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Global factors, such as climate change, international trade and introductions

of exotic species are often elicited as contributors to the unprecedented rate

of disease emergence, but few studies have partitioned these factors for

global pandemics. Although contemporary correlative species distribution

models (SDMs) can be useful for predicting the spatial patterns of emerging

diseases, they focus mainly on the fundamental niche (FN) predictors (i.e.

abiotic climate and habitat factors), neglecting dispersal and propagule

pressure predictors (PP, number of non-native individuals released into a

region). Using a validated, predictive and global SDM, we show that both

FN and PP accounted for significant, unique variation to the distribution

of the chytrid fungus Batrachochytrium dendrobatidis (Bd), a pathogen impli-

cated in the declines and extinctions of over 200 amphibian species

worldwide. Bd was associated positively with vegetation, total trade and

introduced amphibian hosts, nonlinearly with annual temperature range

and non-significantly with amphibian leg trade or amphibian species rich-

ness. These findings provide a rare example where both FN and PP

factors are predictive of a global pandemic. Our model should help guide

management of this deadly pathogen and the development of other globally

predictive models for species invasions and pathogen emergence influenced

by FN and PP factors.
1. Introduction
Human and wildlife diseases are emerging at an unprecedented rate [1,2], posing

major threats to human health and biodiversity. Understanding the factors that

shape spatial patterns of disease emergence is critical for predicting risk and tar-

geting management and conservation efforts. Global factors, such as climate

change [3], international trade and global biotic homogenization (e.g. exotic

species introductions) [4,5], are often evoked as contributors to disease emergence,

but there are few predictive models that include these factors for emerging

diseases at the global scale (but see [2,6]), especially for wildlife diseases.

Species distribution models (SDMs) have increasingly been used to predict

the distribution of emerging pathogens and invasive species [7,8]. Most SDMs

are based on climatic and habitat variables, stressing only the factors associated

with fundamental niche (FN) [9], but neutral, metacommunity and invasion the-

ories of ecology also emphasize the importance of other factors to species

distributions, such as dispersal and propagule pressure (PP, the number of indi-

viduals released into a region to which they are not native) [10–12]. For instance,

when PP is high, invasive species might be commonly found in suboptimal habi-

tats and when it is low, they might be completely missing from optimal habitats.

Global factors, such as international trade, exotic species introductions and

human movement can facilitate the transmission of pathogens from reservoir

to sympatric hosts and vice versa (spill-over and spill-back, respectively), or to

completely new host species and areas (termed ‘pathogen pollution’) [1,5].

Such an increase in PP is likely to facilitate disease spread and sustain infectious

diseases in suboptimal habitats or small patches where they might otherwise be

extirpated (i.e. rescue effect). Therefore, to accurately predict the potential distri-

butions of species, it is probable that SDMs must incorporate factors that can
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affect PP, such as estimates of human movement (e.g. trade)

and exotic species introductions.

Here, we incorporate climate, habitat, host richness and

factors that affect PP (e.g. trade, human population density

and species introductions) into SDMs to identify variables

important to the global distribution of the amphibian chytrid

fungus Batrachochytrium dendrobatidis (Bd), one of the most

deadly of emerging pathogens. Bd is widely considered one

of the principal drivers of the global decline of amphibians

[13], the most threatened vertebrate taxon on the Earth [14].

There have been several SDMs for Bd that use environmental

predictors to explain Bd occurrence patterns [15–18].

Although these studies are useful for predicting Bd risk and

making relevant management strategies, they mostly focus

on FN predictors, or only limited PP factors, such as

human population density at a continental scale [15]. Earlier

studies have postulated that the distribution and abundance

of Bd is affected by climate [15,17,19,20], elevation [21], veg-

etation [22,23], host species richness [22,24], exotic species

introductions [25], frog leg trade [26], human movement

[27] and the human footprint index [28]. Consequently, it is

important to consider these plausible drivers concurrently

because, if these factors are looked at independently, it

could give the impression that particular factors are driving

the distribution of Bd when in fact the causal driver might

be another correlated factor.

Here we simultaneously consider all of these plausible

drivers and quantify their unique, uncorrelated contribution

to the global distribution of Bd. If PP accounts for a substan-

tial portion of the variance in the distribution of Bd, then it

would suggest that controlling human-assisted dispersal

might be effective at limiting Bd’s spread. Importantly, we

evaluate the roles of FN and PP while controlling for both

spatial autocorrelation and sampling bias by accounting for

sampling efforts, the latter of which has never been controlled

for in previous Bd SDMs. This is critical because evidence

suggests that Bd sampling is generally biased towards hot-

spots of amphibian declines and easily accessed areas, such

as urban or suburban locales and sites along highways (see

the electronic supplementary material, figure S1), which

would confound sampling effort with FN and PP [27,29].

We constructed our global SDM using the MaxEnt model,

one of the highest performing methods for modelling species’

distributions [30], which was widely used as a robust approach

to explore Bd potential distributions [15–17]. We simul-

taneously evaluated 22 variables probably affecting the FN of

Bd and five variables that probably affected PP (see the

electronic supplementary material, table S1) and their inde-

pendent relative contributions of FN and PP to the global

distribution of Bd. We then created a global risk map for Bd
to facilitate targeting monitoring, conservation and manage-

ment efforts. We hypothesize that (i) models based on the

FN and PP should generate better predictions for the distri-

bution of Bd than those based on the FN alone and (ii) the

distribution of Bd should be positively related to global factors

such as international trade and presence of introduced hosts.
2. Material and methods
(a) Data collection
Bd precise geographical coordinates (n ¼ 1829) were attained

from a combination of three sources spanning 88 countries
across every continent except Antarctica (see the electronic sup-

plementary material, appendix S1). We collected 27 predictor

variables (electronic supplementary material, table S1) from

different publications and public databases (see the electronic

supplementary material, appendix S2). These predictors can be

grouped into seven categories: (i) 19 climatic variables and eleva-

tional data at a resolution of 2.5 arc-min [18], (ii) global land use,

(iii) introduced hosts variable using all available records of the 28

most widely distributed introduced amphibian host species [25]

(see the electronic supplementary material, appendix S3), (iv)

global trade and frog leg trade data for each country, (v) the

human footprint as an index of biome-type-corrected human

influence on the surface of the Earth [28], (vi) the average

(1982–2000) normalized difference vegetation index (NDVI) as

a vegetation and habit metric, and (vii) amphibian species

richness by overlaying GIS historical range maps of 6188 amphi-

bian species from the IUCN Global Amphibian Assessment. All

non-climatic variables were resampled to the 2.5 arc-min

resolution to match the bioclimatic variables using a bilinear

interpolation function, which is considered more realistic than

the simpler nearest-neighbour method [31].

The country-level trade data are admittedly at a relative coarse

resolution compared with the other predictors, but trade data at

2.5 arc-min are not available. To determine how much this

larger spatial resolution for trade affected our results, we recon-

ducted our analyses using state-level, territory-level and

province-level total trade data for the USA, Australia and China,

respectively. These were the only countries that had finer scale

trade data. Nevertheless, with the exception of Europe, which,

in general, has very small countries, the USA, Australia and

China represent the majority of global Bd sampling effort. If the

finer resolution does not affect the results or even strengthens

the relationships, then it would suggest that the coarser scale

used for trade relative to the other variables is not problematic.
(b) Species distribution model building and validation
Given the difficulty of confidently asserting that amphibians

sampled at a location are free of Bd, we developed presence-

only SDMs by applying the maximum entropy method using

MAXENT (3.3.3e; www.cs.princeton.edu/~schapire/maxent/,

accessed 20 October 2011). MaxEnt minimizes the relative

entropy between the probability density of presence data and

that of the landscape in covariate space [32] and was the most

suitable algorithm for our study because it outperforms other

correlative algorithms, including other presence-only methods

and traditional presence–absence methods [30].

To minimize the effect of Bd sampling bias, we applied the

FactorBiasOut method and a bias grid that weights the MaxEnt

analysis by sampling effort [33] (see the electronic supplementary

material, appendix S4). The FactorBiasOut method is an approach

to ensure that the bias in the presence and pseudo-absence data

are the same so that, under reasonable assumptions, they cancel

one another out [33]. The bias grid approach more explicitly cor-

rects for sampling bias by providing a grid of the total number of

amphibians sampled in each cell as a proxy for sampling effort.

This approach can be implemented for Bd because researchers

generally reported sample sizes (the number of amphibian

individuals examined) for Bd positive and negative samples.

We created our SDMs by first using a subset of the species

presence data (training dataset) to examine the correlation struc-

ture of species presence and background pseudo-absences with a

set of predictors and then used the remaining presence data (test-

ing data) to validate the model [31,34]. We developed each model

using linear, quadratic and hinge functions, which are con-

sidered the best combination of functions to avoid over-fitting

[34]. For each model, we used 10-fold cross validations to give

a more robust estimate of predictive performance [32]. For each

http://www.cs.princeton.edu/~schapire/maxent/
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cross validation iteration, 75 per cent and 25 per cent of the pres-

ence data were randomly selected for use as training and testing

datasets, respectively.

We used two competing models, the full and pruned models,

to build our final predictive model in MaxEnt [15]. The full

model, which included all predictors, might be oversized, over-

fitted and redundant [35]. We therefore created pruned models

(subsets of the most important variables) using a jack-knife test

that systematically excluded predictors one at a time and evalu-

ated the resulting variation in model accuracy [35]. The

importance of each predictor was evaluated according to their

AUC (the area under curve of the Receiver Operating Character-

istic) value in isolation and on the decline of AUC when

predictors were omitted one at a time based on the jack-knife

test [15,35]. We then ranked the importance of each variable.

The top ranking variables, which together contributed ca 90

per cent of the information to a full model, were retained in

the pruned model [15]. In order to evaluate whether taking

into account PP variables improved model performance, we cre-

ated the full models and the pruned models using FN variables

alone and all 27 variables. Finally, we used the pruned MaxEnt

models to generate a global risk map for Bd [15].

(c) The evaluation and validation of MaxEnt models
We used AUC and COR to depict the performance of the MaxEnt

models [30,32]. The AUC is a standard statistical measure of the

predictive accuracy of SDMs [36], and is considered a useful and

sensible measure to evaluate the relative accuracy of different

models under the same background dataset [37]. AUC measures

the model performance at all possible thresholds and generally

ranges from 0.5 (prediction no better than random) to 1 (perfect

discrimination) [36]. COR, termed as point biserial correlation coef-

ficient, measures the degree to which the MaxEnt prediction varies

linearly with the observation (presence/background pseudo-

absence data) [30,32]. Because the distribution of background

data is not normal, we calculated the COR between observations

and predictions using Spearman rank correlation tests.

We also validated the robustness of the MaxEnt-based model

selection using Akaike information criterion (AIC) applied to a

spatial generalized least-squares model (GLS) with a binomial

error and logit link and controlling for sample spatial autocorrela-

tion. As true absences of Bd are not available, particularly in those

insufficiently surveyed or undetected localities, and GLS models

are susceptible to false absence data [38], we included Bd presence

and pseudo-absences as the response variable in GLS models [38]

(see the electronic supplementary material, appendix S5). We used

AIC to compare the full GLS models to the pruned models and to

compare models with FN variables alone to models with FN and

PP [39]. We performed the GLS model analyses using ‘gls’

function in ‘nlme’ package in R v. 2.13.1 [40].

(d) The predictive power of predictors
We identified the most important predictors for the pruned

MaxEnt model using a jack-knife test based on main effects

models only [32]. To confirm the predictive power of predictors

in the pruned model, we also conducted model averaging

based on the GLS model, including the variables in the pruned

MaxEnt model. We performed the model averaging using the

‘dredge’ and ‘model.avg.’ functions in the ‘MuMIn’ package of R.

Because many of our predictors were collinear (see the

electronic supplementary material, table S2), we used hierarchical

partitioning (HP) analysis to evaluate the unique (unshared) and

shared variance of each pruned variable and spatial variables in

the GLS model [41]. The spatial variables from the best (lowest

AIC) multiple logistic regression model with Bd presence and

pseudo-absences as the dependent variable and the nine terms of

a cubic polynomial model based on X and Y coordinates (X, Y,
X2, Y2, XY, X3, Y3, X2Y and XY2) were chosen for HP analysis

(XY and Y3). We calculated the statistical significance of each vari-

able’s unique variance in the HP analysis as a pseudo Z-score using

100 randomizations [41]. These analyses were conducted using the

‘hier.part’ and ‘rand.hp’ functions in the R ‘hier.part’ package.

We are aware that not all of the predictors can be perfectly

assigned to the FN or PP categories. Given the overlap of some

variables between these categories, we used variance partition-

ing to quantify the unique and shared variance among FN, PP

and spatial variable groups. The justification for grouping

trade, introduced hosts and amphibian richness together as PP

and others as FN was validated by a principal components

analysis on all eight pruned predictors (see the electronic sup-

plementary material, figure S2). Variance partitioning analyses

derive the proportion of unshared deviance explained by each

predictor group, the shared deviance among different groups,

and total unexplained deviance (residual variations). We per-

formed this variance partitioning analysis using the ‘varpart’

function in the ‘vegan’ package of R.
3. Results
None of our results or conclusions differed between analyses

conducted with country-level or finer scale trade data. In fact,

the variance explained by trade even increased with the finer

scale trade data. These findings suggest that our results do

not appear to be a function of the coarser scale at which

trade was tested relative to the other predictors. Conse-

quently, we only present the results for analyses that

included the fine scale trade data.

(a) The building and validation of MaxEnt models
The pruned MaxEnt model based on the fundamental niche

and propagule pressure (FNPP), included eight variables:

temperature annual range (Trange), maximum temperature

of warmest month (Tmax), annual precipitation (Precan),

vegetation (mean NDVI), precipitation of coldest quarter

(Preccq), presence of introduced hosts, trade and amphibian

species richness (see the electronic supplementary material,

figure S3). Comparatively, the pruned model based on the

FN alone contained nine variables: elevation, vegetation,

Precan, Preccq, annual mean temperature (Tannual), mean

temperature of coldest quarter (Tcq), Trange, Tmax and

minimum temperature of coldest month (Tmin).

Average AUC scores and COR coefficients of the pruned

models with FNPP were significantly higher than those of

the full models with FNPP (Two-tailed Wilcoxon signed-

rank test on the testing dataset, Z ¼ 3.152, p , 0.001 for AUC;

Z ¼ 2.488, p , 0.001 for COR), the pruned models with FN

(Z ¼ 4.239, p , 0.001 for AUC; Z¼ 3.025, p¼ 0.002 for COR)

and the full models with FN (Z ¼ 5.344, p , 0.001 for AUC;

Z ¼ 3.501, p , 0.001 for COR), indicating that the pruned

model with FNPP had better performance than other models.

The performance of pruned models with FNPP was also

confirmed using the spatial GLS model. Indeed, the AIC

value was smaller for FNPP (included the eight predictors

from the pruned MaxEnt model) than for the full model

(all predictors), the model including all FN variables and

the model with the nine pruned FN variables (table 1).

(b) The predictive power of predictors
Jack-knife analyses revealed that in pruned FNPP MaxEnt

models, the variables with the highest predictive power



Table 1. Relative performance of full and pruned FN alone and FNPP models for the global distribution of Bd. MaxEnt models were evaluated using AUC and
COR values and spatial GLS models were evaluated using Akaike’s information criterion (AIC).

AUC CORb AIC

FN models

full models (22 variables) 0.8120 + 0.0258 0.48 + 0.027 26118.9

pruned models (nine variables) 0.8449 + 0.0166 0.53 + 0.032 27002.2

FN and propagule pressure models

full models (27 variables) 0.9032 + 0.0214 0.61 + 0.036 27809.5

pruned models (eight variables) 0.9369 + 0.0208 0.73 + 0.021 28147.2
aMaxEnt models were run after 10-fold cross validation and the AUC were shown as values + s.e.
bCOR was calculated between presence/background pseudo-absence and predictions using a Spearman rank correlation test.
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Figure 1. Relationships between the probability of Bd occurrence and the four most influential predictors in the pruned fundamental niche and propagule pressure
(FNPP) MaxEnt model: (a) annual temperature range, (b) trade, (c) vegetation (mean NDVI), and (d ) presence of introduced hosts. Grey margins are +s.d. based on
10-fold cross-validation replicates.
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when used in isolation were vegetation (AUC + s.e. ¼

0.814 + 0.0307), trade (AUC ¼ 0.803 + 0.0299), Trange

(AUC¼ 0.764 + 0.0198) and presence of introduced

hosts (AUC ¼ 0.729 + 0.0302) (see the electronic supplemen-

tary material, figure S4). They were also the four predictor

variables which significantly decreased AUC scores the

most when omitted from the full model (vegetation: Z ¼ 5.908,

p , 0.001; trade: Z ¼ 6.133, p , 0.001; Trange: Z ¼ 5.122,

p , 0.001; presence of introduced hosts: Z ¼ 6.319, p , 0.001).

Each of these variables was positively associated with Bd detec-

tion probability with the exception of Trange (figure 1b–d). At

low levels, Trange was associated with increases in Bd, but at

high levels it was associated with decreases in Bd (figure 1a).

The predictive power of Trange, vegetation, presence of

introduced hosts and trade was also confirmed by model

averaging based on the GLS model. Vegetation and trade
had the greatest relative importance for the global distri-

bution of Bd occurrence, followed by Trange, and presence of

introduced hosts (table 2). The effect directions matched

those in the MaxEnt model.

HP of the variables in the GLS model with FNPP (pruned

eight predictors) revealed that vegetation (20%), trade (18%),

introduced hosts (12%), Trange (14%) and Y3 (9%) each

accounted for significant independent variation in the distri-

bution of Bd (table 2), whereas the remaining predictors were

not significant.

The variance partitioning revealed that, despite their shared

variation, FN (Trange, Tmax, Precan, vegetation and Preccq), PP

(presence of introduced hosts, trade and amphibian

species richness) and spatial factors (XY, Y3) accounted for

significant unshared variation in the distribution of Bd, with

17 per cent, 15 per cent and 9 per cent of the deviance



Table 2. A summary of model averaging and hierarchical partitioning (HP) analyses for the global distribution of Bd. The relative importance of the eight
pruned variables was calculated by summing the Akaike weights of each variable across all spatial GLS models based on model averaging. HP analysis provided
the independent contributions of the eight pruned variables in the GLS model and two spatial variables to the deviance of the global distribution of Bd.

model averaging controlling for spatial structure HP

variables
relative
importance

parameter
estimate +++++ s.e.

independent deviance
explained (%)

FN

vegetation (average (1982 – 2000) NDVI) 0.7933 0.0197 + 0.00191 19.75a

Trange (temperature annual range, 8C) 0.7208 20.1904 + 0.00855 14.23a

Tmax (max. temperature of warmest month, 8C) 0.0251 20.0031 + 0.00727 2.73

Precann (annual precipitation, mm) 0.0069 0.0009 + 0.00198 6.54

Preccq ( precipitation of coldest quarter, mm) 0.0405 0.0005 + 0.00025 7.92

propagule pressure

amphibian species richness 0.0411 0.0052 + 0.00103 6.25

total trade from 2001 to 2010 (US Dollar

thousand, log10 transformed)

0.7513 0.0306 + 0.00208 18.33a

presence of introduced hosts 0.6344 0.0206 + 0.00319 11.85a

spatial structure

XY — — 3.81

Y3 — — 8.59a

aStatistically significant ( p � 0.05) estimates of unique deviance determined using randomizations tests based on 95% CI
(Z-scores . 1.65).

mean suitability
0 – 0.2

0.2 – 0.4
0.4 – 0.6
0.6 – 0.8
0.8 – 1.0

Figure 2. Average ‘suitability’ map (based on 10-fold cross-validation replicates) for Bd based on the pruned model that included FNPP variables (i.e. all eight
pruned variables; table 2).
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explained by each, respectively (see the electronic supplemen-

tary material, table S3).
(c) Global predicted distribution of Batrachochytrium
dendrobatidis

The pruned MaxEnt model based on FNPP suggested that

the most suitable habitat for Bd appeared to be in western

Europe, most North America except central regions,

Mexico, Central America, southeastern and western South

America, some eastern and western Africa, South Africa,

Madagascar, Japan, southwestern and southeastern China,

South Korea, Indonesia, northern Philippines, southern

India, Papua New Guinea, southern and southeastern

Australian coastlines and New Zealand (figure 2).
4. Discussion
Here we provide support for our initial hypotheses, that

the global distribution of the emerging amphibian chytrid

fungus is a function of both its FN, such as climate and

habitat (vegetation), and PP, such as international trade and

non-native host introductions. Both the MaxEnt and GLS

models that included FN and PP performed better at predict-

ing the global distribution of Bd than models based on the FN

alone. Furthermore, international trade and the presence of

introduced hosts had positive effects on the distribution of

Bd in both the MaxEnt and GLS models, and the HP analysis

revealed that each of the FN and PP factors accounted for

significant unique variation in the models.

Previous studies had detected Bd on imported amphibian

species in markets [42] and provided molecular evidence
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suggesting that Bd might be spread by amphibian trade

[43,44], but before this study, there was little statistical evi-

dence linking Bd distributional patterns to trade in general,

even at regional scales [45]. This previous research prompted

several researchers to propose that the trade of bullfrogs was

a primary driver of the spread of Bd [43,44]. However, recent

evidence suggests that crayfish are also hosts of Bd [46]. This,

coupled with the fact that total trade was a stronger predictor

of the global distribution of Bd than the combination of all

introduced amphibian species, suggests that bullfrog trade

might not be the primary contributor to the spread of Bd. It

is possible that bullfrog trade could be correlated with overall

trade giving the impression based on molecular evidence that

bullfrogs are responsible for Bd introductions. Despite find-

ing a positive relationship between Bd at the global scale

and introduced hosts and total trade, we need more historical

data and molecular analyses to discriminate between

emergences versus introductions and between bullfrog

trade and the trade of other Bd hosts as primary contributors

to any Bd introductions. Additionally, although our analyses

suggest that the difference in spatial resolution between trade

and the other tested predictors is unlikely to account for our

results, compiling finer-scale trade data to further explore the

role of trade in shaping pathogen distributions at different

spatial scales would be fruitful.

We found little evidence that the other three factors

associated with PP, such as frog leg trade, human footprint

and amphibian species richness, were significant predictors

of Bd. Frog leg trade probably adds little variation, which is

not accounted for by overall trade, and frog legs are typically

skinned and frozen before shipment, which should remove

and kill Bd, respectively [26]. Previous studies conducted at

regional scales showed that Bd detectability was positively

related to the human footprint index [28]. Human footprint

was assumed to largely reflect human movement (e.g. road

densities) that might facilitate Bd transmissions [28]. We

found no unique effects of human footprint on Bd’s distri-

bution at the global scale, suggesting that it either plays

little role in the distribution of Bd or that it is correlated

with other variables that are more important predictors.

Host species richness might amplify or dilute disease

depending on host competency [47]. For example, Bd occur-

rence was found to increase with amphibian species richness

in Costa Rica and Australia [22]. Contrary to this observation,

a recent experimental study revealed a negative relationship

between the presence of Bd and host species richness [24].

These contradictory results may be because of the fact that

the effects of host species richness on emerging infections are

probably complicated by a number of factors, such as host

population densities, encounter rates between infected and

susceptible individuals, disease transmission rates, spatial

scales and mortality or recovery rates of infected individuals

[47]. We revealed no overall positive or negative effect of

amphibian species richness on Bd. This, of course, does not

mean that dilution and amplification processes are absent. In

fact, we know that they must be occurring given our result

that invasive host species amplify Bd, consistent with the

notion that species composition often dictates whether disease

is amplified or diluted [47]. Spatial scales might be an impor-

tant factor affecting the detection of the dilution effect.

Trange was an important factor associated with Bd, similar

to the finding that mean diurnal temperature range contribu-

ted significantly on Bd distributions in Australia [15], and
consistent with the finding that temperature variability was

predictive of Bd-related amphibian declines in Latin America

[19]. Trange might assimilate both the monthly minimum

and maximum temperatures affecting Bd suitability. At the

global scale, Trange was positively correlated with Tmax

and negatively correlated with Tmin (see the electronic

supplementary material, table S2). Therefore, an increase in

Tmax or a decrease in Tmin will not only increase Trange but

will also increase the chances of exceeding Bd’s critical

maximum or minimum temperatures [15].

Bd was also positively associated with vegetation (mean

NDVI), consistent with previous studies on Bd [22,23]. The

NDVI is often a surrogate for the dynamics of ground moist-

ure and temperature, which might affect the survival of many

pathogens, including Bd, which is known to be sensitive to

moisture and temperature [19]. Vegetation might increase

moisture by reducing evaporation and might reduce temp-

erature extremes preventing high-temperature clearance of

Bd [23]. We did not find a significant contribution of precipi-

tation or water habitat to the global distribution of Bd. It is

unclear why precipitation or water habitat was not predictive

of Bd, which is generally regarded as an aquatic fungus.

A possible explanation is that vegetation might be a more

reliable predictor of Bd because it integrates moisture and

temperature variation at the microhabitat level.

Gaps in knowledge are inevitable when global analyses are

being conducted, but imperfect data should not prevent us from

addressing questions at a global scale. For instance, there are

gaps in amphibian species given that new species are being

described regularly. However, these gaps in our knowledge

should, for the most part, be random in their distribution and

thus they should not dramatically alter our conclusions. In

fact, random error should only increase the probably of false

negatives, and given the significance of several of our predictors,

this seems unlikely to be an issue here. We laud all the field biol-

ogists whose data were used by our analyses and, as additional

data are gathered, we encourage further ground-truthing

(i.e. field data) to support or refute our conclusions.

Bd is among the most serious threats to amphibians along

with land-use and climate change [48], and it is important to

develop accurate predictive models for Bd’s potential risk

[27]. The SDM presented here has at least three important

and novel contributions compared with previous SDMs for

Bd. First, our SDM includes both FN and PP, whereas most

previous models included FN only [16–18] or only included

limited PP factors, such as human population density at the

regional scale [15]. We incorporated more factors associated

with globalization, such as international trade and the pres-

ence of introduced hosts, to more accurately capture PP

factors that might be influencing the distributional pattern

of Bd at the global scale. Second, we control for known Bd
sampling bias by accounting for sampling effort differences

among locations and thus can be more confident that our sig-

nificant FN and PP variables are not confounded by this bias.

Third, our models are based on a larger Bd sampling dataset

that spans the globe and includes previously under-

represented localities, such as in Asia, where several new

datasets were only recently published [49,50]. Consequently,

our SDM provides a slightly different picture of Bd suitability

compared with previous global SDMs. For instance, our

models predict a more restricted Bd distribution in Central

America, Caribbean islands, central South America, Africa,

southeastern Asia, central Europe and Australia, but more
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suitable areas in eastern US and eastern Asia (see the

electronic supplementary material, table S4). These differ-

ences might be partly because of the probable improved

accuracy and precision of our models relative to previous

SDMs. We recommend focusing monitoring efforts on

regions where there are threatened amphibians and where

Bd suitability is high but Bd is not known to be present and

encourage adaptive management approaches to amphibian

conservation.

In conclusion, we provide a unique example where both

FN and PP were predictive of the distribution of a global pan-

demic. By integrating factors associated with both FN and PP,

our study should offer more reliable recommendations for

monitoring and management of amphibians than were pre-

viously available. Finally, owing to the rapid pace of

anthropogenic homogenization of the Earth’s biota, there is

a growing need for globally predictive models of the future
distribution of species that incorporate both climate and

human movement patterns. We hope our model is not

only useful for guiding amphibian conservation, but is also

useful in guiding the development of these global models

for other species invasions and pathogen emergences.
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