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Abstract
The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study
involved withdrawal, aging, and atmospheric transformation of emissions of three coal-fired
power plants. Toxicological evaluations were carried out in rats exposed to different emission
scenarios with extensive exposure characterization. Data generated had multiple levels of
resolution: exposure, scenario and constituent chemical composition. Here, we outline a
multilayered approach to analyze the associations between exposure and health effects beginning
with standard ANOVA models that treat exposure as a categorical variable. The model assessed
differences in exposure effects across scenarios (by plant). To assess unadjusted associations
between pollutant concentrations and health, univariate analyses were conducted using the
difference between the response means under exposed and control conditions and a single
constituent concentration as the predictor. Then, a novel multivariate analysis of exposure
composition and health was used based on random forests, a recent extension of classification and
regression trees that were applied to the outcome differences. For each exposure constituent, this
approach yielded a nonparametric measure of the importance of that constituent in predicting
differences in response on a given day, controlling for the other measured constituent
concentrations in the model. Finally, an R2 analysis compared the relative importance of exposure
scenario, plant, and constituent concentrations on each outcome. Peak expiratory flow is used to
demonstrate how the multiple levels of the analysis complement each other to assess constituents
most strongly associated with health effects.
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1. INTRODUCTION
The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study
presents a unique opportunity to assess the potential health effects resulting from exposure
to primary and secondary particulate emissions of coal fired power plants. The study
involves withdrawal of emissions directly from the stacks of three coal-fired power plants in
the US. The emissions were aged and atmospherically transformed in a mobile laboratory
that simulated downwind power plant plume processing. This approach produced exposure
scenarios of increasing complexity by adding atmospheric constituents, including alpha-
pinene as a secondary organic aerosol (SOA) precursor, and ammonia, in a step-wise
fashion. Extensive exposure characterization was carried out, including gas-phase and
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particulate species, and toxicological evaluations were carried out in laboratory rats exposed
to the different emissions scenarios. This paper details the statistical approaches used to
analyse the TERESA health data. Primary analyses focus on the effect of each exposure
scenario at each power plant on each health outcome, by comparing the response means
between exposed and unexposed animals, and the differences among these effects.

An additional level of analyses focuses on the associations between pollutant concentrations
and health. The generated exposure scenarios at each of three separate power plants make
statistical analyses of these associations, which relate to the health effects of a complex
chemical mixture, challenging. Several statistical methods exist for assessing the effects of
complex mixtures. These analytic strategies include (1) a multiple regression model that
includes constituents as predictors, often called tracer elements, that are representative of
meaningful constituent groups, (2) principal components regression, and (3) a two-stage
analysis approach that first regresses an outcome on each constituent individually and then
in a second stage regresses the resulting constituent slopes against indicator variables
representing meaningful constituent groups. All of these approaches rely on some form of
grouping of the constituents. For instance, the first and third approaches require the user to
define constituent groups a priori, whereas principal components regression forms groups of
constituents based on the correlation (or covariance) structure of the constituent
concentrations. In concentrated ambient particle (CAPs) studies, for instance, these
approaches have found wide application as the constituent groupings are taken to represent
main particle sources.

In contrast, the TERESA exposure scenarios are generated from a single pollution source,
coal-fired power plants, but differ due to the different mixes of primary and secondary
particles formed through atmospheric reactions, as well as through the addition of
atmospheric constituents (ammonia and secondary organic aerosol). Table 1 presents the
exposure scenarios generated by this strategy. The analytic approaches listed above are not
directly applicable for the TERESA exposure scenarios, because constituent groupings do
not have a straightforward interpretation in terms of sources or another natural grouping. As
a result, we propose a new approach to analyzing the health effects of a complex mixture.
We first conduct univariate constituent association analyses, and then support these classical
analyses with a novel multivariate analysis of exposure composition based on an extension
of regression trees known as random forests. We illustrate our approach by analyzing data
on the respiratory outcome PEF. This analysis demonstrates how the multiple levels of the
analysis hierarchy complement each other to collectively identify constituents most strongly
associated with health effects.

In addition to the complexity of the TERESA exposures, statistical analysis of the TERESA
data must also account for the fact that the endpoints are recorded at different time
resolutions. For instance, bronchoaleovolar lavage (BAL), blood, and chemiluminesence
parameters are recorded once for each animal exposure, repeated electrocardiographic
outcomes are analyzed on an hourly basis, and pulmonary function readings are recorded
every 10 minutes during each animal’s exposure. Accordingly, although we refer to these
levels of exposure analysis as “ANOVA” and “regression”, this strategy of increasing the
sensitivity of the exposure metric is nested within regression extensions that respect the
design of the study and the correlation structure of the data.

Section 2 outlines the exploratory data analysis strategies undertaken for each outcome.
Section 3 outlines models for outcomes recorded once per animal, and Section 4 outlines the
models used to analyze the electrocardiographic data. Section 5 outlines the analogous
models for the respiratory outcomes measured semi-continuously during the exposure
period. Section 6 describes the approach taken to analyze associations between health and
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individual constituents. Section 7 reviews random forests, and outlines the application of
this multivariate approach to the TERESA data. Section 8 describes methods for model
comparison, and Section 9 illustrates the entire hierarchical approach to data analysis by
applying the multiple levels of analysis. Throughout these sections, we refer to animals
exposed to the generated aerosol as the “exposed animals”, and animals exposed to filtered
air as the “control animals”. One important aspect of the TERESA study design is that
control animals were assessed for each exposure occasion. Therefore, because responses
from exposed animals are always compared to those from the corresponding controls, the
fact that the number of animals assessed varied both by exposure scenario and plant
(Godleski 2010, this series) affects the precision of the effect estimates but does not produce
bias in these estimates.

2. EXPLORATORY ANALYSES
Initial analysis of each outcome included univariate explorations of all variables, using
histograms, statistical summaries, and other graphical techniques. Expected ranges for all of
the variables were defined a priori, and out of range values, or values identified as outliers
were checked for errors. In addition to data cleaning, these initial graphical checks served
the purpose of identifying skewed variables that might require transformation.

We took the conservative approach that primary analyses were based on all data. In limited
cases, we ran secondary analyses after eliminating clear outliers in exposure concentrations
due to the fact that such observations have extremely high leverage and may dominate
regression results. This approach confirms the primary analyses by eliminating the
possibility that any associations seen are driven by a few extreme observations.

3. INTEGRATED DATA: Bronchoaleovolar Lavage and Chemiluminescence
Bronchoaleovolar lavage (BAL), blood, and chemiluminescence (CL) data were recorded on
a given animal at single timepoint after exposure. We assessed how these differences due to
exposure varied by exposure scenario. These analyses treat exposure as a binary indicator of
whether an animal was exposed or not, and scenario as a categorical variable.

Exploratory analyses showed that the distribution of the chemiluminescence outcomes were
log-normally distributed. Therefore, before analyses, each reponse was log-transformed to
satisfy the normality assumptions in regression analyses outlined below. As a result,
regression parameters for this outcome represented log multiplicative effects of exposure,
and we reported the percent change in this outcome associated with exposure. In addition,
exploratory analyses also revealed significant day-to-day variability among control animals.
Therefore, in models for these outcomes, we blocked on day. This corresponds to comparing
response levels in exposed animals to those in the filtered air controls from the same day.

More specifically, let Yi denote a biologic response for animal i, let ei denote a binary
indicator of whether that animals was exposed, let di be a vector of indicator variables for
each day in the study, and let I(x)i be an indicator function that is equal to 1 if animal i was
exposed under scenario x and 0 otherwise. For each BAL, blood, or CL outcome, we first fit
the global exposure model

(1)

with εi:N(0,σ2). Here, γ is a vector of regression coefficients capturing the day-to-day
variability in response among control animals and di is a vector of indicator variables
associated with the categorical day variable.
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If the estimate of β1 in model (1) is signficantly different from zero, we refine the model to
specify scenario-specific effects of exposure. Let Si denote a 7×1 vector of indicator
variables representing whether a given day corresponds to P, PO, POS, PONS, O, OS, S
exposure. This model is

(2)

In this characterization, β is a vector of scenario-specific exposure effects. An ANOVA F
test comparing the fits of models (2) and (1) yields a test of whether the effect of exposure
differs among the exposure scenarios. Exposure effects were assessed both on a plant-
specific basis and overall.

Our interpretation of the results focuses on both the estimated magnitude of the estimated
health effects, as well as the estimated strength of these associations. For the ANOVA
models that assess the effects of exposure for each scenario, based on a Bonferroni
correction for multiple comparisions we consider p-values less than 0.007 as strong evidence
of an exposure effect for a given scenario, and a p-value satisfying 0.007 < p < 0.05 as
marginal evidence of an effect. That is, we consider the strength of evidence of an effect.
We note that we applied this correction to the ANOVA analyses, but not the composition
analyses.

4. ELECTROCARDIOGRAPHIC DATA
Cardiac arrhythmias and autonomic function were assessed under the POS exposure
scenario at Plants 2 and 3. For a complete description of the plants, their coals, and their
constituent levels, by scenario, see Kang et al. (2010 this series). We tested the hypothesis
that exposure to POS increases premature ventricular beat (PVB) frequency (expressed as
number of PVBs per hour, for each of five hours of exposure) as compared to control
animals exposed to filtered air. We used repeated-measures Poisson regression (Diggle et al.
2002) fit using generalized estimating equations (GEE) to model PVB frequency during
each exposure hour. This model included indicator variables for time (exposure hour), group
(exposed versus filtered air), and 2-way interactions between these variables. We allowed
for Poisson overdispersion in the data, assumed an exchangeable covariance structure, and
based inferences on empirical (robust) standard errors. As a sensitivity analysis, we tested
the related hypothesis that exposure to POS increases the risk of observing one or more
PVBs as compared to control animals exposed to filtered air. We used repeated-measures
logistic regression to model the odds of a given rat having one or more PVBs during a given
time period. As above, this model was fit using GEE and included indicator variables for
time, group, and the 2-way interactions between these variables. An exchangeable
covariance structure was assumed and inferences were based on empirical (robust) standard
errors.

We applied linear mixed models to one-hour averages of heart rate, heart rate variability
parameters and interval data. The models included indicator variables for time, group, and
the 2-way interactions between these variables as fixed effects and random rat-specific
intercepts. Because these assessments were made in the POS scenario, consisting of four
exposure occasions, it was not possible to assess associations between POS mass or
constituent concentrations with any of the electrocardiographic outcomes.

5. SEMI-CONTINUOUS DATA: RESPIRATORY OUTCOMES
For 10-minute averaged respiratory function data, in which the data represent repeated
measures on each animal throughout the six-hour exposure period, additive mixed models
were applied to estimate both overall and time-varying effects of exposure. A form of
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repeated measures model for longitudinal data, additive mixed models (Coull, Schwartz, and
Wand 2001; Ruppert, Wand, and Carroll 2003) represent an extension of linear regression
models that allows one to (1) estimate potentially non-linear effects of independent
variables, and (2) include random effects as independent variables in order to account for
correlation among repeated measurements taken on the same animal during the exposure
period. For each outcome, additive mixed models were fit using as independent variables (1)
a general nonlinear mean trend for control animals over the exposure period, (2) an exposure
indicator, which implies a constant shift in the mean trend due to pollutant exposure, and (3)
random animal effects reflecting animal-to-animal heterogeneity that results in correlation
among 10-minute averages taken on the same animal over time.

Exploratory analyses of the respiratory outcomes indicated some outcomes were normally
distributed and some were log-normally distributed. However, because the large amount of
data for these outcomes and the central limit theorem protects against misspecification of the
normal assumption in regression analyses for these outcomes, it is likely that inferences
from regression models fit to the untransformed outcomes are valid. To check this assertion,
we re-ran the analyses on the respiratory outcomes after log-transforming the pulmonary
outcomes, and the overall conclusions of the analysis did not change. The refore, for
consistency of interpretation across respiratory outcomes, all models were applied to the
data on the original scale. Sensitivity analyses were then run on the log-transformed values
to confirm that these inferences were qualitatively similar, and this was indeed the case.

In order to define the specific models, let Yit denote the response for animal i at time t. We
assessed whether or not there was evidence that differences between exposure groups varied
within the period of exposure. This model specified distinct mean trends over the exposure
period for the exposed and filtered air animals, again including random animal effects to
account for the repeated measurements taken on each animal. The difference between these
estimated trends represents the time-varying effect of the exposure scenario over the
exposure period. We applied this approach to each week’s data separately using the model

(3)

where here s1(t) denotes the average trend among exposed and s0(t) represents the average
trend among unexposed, and δ(t) = s1(t)–s0(t) represents the time-varying effect of exposure
for a given week. The random subject effects {bi} account for unexplained subject
heterogeneity that induces correlation among repeated responses taken on the same subject,
above and beyond that explained by the smooth temporal trends s1(t) and s0(t).

Seeing little evidence of time-varying effects of exposure within an exposure period, we
simplified model (3) to specify a constant effect of exposure over time. Like the analogous
models for BAL and CL, we estimate within-day effects of exposure by controlling for day
in the model. The model is

(4)

where again γ represents the nuisance day-to-day variability in the outcome among the
control animals, bi again represents animal-specific random effects accounting for animal-
to-animal heterogeneity in the response that persists across the entire exposure period, and
s(t) is a smooth function of time that accounts for autocorrelation among measures taken on
the same animal within an exposure. Like the integrated analyses, we expanded the models
by replacing the overall exposure term with β Siei. The models were fitted to data from each
plant separately as well as to data from all three plants together.

Coull et al. Page 5

Inhal Toxicol. Author manuscript; available in PMC 2013 May 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. UNIVARIATE CONSTITUENT ASSOCIATIONS
To assess univariate associations between particle or gas concentrations and toxicological
endpoints, we conducted single-pollutant analyses in which separate regression models were
fitted using biologic response as the dependent variable and either mass, particle number, or
a single concentration as the exposure metric. As noted in the Introduction, existing two-
stage approaches do not directly apply to the exposure scenarios defined by the TERESA
study, as plausible groupings of constituents are not necessarily constant across these
different scenarios.

For outcomes for which there exist significant mean differences between exposure groups,
an issue that arises is that most concentrations that are entered into a model univariately will
show significant differences, due to the fact that there is high collinearity between
concentration and exposure group. That is, it can be the case that differences between
groups, and not a dose-response between concentration and outcome within the exposed
group, drive an association between outcome and concentration. Panel (a) of Figure 1 shows
an hypothetical example of such an instance. Suppose the four data points in this plot
represent response means from a single week of exposure, with the point at zero
concentration representing the average filtered air response for that week and the three
points at non-zero concentrations representing the average responses among exposed
animals on the three days. In this case, there is a strong effect of exposure, but no effect of
increasing concentration among exposed animals, and the least squares fit of the regression
model that contains concentration alone suggests an association between response and
exposure.

Accordingly, we used as a more stringent definition of an association between a particular
exposure constituent and outcome. We require this association to be present among animals
in the exposed group. If we control for day-to-day differences in response in control
animals, this leads to the model

(5)

where ci is the concentration of the particular constituent of interest to which animal i was
exposed. Here we assume all control animals receive ci = 0.0. This is not unlike well-
established methods to estimate the effects of smoking (among never, former, and current
smokers) in epidemiological analyses. Such methods typically include both an indicator
term for (former and current smokers), reflecting that there is some baseline effect of any
exposure, as well as the number of cigarettes smoked by a current smoker, which reflects the
effect of the amount of current exposure.

For the purposes of convenient visualization of these univariate associations, we sum both
sides of the underlying model (4) to yield a simple model for the daily differences in group

means as a function of daily constituent concentrations. Let  and  denote the mean

outcome for the exposed and control groups on day d, respectively, and define 
to be the difference between these group means. On the daily scale, model (4) equates to

(6)

where cd is the constituent concentration of the generated aerosol for day d. That is, this
model reduces to a simple linear regression for these daily differences. This suggests that we
can plot these daily differences against the daily concentrations as an easy way to
graphically depict these associations. We report the estimated univariate associations and
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corresponding standard errors by standardizing α1 by the standard deviation of that
concentration, so that the resulting estimates represent the change in daily group difference
for a given standard deviation increase in that constituent concentration.

In analyzing these univariate associations, we focused both on the direction and magnitude
of the associations for each constituent. We interpreted associations in which low levels of a
constituent were associated with small changes in outcome and high levels were associated
with large changes, rather than vice versa, as consistent with a causal hypothesis for that
constituent. Conversely, cases in which low concentrations of a constituent are associated
with large differences in outcome means and vice versa suggest that, assuming the result is
not a false positive (Type I error), the particular constituent may simply be inversely
correlated with a causal agent. Moreover, we checked whether or not such observed
associations are consistent with the scenario-specific ANOVA analyses, further ensuring
that the observed findings are internally consistent. Finally, we inspected scatterplots of each
outcome difference, color coded by plant and symbol coded according to scenario, to
investigate how the ANOVA and univariate constituent models complement each other.

7. MULTIVARIATE ANALYSES
The standard approach to assessing the multivariate association between a health outcome
and multiple exposure constituents is a multivariate regression with main effects for each
constituent. However, there are a few disadvantages to this approach. First, it typically relies
on p-values from a hypothesis testing framework to determine strength of association, which
can be subject to multiple testing issues when applied to a large number of constituents.
Second, the true model, in terms of which variables should be included in the model, is
uncertain. Third, such a model with constituent main effects only makes an assumption of
additivity for the effects of the included constituents, in that no constituent-by-constituent
interactions are entered into the model. Fourth, it assumes that the concentration of each
constituent concentration is linearly related with the outcome.

Accordingly, we used a relatively new statistical method known as random forests (Breiman
2001; Liaw and Wiener 2002) to rank constituent concentrations on their ability to predict
mean differences in a biologic outcome on a given day. Random forests are an extension of
the relatively well-established approach of classification and regression trees (CART; Hastie
et al. 2003), which is an inherently nonlinear regression framework that partitions the
complex predictor space into regions thought to have common values of the outcome.
Brieman (1996) showed that repeatedly applying the CART methodology to random subsets
of the data can have several advantages over the standard CART approach that builds only a
single tree. First, conclusions are less sensitive to the size of a single tree, as results are
averaged over multiple trees. Second, this extension can achieve lower prediction error than
single tree results. In the following two subsections, we outline the basic idea of a regression
tree and its recent extension to random forests and variable importance.

7.1 Background: Regression Trees
Regression trees represent a method for clustering a multivariate predictor, guided by
associations between the predictors and an outcome. That is, regression trees represent a
form of hierarchical clustering in which the sample is successively split into groups defined
by dichotomizing a predictor into low and high values. The predictor that is chosen for
splitting as well as the value of the predictor at which the split is made is selected so as to
maximize the difference in the mean values of the outcomes in the resulting groups. Figure 4
presents a diagram of this process when interest focuses on a two predictors, x1 and x2. The
regression first splits the sample according to a particular value, a of x1, chosen to maximize
the difference in outcome means for these two subgroups. The algorithm then goes on to
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split two resulting subsamples further, splitting the first subsample according to whether or
not the value of x2 is less than b and the second subsample according to whether or not the
value of x2 is less than c. The resulting clusters are assumed to consist of observations with a
common mean. This mean is estimated using the sample mean of the outcome for
observations contained in that cluster.

For the TERESA study data, we applied regression trees at the daily level; that is, we used
as the endpoint Zd, the difference between outcome means in the exposed and unexposed
groups on day d. Figure 5 shows the hierarchical clustering sequence when we apply the
algorithm to the PEF mean differences. The figure shows that the data were first split
according to whether or not the elemental carbon (EC) concentration on that day was less
than 0.2 μg/m3. Ammonium ion and acidic sulfate (SO4) were the constituents on which
splitting was based at the second level, and so on.

Note that the regression tree framework allows for a flexible association structure between
an outcome and a multivariate predictor. First, the model does not assume a linear exposure-
response relationship between outcome and a given constituent, due to the categorization of
each predictor. Second, unlike standard multiple regression analyses containing a main
effect for selected constituents, regression trees allow for synergy or other complicated
interactions among constituents. This is possible because each constituent is a candidate for
the basis of splitting for each subgroup generated by a previous split. So, for the PEF
analysis presented in Figure 5, acidic SO4 appears to be a more important predictor for those
samples for which EC concentration is high, but not for samples for which EC concentration
is low.

7.2 Random Forests
The advantages of regression tree analyses are balanced by a few disadvantages. First, one
must decide how many levels to run the analysis. One approach is to sequentially split the
sample many times, and then “prune” the tree and remove levels according to one of several
optimality criteria. Second, regression trees do not provide a direct measure of the overall
importance of a given predictor in predicting the outcome. A recently developed extension
of regression trees, random forests, addresses these issues.

The random forest algorithm repeatedly applies the regression tree algorithm to bootstrap
resamples of the original data set. The basic idea of the algorithm is to use the data not
included in each bootstrap to serve as a “out-of-sample” dataset on which prediction
accuracy of a given tree can be assessed. Regression trees assess the importance of a given
variable in predicting the outcome by permuting the predictors, and assessing how much
prediction accuracy decreases after this permutation. Formally, the random forests algorithm
is as follows:

1. Draw ntree bootstrap samples from the original data.

2. For each of the bootstrap samples, grow an unpruned regression tree, but with a
random constituent: at each node of the tree, rather than choosing the best split in
the response among all constituent predictors, randomly choose m of the predictors
and select the best split among these m constituents.

3. An estimate of the prediction mean squared error can be obtained by predicting the
data not in each bootstrap sample (denoted “out-of-bag”, or OOB, data) using the
tree grown with the bootstrap sample. These predictions for each data point are
then averaged over all of the trees for which that point is out-of-bag. On average,
each data point is in the OOB data approximately 36% of all samples.
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4. Compute the “Variable Importance” of each predictor. The importance of a
predictor in the random forest algorithm is estimated by the increase in the
prediction error when the value of that predictor is randomly permuted in the OOB
data, leaving all other variables unchanged. More specifically, let dt be the
difference in OOB prediction mean squared error (IncMSE) with and without
permuting the variable of interest, for the tth tree. The overall variable importance
measure is mean of dt/se(dt), where se(dt)=sd(dt)/T (%IncMSE).

As noted above, we apply random forest methodology to the TERESA data at a daily level.
That is, the response is Zd, the difference in means from the exposed and non-exposed
groups and the predictors are the measured constituent concentrations for that day. All
random forest analyses were run using the RandomForest package in the R statistical
software package (Liaw and Wiener 2002).

Each random forest analysis is determined by two user-specified parameters, the number of
bootstrap samples (ntree) and the number of predictors chosen in each resample (m ). For
each biologic outcome, we selected ntree = 50,000. For m, we followed the recommended
default (Breiman 2001) of p/3 ≈ 9, where p is the total number of constituents in the
analyses. For each outcome we also performed a sensitivity analyses that re-ran the analysis
with ntree = 100,000, and with m = 4 and m = 18. In each case, although the precise estimate
of the MSE increase associated with a random permutation of a constituent’s concentrations
varied across these sensitivity analyses, the relative ordering of the importance of each
constituent was quite stable across these multiple runs (see Liaw and Weiner 2002 for a
discussion of this point).

8. MODEL COMPARISON
An important question that arises is whether model with plant + exposure scenario or the
model incorporating constituent concentrations does a better job predicting effects of
exposure. Accordingly, we use R2 comparisons to compare the (model-size adjusted)
performance of (1) the ANOVA models allowing the effects of scenario to vary by plant, (2)
univariate models for a subset of important constituent, (3) a multivariate model
incorporating all constituent data via a random forests analysis. All models are applied to Zd,
the daily mean differences in outcome.

We use two forms of R2 to make these comparisons. First, we used adjusted , defined as

 where SSE and SST are the error and total sums of squares,
respectively, p is the number of parameters in the model and N is the total sample size.
Because our chosen multivariate method of analysis, random forest analysis, assesses
predictive accuracy, we also compared the models based on predictive R2. For the random
forest analyses, this measure is estimated using the “out-of-bag” sample for each bootstrap
resample, and averaged over all re-samples. For the ANOVA and univariate regression
models, we estimated predictive R2 using 10-fold cross-validation. Ten-fold CV sets aside
one-tenth of the sample, fits a model to the remaining data, calculates the squared error of
these predictions for each observation in the held-out data, and repeats this process across
each tenth of the data. As noted in the Introduction, we view the random forest approach as a
flexible model allowing a wide range of exposure-reponse relationship between each
constituent concentration and response, and the possibility of interactions among
constituents. Therefore, the comparison of the predictive R2 comparison compares the plant
+scenario model to one of the least-restrictive constituent models, and therefore speaks
directly to whether the constituent data add predictive power above that provided by the
simpler plant/scenario classifications.
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9. ILLUSTRATION
To illustrate the approach taken to analyze the TERESA toxicological data, we continue
with the example of peak expiratory flow. Because PEF is measured semi-continuously, the
ANOVA models represent a linear additive mixed model. We fit model (3) at the finest level
of resolution, estimating a time-varying effect of exposure within each week of experiments.
Figure 2 shows these plots (averages over a 4-day period) for the exposures at Plant 2 during
the period of May 9 - 12, 2006. The results do not provide much evidence of time-varying
exposure effects, and analogous plots from other weeks (data not shown) similarly showed
little variation in effect within an exposure period. Model (4) estimated the average effect of
exposure over time. Stratified by power plant (Table 2), this effect was strongest at Plant 2,
partially present at Plant 1 (only for PONS), but was not observed at Plant 3. The interaction
p-value tests the null hypothesis that the exposure effect is constant across scenarios, versus
the alternative that they are different across scenarios. Table 3 shows this effect broken
down by scenario, pooled across all three power plants. The results suggest that, for this
outcome, the PONS and P scenarios are associated with the largest effects on PEF.

For easy visualization of associations between the outcome and individual constituents of
exposure, and how these univariate associations are driven by differences in outcome among
plants and among scenarios, univariate association analyses are based on model (5). Figure 3
shows the association between the PEF mean differences and elemental carbon
concentration, color coded by plant and symbol coded by exposure scenario. The p-value
corresponding to the hypothesis that the slope of this association is zero is p = .017. The
color coding suggests that plant is an important factor driving this association between PEF
difference and EC, as the PEF values from Plant 3, with EC concentration of 0, are higher
than those from Plants 1 and 2.

Figure 6 shows a plot of the estimated variable importance for the constituent predictors
from a multivariate random forest analysis of the PEF data. This figure shows that EC
concentration has highest variable importance score among all constituents, suggesting that
the association shown in Figure 3 is the strongest among all constituents, and cannot be
explained by the presence of the other constituents entered into the multivariate model.

We compared the performance of the ANOVA and univariate regression models using
adjusted R2. Table 4 presents the adjusted R2 for the the two-way ANOVA model using
plant, scenario, and their interaction as well as for several selected single constituent
regression models. The results suggest that the model using plant and scenario information
explain variation in exposure effects by an order of magnitude more than that based on any
single constituent. We use predictive R2 to compare the predictive performance of the plant/
scenario model to the random forest model, which incorporates all constituent data in a
multivariate fashion. Note that because these are out-of-sample R2 values, it is possible that
they can be negative.These values, also presented in Table 4, suggest that these models have
similar predictive power, suggesting that incorporation of the constituents listed in Figure 6
does not improve upon the plant/scenario model.

10. DISCUSSION
Statistical analyses of the data arising from the TERESA study presented unique challenges
related to assessment of the health effects of complex mixtures. In this paper we consider
ANOVA, univariate regression, and random forests as a broad analysis of the relative
importance of plant, scenario, and individual constituents in explaining exposure effects.

In interpreting the results from the different levels of analysis for a given outcome, we
looked for consistency across analysis levels as well as associations consistent with a causal
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hypothesis. For instance, in the illustrative case study of PEF we presented here as well as in
Diaz et al. (2010 this series), the ANOVA-type analyses suggest the PONS and P scenarios
yield the largest effects on respiratory function. Stratification by plant suggested that these
effects varied largely by plant, with Plant 2 exhibiting relatively large effects for these
scenarios, Plant 1 showing effects only for the PONS scenario, and Plant 3 not showing any
effect on PEF. Univariate regression analyses suggest that these differences are most
strongly associated with EC concentrations. This observation is consistent with the plant-
specific analyses, as EC concentrations vary across plants. An R2 analysis confirms that
scenario and plant drive these effects much more so than the constituent concentrations for
this outcome.

Random forests have seen increasing use in high-dimensional genomic settings (e.g., Ye et
al. 2005). To our knowledge there have been relatively few applications of this method of
analysis in the environmental sciences, and environmental toxicology in particular. A natural
line of future research is a comparison of the operating characteristics of this approach when
interest focuses on identifying important constituents of a complex exposure mixture, and
comparing this performance to existing approaches to this problem.
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Figure 1.
Hypothetical Constituent-Response Association
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Figure 2.
Estimated Time-varying Exposure Effect on PEF (in ml/s) During May 9-12, 2006
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Figure 3.
Univariate Association Between Daily PEF Mean Difference (from controls) and Elemental
Carbon Concentration, by scenario and plant.
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Figure 4.
Diagram of regression tree partitioning of 2-dimensional predictor space
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Figure 5.
Results of regression tree modeling for daily mean differences of peak expiratory flow
outcome
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Figure 6.
Random forest outcome for peak expiratory flow
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Table 1

TERESA Exposure Scenarios

Scenario Description

P No-aging primary emissions only

PO P Scenario + H2SO4 aerosol from oxidation of SO2

POS PO Scenario + reaction of α-pinene with ozone to form SOA

PONS POS Scenario + neutralization of H2SO4 aerosol by NH3

O Oxidation of SO2 including primary gases, but not primary particles

OS O Scenario + SOA

S SOA produced using no primary gases or particles
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Table 2

Estimated Plant- and Scenario-specific Exposure Effect (in ml/s) on PEF

PP1 PP2 PP3

Exp - FA Exp - FA Exp - FA

Scenario Diff SE p-value Diff SE p-value Diff SE p-value

PONS −3.36 1.12 0.003 −5.45 1.20 < 0.0001 −1.13 2.75 0.681

POS −2.91 1.95 0.135 −0.61 1.01 0.551 −1.12 2.75 0.683

PO −2.85 2.25 0.205 −2.68 1.20 0.026 −0.65 2.57 0.800

P −2.27 2.25 0.312 −4.66 1.20 0.0001 −2.26 2.87 0.431

OS −1.33 2.74 0.628

O 1.76 2.57 0.494

S 3.26 3.16 0.302

Interaction
p-value 0.976 0.010 0.842
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Table 3

Estimated Scenario-specific Exposure Effect on PEF (in ml/s), Across All Plants

Exp - FA

Scenario Diff SE p-value

PONS −3.5270 0.8464 < 0.0001

POS −1.4753 1.0492 0.1597

PO −2.1620 1.1641 0.0633

P −3.3054 1.1984 0.0058

OS −1.3316 2.3422 0.5697

O 1.7587 2.1927 0.4225

S 3.2618 2.7013 0.2273

Interaction
p-value 0.081
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Table 4

Adjusted and Predictive R2 for ANOVA, univariate regression, and random forest models for PEF mean
differences

Model Adjusted R2 Predictive R2

Plant/Scenario ANOVA 0.43 0.10

Neutralized SO4 0.09 0.06

Acidic SO4 0.03 0.00

Total SO4 0.00 −0.08

Mass 0.01 −0.01

EC 0.07 0.04

NH 4 0.11 0.11

Random Forest – 0.09
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