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Abstract
A Bayesian framework is presented for modeling Effects of climate change on pollen indices such
as annual birch pollen count, maximum daily birch pollen count, start date of birch pollen season
and the date of maximum daily birch pollen count. Annual mean CO2 concentration, mean spring
temperature and the corresponding pollen index of prior year were found to be statistically
significant accounting for Effects of climate change on four pollen indices. Results suggest that
annual productions and peak values from 2020 to 2100 under different scenarios will be 1.3-8.0
and 1.1-7.3 times higher respectively than the mean values for 2000, and start and peak dates will
occur around two to four weeks earlier. These results have been partly confirmed by the available
historical data. As a demonstration, the emission profiles in future years were generated by
incorporating the predicted pollen indices into an existing emission model.
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1. Introduction
Climate change exerts important Effects on annual cumulative airborne pollen count,
maximum daily pollen count, start date of pollen season and the date of maximum daily
pollen count (Fitter and Fitter, 2002; Damialis et al., 2007; Alizoti et al., 2010). These pollen
indices hereafter referred as annual production, peak value, start date and peak date, are
closely associated with allergic airway diseases (AAD) (Blando et al., 2012) and genetic
manipulation of plants (Martin et al., 2010). These four pollen indices are further classified
as pollen quantity indices (annual production and peak value) and pollen timing indices
(start and peak dates). An increasing number of individuals su ering from seasonal AAD
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caused by pollen (Singh et al., 2010a), and the corresponding increased healthcare and
financial costs have been reported in many industrialized countries (Lamb et al., 2006).

Modeling efforts have been made to understand the exacerbation of AAD and genetic
contamination caused by increased pollen levels (Sofiev et al., 2006). These models are
either based on simple regression of phenological and aerobiological observations (Jato,
2007), or utilize physical principles of transport and meteorology (Siljamo et al., 2008;
Martin et al., 2009). Pollen concentration estimations generated by most of these models are
qualitative or semi-quantitative (Schueler and Schlnzen, 2006; Sofiev et al., 2006) due to the
scarcity of emissions information.

A major challenge for the physics-based models to construct exact pollen spatial and
temporal distribution is establishing an accurate emissions module that incorporates the
influence of multiple climatic factors. different methods have been utilized to try to tackle
this issue. Kawashima and Takahashi (1999) and Schueler and Schlnzen (2006) adopted
regression equations of phenological observations as emission modules to simulate pollen
transport and distribution from cedar and oak, respectively. Starting from the measured
pollen count, Lagrangian algorithms were used by Aylor (2005) and Pasken and Pietrowicz
(2005) to simulate pollen transport and distribution from maize, and oak, respectively.
Mechanistic models based on the formulation of Helbig et al. (2004) were developed by
Efstathiou et al. (2011) and linked to the Community Multiscale Air Quality model in order
to simulate the transport and distribution of birch and ragweed pollen. The above mentioned
methods do not account for the long term influence of multiple climatic factors in the
emission module.

In this work, Bayesian models are employed to describe climatic change Effects on annual
production, peak value, start date and peak date of birch (Betula) pollen. The modeling
process consists of four steps: variable selection, parameterization, evaluation and
prediction. Probabilities of each sub-model, and probabilities of inclusion of each variable in
full model were calculated and analyzed. Then Bayesian parameterizations of these selected
models were conducted with published data (Rasmussen, 2002). The parameterized models
were evaluated using data from Yli-Panula et al. (2009), Frei and Gassner (2008) and two
pollen stations in the US, and used to predict plausible global mean trends of pollen indices
of future years based on the climatic data reported in the Intergovernmental Panel on
Climate Change (IPCC) assessment report (IPCC, 2007a,c). The intrinsic interannual
variations of pollen indices were also examined and used to simulate the fluctuations around
the mean trends. Finally, a case study demonstrates using the results of Bayesian modeling
for generating the future spatiotemporal emission profiles of birch pollen in the Northeastern
US. The statistical calculation and simulation were carried out in R and visualizations were
implemented in Matlab and ArcGis.

2. Methods
2.1. Model

We assumed that observed pollen indices are normally distributed variables which fluctuate
around mean trends depending on the combination of multiple random climate/meteorology
factors, and that pollens of the same genus (Betula) have similar responses to climate/
meteorology changes. The ordinary norm linear regression model (Marin and Robert, 2007a)
is presented in equation 1,

(1)
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where Y = (y1, …, yn)T is a vector of pollen indices, the five year overlapping mean of
either annual production (pollen/m3) or peak value (pollen/m3) or start date (day) or peak
date (day). With day 1 being January 1st, the start date is defined when the cumulative
pollen count reached a certain percentage of the annual production (e.g. 2.5%) (Rasmussen,
2002) and peak date is reached when the daily maximum count is registered. X is the n × k
matrix of explanatory variables in which each column vector xi corresponds to values of a
climatic factor in n years and k is the number of variables. In is the n × n identity matrix. β
and σ2 are the unknown vector of coefficient and variance, respectively.

Equation 2 is the likelihood function of the Bayesian model.

(2)

Zellner’s informative G-priors (Zellner, 1971) are assumed for β and σ2 as shown in
equation 3,

(3)

where  and c are further assumed to be 0k+1 and 100 respectively so that parameterizations
are mainly dependent on the explanatory matrix X. In this study c = 100, the prior gets a
weight corresponding to 1% of the sample.

2.2. Variable selection
Figure 1 shematically depicts the Bayesian modeling framework. Multiple climatic factors
were first prescreened by regressing each individual pollen index against each individual
climatic factor of a given month for historical data of twenty years. Climatic factors in two
periods influence the pollen indices (Masaka and Maguchi, 2001): (1) initiation of flower
primordial during the burst period in spring and early summer of the current year; and (2)
development of flower inflorescences in autumn and winter of the previous year. In this
study, monthly climatic factors for CO2, temperature, precipitation, cloud coverage, and
sunshine hours in June to December of previous year and January to May of current year
were taken into account in the prescreening stage. First, multiple monthly climatic factors
were consecutively screened starting from the smallest P value and the largest R2; then
monthly climatic factors in consecutive months were lumped together to form nine
preselected variables for each pollen index.

The preselected climatic variables were further selected and assessed by calculating the
probability of each sub-model and the probability of inclusion of each variable in the full
model.

Calculation of sub-model probability is obtained through equation 4,

(4)

where binary indicator vector γ∈Γ = {0, 1}k, γi=1 means variable xi is included in the
model while γi=0 means xi not included in the model; βγ, Xγ, qγ are sub-vectors, sub-
matrix and number of variables in the sub-model, respectively.
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A Gibbs sampling algorithm, as shown in the following, was used to calculate inclusion
probabilities. It is a Markov chain, and after a large number of iterations, its output can be
used to approximate the posterior probabilities P (γi = 1|Y, X) based on the Monte Carlo
method in the form of equation 5,

(5)

where T is the number of total iterations, and T0 is the “burn-in” period, such that the first
T0 values are eliminated to guarantee convergence. In this work, T was set to be 20,000 and
T0 to be 10,000.

Initialization: draw γ0 from the uniform distribution on Γ:

(1). draw γ1
(t)

 according to Π(γ1 ∣ Y , γ2
(t−1)

, ⋯ , γk
(t−1)

, X ),

(2). draw γ2
(t)

 according to Π(γ1 ∣ Y , γ1
(t), γ3

(t−1) ⋯ , γk
(t−1)

, X ),

… … … … … … …

(k). draw γk
(t)

 according to Π(γ1 ∣ Y , γ1
(t), ⋯ , γk−1

(t) γk
(t−1)

, X ),

2.3. Parameterization
The corresponding Bayesian estimator of expectations of β and σ2 are presented in
equations 6 and 7:

(6)

(7)

where  is the maximum likelihood estimator obtained by maximizing the likelihood
function shown in equation 2.

P values were calculated based on F-statistics. The highest posterior density regions (HPD)
in Bayesian statistics are the sections of the parameter space where the parameters most
likely take values. HPD of β were calculated to characterize the regions of most probable

variations of predicted pollen indices. A Bayes factor (Marin and Robert, 2007b)  was
constructed through null hypothesis H0: βi = 0.

2.4. Prediction
The future vector  based on the posterior and future explanatory matrix  has a Gaussian
distribution (Marin and Robert, 2007a) and its expectation can be predicted by equation 8:

(8)
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The pollen indices for base year (2000) were obtained by averaging over the corresponding
five year overlapping means of pollen indices from Basel (Switzerland), Turku (Finland),
and New Jersey and North Dakota (US). These locations span different climate zones,
geographical regions and forest vegetations in the northern hemisphere. Birch pollen levels
from these locations are su ciently representative to generate and analyze future plausible
pollen indices and their mean trends.

The intrinsic inter-annual variation of the pollen index has been observed by many
researchers (Silvertown, 1980). According to Masaka and Maguchi (2001), the mast and
sparse years occur alternately due to evolution stress. As for the intrinsic inter-annual
variation of pollen indices in the current study, the data from Yli-Panula et al. (2009) were
first normalized using their mean values, and then fit using equation 9,

(9)

where YNP (i) is the normalized pollen index in year i, and parameters P1, P2, P3 and P4 are
to be determined. The first and fourth terms describe the mean trends of the pollen index.
The second and third terms in equation 9 characterize the intrinsic inter-annual variation of
pollen indices and are used to simulate the fluctuations around the mean trends obtained
through equation 8.

2.5. Application
As an example, the predicted annual pollen production under B1 scenario was incorporated
into the mechanistic emission model described in Efstathiou et al. (2011) to generate future
sptiotemporal emission profiles of birch pollen in the Northeastern US based on future
meteorology profiles predicted by the Weather Research Forecasting model and obtained
from the North American Regional Climate Change Assessment Program (NARCCAP)
(Mearns et al., 2011). The simulations were performed on the Ozone Transport Commission
modeling domain with spatial resolution of 12km, for the month of April from 2002 and
2040. The connection between annual emission flux and observed airborne annual pollen
count were reported in Jato (2007).

2.6. Data source
Variable selections and parameterizations were based on pollen data in Copenhagen,
Denmark (Rasmussen, 2002); the corresponding monthly mean temperature, total
precipitation, sunshine hours, and mean cloud coverage were obtained from the website of
Denmark’s Meteorology Institute (Cappelen, 2009). Since we could not obtain the data of
monthly mean CO2 concentration in Copenhagen from 1978 to 2000, we instead used the
data of CO2 concentrations from the nearby and representative monitor stations in Poland,
Norway and Portugal of Europe, and Mauna Loa (Hawaii) of US. Because CO2 is a long-
lived greenhouse gas (GHG) and well mixed in the atmosphere, measurements made at such
sites as Mauna Loa, which is the first and longest established in situ continuous CO2 station
(Keeling et al., 2009), provide an integrated picture of large parts of the Earth, including
continents and city point sources (IPCC, 2007b).

Evaluation of the selected model was conducted using pollen data from Turku (Yli-Panula et
al., 2009), Basel (Frei and Gassner, 2008), and New Jersy and North Dakota, respectively.
For New Jersy and North Dakota, the pollen data originate from stations of the American
Academy of Allergy Asthma and Immunology; the spring temperatures and CO2 levels
originate from the climate and meteorology databases of the closest US stations on the
website of the National Oceanic and Atmospheric Administration. Mean spring temperature
in Basel was obtained from the website of the Federal O ce of Meteorology and
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Climatology. Since we could not obtain the dataset for mean spring temperature in Turku,
we used instead the annual mean temperature reported by Yli-Panula et al. (2009). For
Turku, the corresponding CO2 concentrations came from monitor stations in Finland,
Norway, Portugal and Mauna Loa. For Basel, the corresponding CO2 concentrations came
from monitor stations in Hungary, Poland, Norway, Portugal and Mauna Loa.

Prediction of future pollen indices was performed using the global annual mean temperature
and global annual mean CO2 concentration projections in the IPCC 2007 report (IPCC,
2007a,c).

3. Results and Discussion
3.1. Variable selection

The results for prescreening climatic factors are summarized in Figure 2. It is indicated that
CO2 concentrations throughout the year are important for the four pollen indices, and have a
positive relationship with quantity indices and a negative relationship with timing indices.
This corresponds to the fact that increased CO2 levels will favor evolutional and productive
plant growths. These results are consistent with the observations from Ziska et al. (2003),
which concluded that ragweed grew faster, flowered earlier, and produced significantly
greater pollen at urban locations (high CO2 concentration) than at rural locations (low CO2
concentration). Wolf et al. (2010) also reported that elevated CO2 concentrations led to
increased spore production of A.alternata, a ubiquitous allergenic fungus.

Spring temperatures in January, February and March of current year are crucial climatic
factors for timing indices, while less important for quantity indices, according to both p
values and adjusted R2. Overall, spring temperature of current year has a negative
relationship with the four pollen indices. Similar results of temperature Effects have been
reported by Singh et al. (2010b) through experiments of Cowpea and Prasad et al. (2006)
through observation of Sorghum bicolor (L.) Moench.

Correlation analysis indicated that each pollen index of current year was closely correlated
with the corresponding pollen index of previous year. In order to incorporate the Effects of
climatic factors of the previous year into the Bayesian model, the corresponding pollen
index of previous year was also added as a variable in the Bayesian model.

Based on the discussion above, climatic factors for Bayesian models were preselected as
following. For quantity indices, xi1 is the corresponding pollen index of previous year
(pollen/m3), xi2 the temperature in April of current year (°C), xi3 the mean temperature in
July and August of previous year, xi4 the annual mean CO2 concentration of current year
(ppm), xi5 the total precipitation in February and March of current year (mm), xi6 the total
precipitation in September of previous year (mm), xi7 the mean cloud coverage in December
of previous year and January of current year (%), xi8 the total sunshine hours in January of
current year and December of previous year (hour), and xi9 the sunshine hours in July of
previous year (hour). While for timing indices, xi1 is the corresponding pollen index of
previous year, xi2 the mean spring temperature in January, February and March of current
year, xi3 the annual mean CO2 concentration of current year, xi4 the total precipitation in
March of current year, xi5 the total precipitation in December of previous year, xi6 the mean
cloud coverage in March of current year, xi7 the mean cloud coverage in December of
previous year, xi8 the sunshine hours in March of current year, and xi9 the sunshine hours in
December of previous year. The first index i in a variable xij indicates the year, and the
second index j identifies the corresponding variable in Tables 1 and 2, with 0 meaning
intercept.
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Table 1 lists the probabilities of the top 10 sub-models. A sub-model is defined as a linear
combination of the variables indicated by a group of numbers in column t1(γ) of Table 1.
Probability of inclusion of each variable in the full model is presented in Table 2. As shown
in these tables, quantity indices can be fairly well described using two or three variables,
among which the annual mean CO2 concentration (4), corresponding pollen index of
previous year (1) and monthly mean precipitation in September of previous year (6) are the
dominant variables. The corresponding pollen index of previous year (1), mean spring
temperature in January, February and March of current year (2), and mean annual CO2
concentration (3) are good candidates to be used as variables to model timing indices. Any
single variable from these candidates seems adequate for characterizing the Effects of
climatic change on timing indices.

Climatic factors like monthly mean precipitation, total sunshine hours and mean cloud
coverage contributed su ciently to a given pollen index based on the values of sub-model
probabilities and inclusion probabilities. However these types of data are generally not
publicly available for most of the times and locations. Particularly, they are difficult to be
projected via current climatic models, making the predictions of future pollen indices based
on such data impossible. Furthermore, variables for describing annual production were
assumed to be consistent with those describing peak value. Similarly, variables describing
start date were assumed to be consistent with those describing peak date. Taking statistical
values and data availability into consideration, and also accounting for consistency of model
structure for both pollen quantity and timing, the corresponding pollen index of the previous
year and the annual mean CO2 concentration were selected as the final variables for the
Bayesian models of pollen quantity; the corresponding pollen index of the previous year and
the mean spring temperature in January, February and March of the current year were
selected for the Bayesian models of pollen timing.

3.2. Parameterization
The posterior means and variances of parameters are listed in Table 3. All estimated
parameters are statistically significant according to the listed P values. The statistical
significance of four models has been dramatically improved by selecting and combining
crucial climatic factors. However, many of the values of Bayes factors are in favor of the
null hypothesis H0 according to Jeffery’s scale of evidence (Marin and Robert, 2007b).

The parameters of intrinsic inter-annual variability are listed in Table 4. The plausible values
of the four pollen indices were obtained by multiplying the mean trend estimations with the
sum of fluctuated term and unity as shown in equations 10 to 13, where yap(i), ypv(i), ysd(i)
and ypd(i) are respectively the annual production, peak value, start date and peak date in year
i.

(10)

(11)

(12)

(13)
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β0 can be explained as the base level of the pollen indices with units of pollen/m3 or day; β1
has a unit of pollen/ppm or day/°C describing the CO2 concentration or the temperature
effect on pollen quantity or timing; β2 is dimensionless and accounts for the comprehensive
influence of pollen indices of the previous year on pollen indices of current year.

For inter-annual variation, P2 is responsible for the amplitude of the inter-annual variation of
the pollen indices; and P3 may suggest the periods of the variations of pollen indices. This
can be shown through dividing 2π by P3. For annual production and peak value, the
quotients approximate 2; while for start and peak dates, they approximate 4. This suggests
that the annual production and peak values fluctuate intrinsically every other year, and the
start and peak dates change periodically every four years. Although few reports were made
about the intrinsic fluctuation of start and peak dates, the inter-annual variation of birch
pollen production was indeed studied by many researchers (Masaka and Maguchi, 2001) and
is in good agreement with the period in the current study.

3.3. Evaluation
Modeling results are compared with corresponding observed values in Figure 3 for five
different locations. Three diagonal lines have been plotted in each panel: the middle line has
a slope of unity, the upper line has a slope of 2 or 1.25, and the lower line has a slope of 0.5
or 0.75. It is illustrated that the phenologically observed values of the four pollen indices can
be well matched by the modeling values. Most of the points of annual productions and peak
values either from Turku or Basel fall into the range between diagonal lines 0.5 and 2; and
those of start and peak dates from five locations fit into the space between diagonal lines
0.75 and 1.25. The estimated pollen indices in the US stations can capture the trends, but the
deviations are larger compared with the estimates for European locations because of the
non-local parameterizations of the models.

Root mean square error (RMSE) and RMSE relative to mean value of pollen index were
calculated to quantify the deviation between the observations and estimations. Results listed
in Table 5 indicate that relative RMSEs (RRMSE) approximate 30%, 50% and 20% for
estimates of annual productions and peak values in Basel, Turku, and Copenhagen,
respectively. RRMSEs of estimates of start and peak dates for three European locations are
between 1.5% and 5.1%, which are much lower than those for annual production and peak
value. For the US stations, the RRMSE of annual production and peak value range from
123.8% to 370.7%, and RRMSE of start and peak dates vary between 6.1% and 15.2%.

The deviations between estimations and observations are most likely due to the following:
(1) For estimates of pollen indices in Basel, Turku, and New Jersey and North Dakota, the
Bayesian models were not parameterized with the local pollen and climate data; (2) The
spring temperature and especially the annual mean CO2 concentrations used in evaluations
were not derived from the exact sites where the four pollen stations are located; (3) Because
of the data availability of multiple climate factors, the Bayesian models used were not the
optimum ones; and (4) The Bayesian models used to predict mean trends did not incorporate
the information on inter-annual variation.

3.4. Prediction
The historical estimates and future predictions of mean trends of the pollen indices under
three representative IPCC scenarios B1, A2 and A1B, are presented on left and right,
respectively, of Figure 4 using heavy lines. The top 5% HPD regions of future predictions
were also calculated and are shown as a shaded area around the mean trends. Vertical dotted
lines at 2010 identify the historical data and future predictions. Alternative development
pathways are assumed in different IPCC scenarios which cover a wide range of
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demographic, economic and technological driving forces and resulting GHG emissions
(IPCC, 2007d). Scenario B1 assumes future development will be globally and
environmentally oriented with projection of CO2 level being 600 ppm in year 2100; and A2
assumes regionally and economically oriented development with projection of CO2 level
being 850 ppm; while A1B features with rapid economic growth and a balanced emphasis
on all energy sources, and with projection of CO2 level being 800 ppm.

Overall, the mean trends of historical pollen indices can be reasonably captured by the mean
model estimates with the exceptions of pollen indices in two US stations where start and
peak dates were systematically underestimated, and annual production and peak value were
overestimated. Simple comparisons between global mean pollen indices in future years and
the corresponding mean values in 2000 are summarized in Table 6. Under scenario B1, the
global means of annual production and peak value in 2020 to 2040 will be 1.3-2.2 and
1.1-1.9 times as many as the mean values of 2000, respectively; while the start and peak
dates will be 19 days and 23 days earlier, respectively. Under scenario A2, the annual
production and peak values will be 1.4-2.5 and 1.2-2.2 times higher, respectively; while the
start and peak dates will be also 19 days and 23 days earlier, respectively. Pollen indices
under scenario A1B are similar to those of A2.

These ratios and differences are within the ranges reported in the literature (Post et al.,
2009). The start and peak dates in 2000 were observed 14 days and 17 days earlier,
respectively, than in 1977 (Rasmussen, 2002). Extreme observation has also been reported
in Turku by Yli-Panula et al. (2009) showing that the annual production of birch pollen in
1993 was 70,445 pollen/m3 which was 119.4 times greater than that recorded in 1994.

Figure 5 shows the predictions of the four pollen indices obtained by incorporating the
information on intrinsic inter-annual variation. Comparison between estimated pollen
indices and historical observations indicate that the variations of pollen indices can be
reasonably characterized by the estimates. Similar trends and phenomena as those shown in
Figure 4 can also be observed in Figure 5. Calculations of RMSE and RRMSE showed that
the incorporation of intrinsic inter-annual variation improves the modeling results for the
pollen indices in Turku, while it has no obvious influence on pollen indices in Basel,
Copenhagen, New Jersey, and North Dakota.

Parameterization and incorporation of intrinsic inter-annual variability based on more
precise local information and introducing other significant climate factors in the Bayesian
model will further increase the precision and accuracy of the results. Note that the
predictions were based on the statistical relationship established using historical pollen and
climatic data of 20 years, and the IPCC projected CO2 levels and temperatures. The
predictions after 2040 (second vertical dotted line) are expected to contain substantial
uncertainties. Biological limitations and physics should be taken into consideration in terms
of interpreting and using the predictions from Bayesian models.

3.5. Application
Figure 6 shows four snapshots of the spatial emission profiles at 18:00 April 15 and 12:00
April 20 of 2002 and 2040. Emission fluxes of birch pollen in April of 2040 will increase
dramatically due to the rising CO2 and temperature projected by IPCC. Also shown is that
spatial emission patterns at the same hour and day of 2002 and 2040 are similar, and that the
emissions seem to start earlier in the northern part of the modeling domain. The shift in
emission timing is caused mainly by the early flowering of birch under the scenario of
increasing concentrations of CO2 and rising temperature. These future emission profiles can
be coupled with future meteorology and land use/land cover profiles to generate detailed
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sptiotemporal distributions of pollen levels, and thus provide useful information for the
management and prevention of AAD in future years.

4. Conclusions
A Bayesian framework has been presented for modeling Effects of climate change on annual
production, peak value, start date, and peak date of birch pollen. The corresponding pollen
index of the previous year, and the annual mean CO2 concentration were selected as the
most significant variables to model annual production and peak value; the corresponding
pollen index of the previous year and the mean spring temperature in January, February and
March of current year were selected to model the start and peak dates.

Predictions of these models under three representative scenarios of the IPCC (2007d) report
indicate that annual productions and peak values of birch pollen will increase dramatically,
while the start and peak dates of the birch pollen season will occur earlier in future years.
Outputs of the Bayesian models can be used to generate detailed spatiotemporal emission
profiles of pollen in future years.
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Highlights (for review)

• A Bayesian framework is presented to model climate change effect on birch
pollen

• Airborne pollen levels are estimated based on observed and projected climate
factors

• Pollen emission fluxes are generated using the output from Bayesian model

• Pollen season tend to start earlier with rising airborne pollen levels in the future
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Figure 1.
Overall flow of Bayesian modeling framework. Multiple monthly climatic factors from June
of previous year to May of current year were first screened using simple linear regression
and correlation analysis. The prescreened climatic factors and pollen indices were then
further selected using method of Markov Chain Monte Carlo based on Bayesian statistics.
Finally, the selected Bayesian models were parameterized and evaluated using different
datasets, and utilized to predict future pollen indices based on IPCC projection.
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Figure 2.
P values and adjusted R2 for the relationships between pollen indices and monthly CO2
level, mean temperature(T), precipitation(Pr), sunshine hours(SH) and cloud coverage(CC)
in June to December of previous year and January to May of current year; dashed line
corresponds to P value equal to 0.1.
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Figure 3.
Comparison of pollen indices [annual production(AP); peak value(PV); start date(SD); and
peak date(PD)] between the phenological observations and mean model estimations for five
different locations. Three diagonal lines have been plotted in each panel: the middle line has
a slope of unity, the upper line has a slope of 2 or 1.25, and the lower line has a slope of 0.5
or 0.75.

Zhang et al. Page 16

Atmos Environ. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Predictions of mean trends of pollen indices based on the global annual mean temperatures
and global annual mean CO2 concentrations projected by the IPCC under three
representative scenarios. Heavy lines are the mean trends and the corresponding shaded
areas are top 5% HPD regions. Also shown on the left are time series of historical pollen
indices and their corresponding mean trends calculated by the model.
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Figure 5.
Predictions of pollen indices based on the global annual mean temperature and global annual
mean CO2 concentrations projected by the IPCC under three representative scenarios. The
intrinsic inter-annual variation was used to simulate the fluctuations of pollen indices around
the mean trends. Heavy lines are the predicted pollen indices and the corresponding shaded
areas are top 5% HPD regions. Also shown on the left are time series of historical pollen
indices and their corresponding estimates.
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Figure 6.
Comparisons of emission fluxes of birch pollen between April of 2002 and 2040.
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Table 2

Probability of inclusion ( ) of each climatic variable in the full model under Zellner’s informative
G-Prior. The full model incorporates all climatic variables anda constant intercept. A climatic variable witha
higher posterior probability of inclusion tends to explain more variation in the corresponding pollen index.

Annual Production Peak Value Start Date Peak Date

γ 1 0.25 0.86 0.36 0.22

γ 2 0.12 0.13 0.24 0.15

γ 3 0.14 0.10 0.15 0.25

γ 4 0.84 0.36 0.14 0.13

γ 5 0.15 0.09 0.16 0.16

γ 6 0.90 0.96 0.12 0.13

γ 7 0.40 0.24 0.13 0.14

γ 8 0.24 0.38 0.13 0.15

γ 9 0.10 0.12 0.15 0.16
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Table 4

Parameters of intrinsic inter-annual variability based on Yli-Panula’s data

P 1 P 2 P 3 P 4

Annual Production 0.0541 −0.1137 3.465 −106.3

Peak Value 0.0465 −0.1149 3.462 −91.42

Start Date −0.0047 −0.0115 1.571 10.39

Peak Date −0.0046 0.0049 1.570 10.07
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