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Abstract
Health effects associated with ambient fine particle (PM2.5) exposure are typically estimated based
on concentration-response (C-R) functions using area-wide concentration as an exposure
surrogate. Persons 65 and older are particularly susceptible to adverse effects from PM2.5
exposure. Using a stochastic microenvironmental simulation model, distributions of daily PM2.5
exposures were estimated based on ambient concentration, air exchange rate, penetration factor,
deposition rate, indoor emission sources, census data, and activity diary data, and compared for
selected regions and seasons. Even though the selected subpopulation spends an average of over
20 hours per day indoors, the ratio of daily average estimated exposure to ambient concentration
(Ea/C) is approximately 0.5. The daily average Ea/C ratio varies by a factor of 4 to 5 over a 95%
frequency range among individuals, primarily from variability in air exchange rates. The mean Ea/
C varies by 6 to 36% among selected NC, TX and NYC domains, and 15 to 34% among four
seasons, as a result of regional differences in housing stock and seasonal differences in air
exchange rates. Variability in Ea/C is a key factor that may help explain heterogeneity in C-R
functions across cities and seasons. Priorities for improving exposure estimates are discussed.
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SUPPORTING INFORMATION AVAILABLE
Additional information on background motivation of assessing PM2.5 Ea/C ratio; justifications for inputs (ACH, P, k) selection; inter-
and intra-individual variability in non-ambient exposure (Ena) and total exposure (Et); discussion of seasonal variability in elderly
activity patterns; discussion of autocorrelation in elderly activity patterns; discussion of potential modeling assumptions that may
cause decreased variability in the exposure results; discussion of the difference in mean Ea/C ratios; other SHEDS-PM input
parameters for microenvironmental PM2.5 concentrations (Table S1), excluding residential microenvironment; summary of 2002
average daily ambient PM2.5 concentrations to the SHEDS-PM model input (Table S2); summary of inter- and intra-individual
coefficient of variations (CVs) for NC Domain, Spring 2002 (Table S3); paragraphs and tables about correlations of total Exposure
(Et) by day type for NC domain, Spring 2002 (p.SI-9, p.SI-10, Table S4), and summary of average ratio of ambient exposure to
ambient concentration (Ea/C) and non-ambient exposure (Ena) by day type for all cases (Table S5); correlations coefficients between
daily average exposures and concentrations (Table S6); comparison of distribution of elderly activity based on time for males and
females in winter and summer (Mean ± 95% Confidence Interval) (Table S7); cumulative distribution functions (CDFs) of the
geographic and seasonal variability in the daily total exposure (Et), non-ambient exposure (Ena), and ambient exposure (Ea) in NC
domain, Harris County, and NYC in 2002 (Figure S1 – Figure S3); CDFs of the geographic and seasonal variability in the monthly
average ratio of ambient exposure to ambient concentration (Ea/C) in NC domain, Harris County, and NYC in 2002 (Figure S4); and
distributions of inter-individual (Figure S5) and intra-individual (Figure S6) coefficient of variations (CVs) of total exposure (Et) for
NC domain, Spring, 2002. This information is available free of charge via the Internet at http://pubs.acs.org/.
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1. INTRODUCTION
According to the U.S. Environmental Protection Agency (EPA) Integrated Science
Assessment (ISA) for Particulate Matter, a causal or likely to be causal relationship exists
between short-term (daily) human exposure to fine particulate matter (PM2.5) and several
health effects, such as mortality, cardiovascular and respiratory morbidity.1 Children and
adults 65 years and older are the two most susceptible subpopulations.1 The proportion of
older adults in the US population will increase from 13% in 2011 to 20% in 2030.2 Thus,
PM-related health incidents could occur more frequently in the future.

PM2.5 ambient concentration is frequently used in epidemiological studies as a surrogate for
personal exposure to ambient PM2.5.1 However, actual exposure depends on the amount of
time an individual spends in different microenvironments, which are surroundings that can
be treated as homogeneous or well characterized in the concentrations of an agent.3

Microenvironments include various indoor locations (e.g. home, work, school, restaurants,
stores), outdoors, in transit, and others.4 On average, people spend more than 80 percent of
daily time indoors and two thirds of daily time at home.5 For indoor microenvironments, a
portion of ambient PM2.5 penetrates indoors, and some deposits to interior surfaces.4 For
some cases, the individual indoor PM2.5 concentrations could be higher than ambient
because of particle re-suspension resulting from human activity.6 However, SHEDS-PM
does not model re-suspension. On average for a population, the daily exposure to particles of
ambient origin is typically less than the ambient concentration, and the difference
contributes to exposure error.7,8 Using ambient PM2.5 concentrations as a surrogate for the
community average personal exposure to ambient PM2.5 will bias the estimation of health
risk coefficients by the ratio of ambient PM2.5 exposure to ambient PM2.5 concentration (Ea/
C).1

Findings from PM2.5 exposure panel studies indicate substantial variability in 24-h average
personal PM2.5 exposures among US regions.9–12 Individuals are exposed to PM2.5 of both
ambient and nonambient origin, and both sources of PM2.5 may contribute to adverse health
outcomes. Total and nonambient PM exposure are poorly correlated with ambient PM
concentration.13 Ambient PM concentrations are affected by meteorology and by changes in
emission rates and locations of emission sources, whereas nonambient PM concentrations
are influenced by daily activities of people. The Ea/C ratio depends on housing type and
activity patterns, air exchange rate, and PM deposition rate. It varies between 0 and 1 among
individuals, and varies among cities and seasons.14 Since concentration-response functions
are typically heterogeneous across cities and seasons, characterizing the factors that
influence Ea/C could be useful in correcting for exposure error.

Inter-individual variability in exposure may also be influenced by the sampling time
interval. Many time-series studies examine the associations of short-term health outcomes
based on a 24-hr interval.15 There is some evidence, based on analysis of PM10 data, that
mortality or morbidity on a given day is influenced by prior PM exposures up to more than a
month before the date of death.16 Thus, averaging times other than 24-hr averages should be
considered to provide appropriate modeling results for sub-acute or chronic health effects
applications.17 Therefore, quantification of the sensitivity of inter-individual variability in
exposure with respect to different averaging times may help to better inform health effects
studies.

PM2.5 exposure can be estimated based on field study or simulation models. Measured
exposure data mainly come from either a few multi-city probability-based field studies, such
as the Relationship between Indoor, Outdoor and Personal Air (RIOPA) study11, the Detroit
Exposure Aerosol Research Study (DEARS)18, and the Canadian Windsor Ontario Exposure
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Assessment Study (WOEAS)19, or longitudinal panel studies focused on small numbers of
exposed individuals in susceptible subpopulations, such as the elderly.20

Field studies are time-consuming and expensive to conduct, which limits their sample sizes.
As a result, measurements may only represent participants in that study and may not
necessarily be generalizable. In comparison, a scenario-based exposure model can be an
alternative tool for quantifying human exposure on a population basis.21 For example, the
U.S. Environmental Protection Agency has developed the Stochastic Human Exposure and
Dose Simulation model for Particulate Matter (SHEDS-PM). SHEDS-PM is used here for
simulating exposure because it has undergone several evaluation and validation studies.22–25

As summarized by Sarnat et al.14, several measurement studies have been conducted to
estimate the associations between PM2.5 personal ambient exposure and ambient
concentration, which can be used to estimate the Ea/C ratio. Although there have been
studies that quantified geographic and seasonal variability in the Ea/C ratio for other
pollutants, such as ozone26, CO27, and SO2

28, there has not been systematic quantification
of variation in for PM2.5 using a consistent framework. Ea/C ratios differ substantially
among pollutants depending on chemical reactivity, solubility, and pollutant lifetime. The
average Ea/C ratios for highly reactive ozone are typically 0.1 to 0.3, for relatively
unreactive CO are around 1, and for highly soluble SO2 are from 0.08 to 0.13. In contrast,
the Ea/C ratio for PM2.5 depends on factors such as interception and impaction that affect
penetration from outdoors to indoors, and indoor deposition rate.1

The objectives of this paper are to: (1) assess the sensitivity of inter-individual variability in
exposures with respect to averaging time; (2) evaluate geographic differences in inter-
individual variability in exposures; and (3) evaluate seasonal differences in inter-individual
variability in exposures.

2. METHODOLOGY
The methodology includes: (1) scenario-based exposure modeling; (2) study design and
identification of data sources for the case study; and (3) analysis of exposure model output.

2.1. Scenario-based Exposure Modeling
Burke et al.21 evaluated SHEDS-PM using measurement data from a PM panel study
conducted in the Research Triangle Park, NC area. The model predictions of individual and
population exposures to PM2.5 are generally consistent with the estimates derived from the
personal measurement data. Other studies have reviewed the algorithms and input data for
SHEDS-PM, and recommended improvements are incorporated here. Cao and Frey
reviewed default Environmental Tobacco Smoke (ETS) related inputs and recommended
updates to input data for the proportion of smokers and other smokers, and for cigarette
emission rates.22 Liu et al. reviewed the algorithms and default inputs for the in-vehicle
microenvironment, and proposed an alternative approach which integrates a dispersion
model and a mass balance approach.23 Cao and Frey recommended updates to the
distributions of ACH, P, and k for selected areas and seasons.24

Estimates of inter-individual variability in outdoor and indoor microenvironmental PM2.5
exposures for a simulated population are based on user-supplied ambient air quality data,
model-incorporated census data, and human activity data for the selected geographic
domain.25 Individuals are randomly generated from the year 2000 US Census to represent
the population in a selected area. For each simulated individual, the amount of time spent in
each microenvironment is derived from the Consolidated Human Activity Database
(CHAD).29 Algorithms are applied to estimate PM2.5 concentrations in each
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microenvironment based on ambient concentration and indoor sources. Simulated
microenvironments include outdoors, home, office, school, store, restaurant, bar and vehicle.

For the residential microenvironment, SHEDS-PM utilizes a single-compartment, steady
state mass balance equation to calculate residential PM2.5 concentration.25 The contribution
from indoor emission sources such as smoking, cooking, cleaning and other sources is
quantified. The housing type categories in SHEDS-PM are single-family detached, single-
family attached, multiple family, mobile home and other. Based on the US Census 2000
Housing Survey, lognormal distributions are used for each housing type in SHEDS-PM to
represent inter-home variability in indoor volume. The key mass balance inputs include
ACH, P and k. ACH is the volume flow of air within the indoor microenvironment divided
by the interior volume. It is affected by air leakage through cracks and crevices in the
building envelope, natural ventilation through open windows and doors, and mechanical
ventilation by fans.30 Mechanical ventilation would lower indoor ambient PM exposure
because a substantial portion of indoor air is recirculated and, consequently, ACH is smaller.
Distributions of ACH by area and season reflect the variability in ACH caused by different
ventilation practices used and housing types/volumes of each individual. P is the portion of
particles that pass through the building from outdoors. Deposition rate, k, is the settling of
airborne particles onto indoor surfaces.11

2.2. Study Design
The focus here is to quantify possible regional and seasonal variability in estimated
exposure. Adults over 65 years old are selected because they are a susceptible subpopulation
with respect to PM2.5 exposure.1 To address regional differences, three urban areas are
chosen to represent diverse southeast, south central and northeast US climate zones. These
areas include: (1) a six-county area in North Carolina along Interstate 40, comprised of
Wake, Durham, Orange, Alamance, Guilford, and Forsyth Counties, that includes the cities
of Raleigh, Durham, Burlington, Greensboro, High Point, and Winston-Salem; (2) Harris
County in Texas, including the city of Houston; and (3) New York City, including Bronx,
New York, Kings, Queens, and Richmond Counties. Approximately 50,000 individuals 65
years and older are simulated from all census tracts of each area for a period of 30 days in
each season. To address seasonal differences, one month from each of four seasons is
selected, including April for spring; July for summer; October for fall; and December for
winter. SHEDS-PM model version 3.7 was used to run all cases. Typically it takes
approximately 5 to 6 hours of CPU time to simulate exposures for 50,000 individuals for a
30-day time period.

Daily average PM2.5 air quality data are obtained from U.S. EPA based on predictions of
2002 average concentrations for 12 km by 12 km grid cells from the Community Multiscale
Air Quality (CMAQ) model, which were updated with available monitoring data using
Bayesian statistical inference.31 Demographic distributions by age, gender and housing type
are sampled from year 2000 US Census data. CHAD diary data are matched to each
simulated individual based on gender, age, day type, and smoking status. ETS is modeled in
residential, restaurant, and bar microenvironments. The proportions of smokers and non-
smokers are estimated based on region-specific 2002 data.32–35 Input parameters for
residential microenvironments, such as ACH, P, k, and cigarette emission rate, and for the
in-vehicle microenvironment, are specified based on related literature. 22–24,30,36–38

Parameters of other microenvironments are based on Burke et al.20

2.3. Statistical Analysis Methods
SHEDS-PM outputs are processed and analyzed using Predictive Analytics SoftWare
(PASW) 18.0. The SHEDS-PM model quantifies time spent by each simulated individual in

Jiao et al. Page 4

Environ Sci Technol. Author manuscript; available in PMC 2013 November 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



different microenvironments and the corresponding microenvironmental PM2.5
concentrations, and estimates daily average Ea, Ena, and Et for each simulated individual.
The Ea/C ratio is calculated for each simulated individual for each simulated day.

Variability in exposure among individuals on a given day is compared to variability for a
single individual over time to assess the relative importance of inter- versus intra-individual
variability. The variability among individuals and over time is quantified based on
coefficients of variation (CV). The NC domain spring case is selected as an example. The
reported CV of inter-individual variability is an average of daily CVs of inter-individual
variability over simulated days. The reported CV of intra-individual variability is an average
of individual CVs of intra-individual variability in exposure over simulated individuals.

To examine the sensitivity of inter-individual variability with respect to averaging time, the
daily Ea/C ratio is further averaged by individual over one month to represent a longer term.
Both daily and monthly ratios of Ea/C are compared for each geographic area and season.
The analysis included comparisons of 95% frequency ranges inferred from simulated
cumulative distribution functions (CDFs) of inter-individual variability in exposure, and
comparisons of the effect of longitudinal versus randomized day-to-day sampling of activity
dairies on the distribution of monthly average exposures. Individual daily exposure values
are extracted from SHEDS-PM output to construct a 50,000 individual by 30 day exposure
matrix. For each day, correlations of inter-individual variability in exposure are calculated
with each other day. Days are categorized by day type, including weekday, Saturday and
Sunday. For each of the 30 days, the average correlation with all other days of the same
type, and with all days of each of the other two types, are estimated.

To assess the geographic and seasonal differences in inter-individual variability in
exposures, daily ratios of Ea/C, Ena and Et are compared among geographic areas for the
same season and among multiple seasons for the same area.

3. RESULTS
3.1. Key Inputs

This section assesses SHEDS-PM inputs that affect inter-individual variability in exposure.
The average daily ambient PM2.5 concentrations were highest in July compared to the other
months for all regions.

Values of ACH, P, and k for the residential microenvironment are shown in Table 1.
Distributions of variability in ACH by geographic region are based on the Relationship of
Indoor, Outdoor and Personal Air (RIOPA) study11 from 1999 to 2001, Murray and
Burmaster,36 Koontz and Rector,37 and Wallace et al.38 Distributions of variability in P and
k are based on the PTEAM30 and RIOPA11 studies. The distribution types are selected based
on Cao and Frey24 and are explained in the Supporting Information. Sensitivity analysis by
Cao and Frey assessed the effects of ACH, P and k on estimated human exposures.24 ACH
is the most sensitive input for both ambient and non-ambient exposure to PM2.5, whereas the
results are not sensitive to the choice of distribution for P and k.

Table 2 shows other input factors that affect inter-individual exposure variability, such as
demographics, smoking prevalence, housing types, and human activity patterns. Females
account for approximately 60 percent of the total elderly population in each area. Exposure
to indoor sources of PM2.5 is typically higher as the housing interior volume decreases.25

The population weighted average time spent in different microenvironments differs by
gender.
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3.2. Output
Inter-individual variability in estimated exposure to PM2.5 is compared with respect to
averaging time, area, and season.

3.2.1. Averaging Time—Inter- and intra-individual variability in exposure are compared
based on the CV of inter- and intra-individual variability in daily exposure, respectively, as
detailed in Table S3 of the Supporting Information. Inter-individual variability results in part
from spatial variation in ambient concentration. However, inter-individual variability is also
influenced by other factors such as ACH and activity. For the NC spring case, on average,
CVs of inter- and intra-individual variability in daily average C are 0.11 and 0.32,
respectively. Thus, C varies relatively little over space and among exposed individuals on a
given day, and varies more substantially with time from day-to-day, which is consistent with
other studies that are summarized in the PM ISA.1 However, inter-individual variability in
exposure is influenced by variability in other factors in addition to C. The CV of inter-
individual variability in Ea is 0.37, which is much larger than that for C. The CV of intra-
individual variability in Ea is 0.45, which is 18% higher than for inter-individual variability.
Thus, exposure varies more over time than it does between individuals on a given day. The
CV of Ea/C is similar (about 0.3) for both inter- and intra-individual variability, indicating
that factors influencing Ea other than C, such as ACH, P, and k have similar variability
among individuals or over time.

Inter-individual variability in estimated exposure varies with respect to averaging time.
When comparing daily and monthly average distributions of inter-individual variability in
estimated Ea/C for each geographic area and season, they have the same mean as expected,
but the standard deviation of the daily average Ea/C is approximately twice that of the
monthly average. The 95% frequency interval for the daily average Ea/C ratio typically
ranges from 0.2 to 0.9, whereas the range for the monthly average is approximately 0.3 to
0.7, as shown in Figure 1 for the NC domain in spring. The variation in Ea/C is reduced as
the averaging time increases, since day-today variations are averaged out for each
individual. For the NC spring case, the correlations of inter-individual variability in daily Ea/
C among days of the same day type are around 0.4, whereas there is little correlation among
days of different day types.

The range of the distribution of monthly average Ea/C is influenced in part by the method
used in SHEDS-PM for longitudinal sampling of activity diaries. To explore how sensitive
the results are to this sampling method, an alternative NC spring case was analyzed in which
individuals were randomly sorted from day-to-day, thus leading to no significant correlation
in day-to-day comparisons of inter-individual variability. Because the longitudinal
simulation is based on positive correlations from day-to-day, it is expected to provide a
wider range of monthly average inter-individual variability than a randomized simulation.
The difference in results between the two cases indicates whether longitudinal simulation
has a significant effect. For the randomized case, the 95% frequency range in inter-
individual variability of monthly average Ea/C is from 0.43 to 0.55, which is about one-third
the range of the longitudinal case. Thus, the results are sensitive to the approach used for
longitudinal simulation.

3.2.2. Geographic Variability—Inter-individual variability in exposure differs among
climate zones. Figure 2 presents the CDFs of the estimated daily average Ea/C for each area
and season. Although the range is similar among areas considered, the mean values differ.
As indicated in Table 3, the simulated elderly adults are exposed to approximately half of
the modeled ambient PM2.5 concentrations. The highest and the lowest mean Ea/C among
geographic areas for a given season differ by 6% to 16% except in fall, which has a larger
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difference of 36%. The geographic differences in the mean Ea/C ratio are associated with
differences in ACH. Lower ACH leads to less penetration of ambient PM2.5, which results
in lower indoor ambient exposure to PM2.5. Therefore, areas with lower ACH typically have
lower Ea/C ratios. For example, Harris County, TX has more air conditioning usage in the
summer39, which leads to lower air exchange and consequently lower Ea/C ratio than NC
and NYC.

The average Ena for the simulated population differs among areas, as shown in Table 3. The
differences in the mean values among regions for a given season vary from 11% to 55% for
the total population. The major factors that contribute to the geographic variability in
estimated Ena are smoking prevalence, indoor volume, and ACH. A higher proportion of
smokers leads to higher non-ambient PM2.5 emissions. Smaller indoor volume leads to less
dilution of indoor PM2.5 sources. Lower ACH results in longer retention of indoor
emissions. Generally, Ena is most sensitive to ACH. Areas with lower ACH tend to have
higher average Ena. However, the combined effect of lower smoking prevalence and higher
indoor housing volume sometimes can be more influential than ACH, as illustrated by the
TX domain in summer. This domain has the smallest proportion of smokers and largest
average indoor volume. Although the summer ACH is much less for the TX versus NC or
NYC domains, the population average Ena for the TX domain is the lowest.

The daily average Et varies by 10% to 28% among geographic areas for any given season
for the total population. However, non-smokers not exposed to ETS have much lower
average Et than persons with ETS exposure. For people with ETS exposure, approximately
85% of daily Et is non-ambient. Thus for those with ETS exposure, the average Et is highly
influenced by the non-ambient exposure level. This is because the upper-tail values of Ena
(above the 90th percentile) are usually 2 to 10 times higher than for Ea.

3.2.4. Seasonal Variability—In the same region, the average daily Ea/C ratio differs
among seasons by 16% in the NC domain and by 34% in NYC, as shown in Table 3. Many
dwellings in NYC are not air conditioned, and residents tend to open windows more in the
summer. In contrast, in Harris County, the average Ea/C is 15% lower in summer than in the
fall. For the NC domain, the Ea/C ratios are similar between summer and fall. The seasonal
difference in the Ea/C ratio is partly associated with more widespread air conditioner use in
TX and NC.39

Mean values of Ena vary by 21% to 37% by region among seasons. Because several factors
affecting the average estimated daily Ena are similar within a region, such as smoking
prevalence, indoor volume, demographics, and individual activity patterns, seasonal
differences in Ena are most sensitive to seasonal differences in ACH.

The seasonal variability in estimated average daily Et is not as pronounced compared to
geographic variability. The difference in the average daily Et among seasons for a given
region ranges from 15% to 19%, which is mainly attributed to seasonal variations in ACH.
For people exposed to ETS, because Et is dominated by the contribution of non-ambient
exposure, higher ACH leads to lower Et. But for non-smokers, Ena only accounts for about
40% in their daily Et on average. Therefore, higher ACH leads to higher Et for non-smokers.

4. DISCUSSION
As expected, the ambient air quality data in grid cells used as input to the SHEDS-PM
model typically exhibited rather low spatial variation within a geographic domain on each
day, with CV < 0.2 for 11 of the 12 area and season cases studied. Daily average ambient
exposures are significantly lower than ambient concentrations and vary by season and
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location. Furthermore, there is substantial inter-individual variability in exposure that is not
explained by ambient concentration alone.

A limitation not readily addressed by CHAD is the possible seasonal differences in activity
patterns. Based on analysis of CHAD, as detailed on page SI-10 and Table S7 of the
Supporting Information, differences in the time spent indoors or time spent outdoors are
found to be statistically significant depending on the gender, region, and season. However,
these results are based on aggregation of CHAD data across large geographic regions that
represent generic climate zones. There is insufficient data in CHAD from which to quantify
differences in activity pattern by gender, region, and season for the specific geographic areas
that are the focus here. Clearly, there is a need to further develop CHAD to contain diaries
representative of geographic areas and seasons of interest, and to refine the exposure model
to take ambient conditions into account when sampling diaries.

The CV in time spent outdoors among individuals was found to be similar to the CV for 11
individuals for whom more than 4 days of diaries were available in CHAD. Thus, the limited
evidence suggests that activity patterns are repeatable from day-to-day and similar among
individuals, at least for the selected subpopulation. The simulation model appropriately
accounts for similarity in day-to-day activity.

Non-ambient exposure to PM2.5 is approximately uncorrelated with ambient concentration
(average rp = −0.002, as detailed in Table S6 of the Supporting Information), which is
consistent with other studies that are summarized by EPA1. Average levels of Ena vary by
area and season mainly because of differences in ACH. For people exposed to ETS, Ena is
the dominant contributor to Et.

The Ea/C ratio varies by individual, geographic area, season, and spatial-temporal averaging
times. Therefore, quantification of the Ea/C ratio has implications for air pollutant exposure
assessment, risk management, and epidemiologic studies. The daily Ea/C ratio differs by a
factor of 4 to 5 over a 95% frequency range among individuals, indicating that some people
are very highly exposed compared to others because of factors other than ambient
concentration. The Ea/C ratio varies among individuals because of differences in activity
patterns, housing characteristics, and seasons. The day-to-day variation of estimated
individual daily average Ea is highly correlated (rp > 0.8) with that of C. Even though
biased, the use of ambient concentration as a surrogate for ambient exposure in
epidemiology studies may still account for temporal trends in exposure.

The distribution of Ea/C ratios in each area and season implies that, in general, exposure to
ambient PM2.5 is less than the ambient concentration. On average, exposures to simulated
individuals are approximately half of the ambient concentrations. These findings indicate
that concentration-response functions developed in epidemiological studies using ambient
concentration as surrogate for exposure are biased when compared to exposure
concentration.

Exposure, and not just concentration, should be considered in developing risk management
strategies to reduce uncertainty in health effect estimates, and to identify highly exposed
groups and possible exposure reduction strategies. High-end daily average ambient
exposures among individuals are influenced by factors other than high ambient
concentration, such as ACH by location and season. ACH is related to housing type and
ventilation practices used. Ea/C is well correlated (rp=0.5 to 0.6) with ACH, but has little
correlation with ambient concentration C. Thus the distribution of inter-individual variability
in the Ea/C ratio can be used to identify the need for providing advisory information to the
public. Such information might include, for example, advice to reduce ventilation with
outside air on high ambient PM2.5 days.
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The average Ea/C ratio illustrates the potential exposure error related to epidemiologic
estimates of concentration-response (C-R) ratios. Regional or seasonal differences in the
average Ea/C ratio may help to explain variations in concentration-response relationships
between cities and seasons, because the estimated health effect parameter is a function of the
Ea/C ratio. The range in mean Ea/C among studied areas and seasons is from 0.44 to 0.60.
The difference between these ratios is statistically significant based on the simulated results
and represents a 36 percent relative difference. Because Ea/C ≥ 0 and typically Ea/C < 1 for
most individuals, the population mean of Ea/C is constrained and therefore the range of
possible difference in average Ea/C ratio is also constrained. Region and season-specific Ea/
C ratios are recommended as a factor to consider when interpreting heterogeneity in
epidemiologic studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of Inter-Individual Variability in the Ratio of Estimated Ambient Exposure to
Ambient Concentration (Ea/C) for Selected Averaging Times, NC domain, Spring 2002
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Figure 2.
Geographic and Seasonal Variability in the Ratio of Estimated Daily Ambient Exposure to
Ambient Concentration for the NC domain, Harris County, and NYC, 2002
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Table 1

Residential Microenvironment Input Parameters

Parameter Distribution Type a Location b Season Value c

Penetration (P) Triangular ALL ALL Min= 0.70, Mode= 0.78, Max= 1.0

Deposition (k) Normal ALL ALL μ = 0.40 h−1, σ = 0.01 h−1

Air Exchange Rate (ACH) Lognormal

NC domain

Winter μg = 0.38 h−1, σg = 1.80 h−1

Spring μg = 0.31 h−1, σg = 2.31 h−1

Summer μg = 0.54 h−1, σg = 1.70 h−1

Fall μg = 0.49 h−1, σg = 1.62 h−1

Harris County, TX

Winter μg = 0.56 h−1, σg = 2.20 h−1

Spring μg = 0.38 h−1, σg = 1.80 h−1

Summer μg = 0.37 h−1, σg = 1.90 h−1

Fall μg = 0.65 h−1, σg = 1.80 h−1

NYC

Winter μg = 0.45 h−1, σg = 2.03 h−1

Spring μg = 0.40 h−1, σg = 1.82 h−1

Summer μg = 0.64 h−1, σg = 2.09 h−1

Fall μg = 0.22 h−1, σg = 1.72 h−1

a
Triangular distribution parameters are the minimum, mode, and maximum; normal distribution parameters are the mean μ and standard deviation
σ; lognormal distribution parameters are the geometric mean μg and standard deviation σg. The selection of distribution types are based on Cao

and Frey (2011) and is described in the Supporting Information.

b
NC includes Wake, Durham, Orange, Alamance, Guilford, and Forsyth Counties; TX includes Harris County; NYC includes Bronx, New York,

Kings, Queens, and Richmond Counties.

c
Sources: Cao and Frey (2011); P, k: Weisel et al. (2005), Özkaynak et al. (1996); ACH: NC- Murray and Burmaster (1995), Wallace et al. (2006);

TX- Murray and Burmaster (1995), Weisel et al. (2005) ; NYC- Murray and Burmaster (1995), Koontz and rector (1995).
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