate the Bayes factor comparing
these model. In the separate mixture prior fit, the posterior probability that the GEV
parameters vary spatially was at least 0.99 for all three parameters.

We also aim to quantify changes in extreme quantiles. The qth quantile at location s is μ(s) +
σ(s) [1 – log(1/q)–ξ(s)]/ξ(s), which is also called the 1/(1 – q) year return level. Figure 7
plots the posterior of various pointwise quantile levels. The large location and scale
parameters lead to large medians in the southeast, while the 0.95 quantile is the largest in
Florida due to the large shape parameter.

The difference between the historical and future scenarios is summarized in Figures 8 and 9.
The estimated GEV location and log scale parameters are larger for the future scenario for
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the majority of the spatial domain. The increase is the largest in Alabama, Georgia, and New
England. The shape parameter also shows an increase in Alabama, but statistically
significant decrease in Florida. Figure 9c shows that these changes in GEV parameters lead
to an increase in the 0.95 quantile for most of the spatial domain. With the exception of the
midwest and southern Florida, the posterior probability of an increase in the 0.95 quantile is
near one (Figure 9d), indicating that extremes have a different spatial pattern in the future
scenario.

Parameter estimates provide evidence of residual dependence: the posterior mean (standard
deviation) of α is 0.483 (0.008) and the posterior mean of the spatial range τ is 41.6 (0.4)
kilometers. To illustrate the effects of failing to account for residual spatial dependence, we
compare these results with the model that ignores spatial dependence in the residuals, i.e.,
sets α = 1. One effect of accounting for residual dependence is an increase in posterior
variance for the GEV parameters. Figure 10 shows that the posterior variance often doubles
as a result of including residual dependence. Therefore, while spatial modeling of the GEV
parameters reduces uncertainty by borrowing strength across space compared to analyzing
all sites completely separately, it appears that spatial modeling of the GEV parameters
without accounting for residual dependence underestimates uncertainty.

6. Discussion
In this paper we propose a new modeling approach for spatial max-stable processes. The
proposed model is closely related to the GEVP, and permits a Bayesian analysis via MCMC
methods. Applied to the climate data, we find statistically significant increases under the
future climate scenario in the upper quantiles of precipitation for most of the spatial domain,
with the largest increase in the southeast.

The proposed hierarchical model opens the door for several exciting research directions. The
model could be made even more flexible by changing the form of the kernels. It should be
possible to replace the Gaussian kernel with any other kernel that integrates to one, that is,
any other two-dimensional density function. For large data sets, it may even be possible to
estimate the kernel function nonparametrically from the data. Zheng et al. (2010) and Reich
and Fuentes (2012) use Bayesian non-parametrics to estimate the spatial covariance function
of a Gaussian process. This approach could be extended to the extreme data, using, say, a
Dirichlet process mixture prior for the kernel function. The methods proposed in this paper
could also be extended to more complicated dependency structures. For example, we have
ignored the temporal dependence because the spatial association is far stronger than the
temporal association for these data. However, using three-dimensional kernels (two for
space, one for time) would give a feasible max-stable model for spatiotemporal data.
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Appendix A.1 - Generalized extreme value (GEV) distribution
The GEV distribution has three parameters: location μ, scale σ > 0, and shape ξ. If Y ~
GEV(μ, σ, ξ), then Y has distribution function P(Y < y) = exp[–t(y)] and density

, where
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The shape parameter determines the support, with Y ∈ (–∞, μ – σ/ξ] if ξ < 0, Y ∈ (–∞, ∞)
is ξ = 0, and Y ∈ [μ – σ/ξ, ∞) in ξ > 0. The GEV has three well-known sub-families
defined by the shape: the Weibull (ξ < 0), Gumbel (ξ = 0), and Fréchet (ξ > 0) families.

Appendix A.2 - Properties of the random effects model
Here we show that the hierarchical representation in (2.1) is max-stable and has GEV
margins.

GEV marginal distributions
Since the margins are identical for all locations, we omit the notational dependence on s.
The marginal distribution function of X is

(6.1)

This is the unit Fréchet distribution function.

Max-stability
The process is max-stable if for any set of locations {s1, ..., sn} and any t > 0, Prob[X(s1) ≤
tc1, ..., X(sn) ≤ tcn]t = Prob[X(s1) ≤ c1, ..., X(sn) ≤ cn] (e.g., Zhang and Smith, 2010). From
(2.2),

Appendix A.3 - MCMC details
A complication that arises when using positive stable random effects is that their density
does not have a closed form. To overcome this problem, we use the auxiliary variable
technique of Stephenson (2009) for the asymmetric logistic MGEV. Stephenson (2009)
introduces auxiliary variables Bl ∈ (0, 1) so that

(6.2)
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where . Then, marginally over Bl, Al ~ PS(α). This
marginalization is handled naturally via MCMC. Incorporating the auxiliary variable gives

(6.3)

which is the model fit to the data.

We perform MCMC sampling for the model in (6.3) using R (http://www.r-project.org/).
The Metropolis within Gibbs algorithm is used to draw posterior samples. This begins with
an initial value for each model parameter, and then parameters are updated one-at-a-time,
conditionally on all other parameters. The GEV parameters μ, σ = exp(γ), and ξ, spatial
dependence parameters τ and α, and auxiliary variables (Al, Bl) are updated using
Metropolis updates. To update the GEV location at site si for the rth MCMC iteration, we
generate a candidate using a random walk Gaussian candidate distribution μ(c)(si) ~
N(μ(r–1)(si), s2), where μ(r–1)(si) is the value at MCMC iteration r – 1 and s is a tuning
parameter. The acceptance ratio is

which is a function of the GEV likelihood of Yt(s) in (2.7), denoted as l[Yt(s)|μ(s),
exp[γ(s)], ξ(s), θt(s)], as well as the full conditional prior of μ(si) given μ(sj) for all j ≠ i,
p[μ(si)|μ(sj), j ≠ i], which is found using the usual formula the conditional distribution of a
multivariate normal. The candidate is accepted with probability min{R, 1}. If the candidate
is accepted, then μ(r)(si) = μ(c)(si), otherwise the previous value is retained, μ(r)(si) =
μ(r–1)(si). The other GEV parameters γ(si) and ξ(si) are updated similarly. GEV
hyperparameters, such as βμ and spatial covariance parameters, are updated conditionally on
the GEV parameters, and thus their updates are identical to the usual Bayesian geostatistical
model.

The spatial dependence parameters τ and α and the auxiliary variables Alt and Blt are also
updated using Metropolis sampling. These updates differ from μ(si) only their acceptance
ratios. For computing purposes, we transform to δ = log(τ). The acceptance ratio for δ is

where  and  are the values of θt evaluated with τ(c) = exp(δ(c)) and τ(r–1) =
exp(δ(r–1)), respectively, and p(δ) is the log-gamma prior. The acceptance ratio for α is
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We use a log-normal candidate distribution for , with density

denoted . The latent variables Atl and Blt have acceptance ratios

for Alt and

for Blt.

The standard deviations of all candidate distributions are adaptively tuned during the burn-in
period to give acceptance rates near 0.4. Note that after the burn-in, the candidate
distribution is fixed and this defines a stationary Markov chain and satisfies the usual mixing
conditions, generating samples from the true posterior distribution once convergence is
reached. We generate two (one for the simulation study) chains of length 25,000 samples
and discard the first 10,000 samples of each chain as burn-in. Convergence is monitored
using trace plots and autocorrelation plots for several representative parameters.
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Fig 1.
Random draws on a 50 × 50 grid from the random effect model for various α. Each sample
has a knot at each data point, GEV parameters μ(s) = log[σ(s)] = 0 and ξ(s) = –0.1, and
bandwidth τ = 2.

Reich and Shaby Page 16

Ann Appl Stat. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 2.
Extremal coefficient ϑ(s1, s2), where s1 = (0, 0), s2 = (0, h), the kernel bandwidth is τ = 1,
and the knots form a rectangular grid with grid spacing d.
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Fig 3.
Boxplots of root mean squared error (RMSE) for the GEV parameters in the simulation
study. The horizontal lines in the boxplots are the 0.05, 0.25, 0.50, 0.75, and 0.95 quantiles
of RMSE. Coverage percentages of posterior 95% intervals are given below the boxplots.
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Fig 4.
Grid cell centers for the NARCCAP output (left) and madogram extremal coefficient
estimate (box width is proportional to the number of observations) for the historical run.
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Fig 5.
Posterior mean and standard deviation of the GEV location, log scale, and shape parameters
for the historical simulation. All units are mm/h.
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Fig 6.
Plot of the posterior mean GEV scale versus posterior mean GEV shape at each site.
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Fig 7.
Posterior mean and standard deviation of the 0.10, 0.50, and 0.95 quantiles for the historical
simulation. All units are mm/h
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Fig 8.
Posterior mean change from historical to future time simulation and the posterior probability
that this change is positive for the GEV location, log scale, and shape parameters. All units
are mm/h.
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Fig 9.
Posterior mean change from historical to future time simulations and the posterior
probability that this change is positive for the 0.10, 0.50, and 0.95 quantiles. All units are
mm/h.
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Fig 10.
Ratio of the posterior variance of the GEV parameters for the models with and without
residual spatial dependence.
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