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Abstract
Air quality modeling could potentially improve exposure estimates for use in epidemiological
studies. We investigated this application of air quality modeling by estimating location-specific
(point) and spatially-aggregated (county level) exposure concentrations of particulate matter with
an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) and ozone (O3) for the eastern U.S.
in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional
approach using ambient monitors. The monitoring approach produced estimates for 370 and 454
counties for PM2.5 and O3, respectively. Modeled estimates included 1861 counties, covering 50%
more population. The population uncovered by monitors differed from those near monitors (e.g.,
urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ
overestimated O3 (annual normalized mean bias = 4.30%), while modeled PM2.5 had an annual
normalized mean bias of −2.09%, although bias varied seasonally, from 32% in November to
−27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and
temporal resolution and the ability to study populations far from monitors that may differ from
those near monitors. However, model performance varied by measure of performance, season, and
location. Thus, the appropriateness of using such modeled exposures in health studies depends on
the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study
design, and other factors.
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1. Introduction
Exposure estimates in air pollution and health studies are commonly assessed using data
from ambient air quality monitors. Many places, particularly urban areas, have established
monitoring networks with historical, publicly available data. Several methods for estimating
exposures to air pollutants exist, including monitor-based approaches such as proximity-
based assessments and statistical interpolation, as well as land-use regression and air quality
modeling (Jerrett et al., 2005a). Utilizing data from existing monitoring networks remains
popular, due to cost considerations, data availability, and population coverage.

Most epidemiological studies of air pollution are based in urban areas, and most monitors
for criteria pollutants, such as particulate matter with an aerodynamic diameter less than or
equal to 2.5 µm (PM2.5) and ozone (O3), are located in areas with a high percentage of the
population living in urban and suburban environments (Bell, 2006). Monitoring data may be
best at estimating exposure for populations close to the monitor’s location (Sarnat et al.,
2006), who are disproportionately in urban environments, with less spatial coverage for
exposure estimation in rural environments. Characteristics of air pollution (e.g., chemical
components, particle properties) vary spatially (Bell et al., 2007a) and may differ between
areas near and far from monitors.

Ambient monitors offer limited temporal resolution and coverage; many do not operate
continuously throughout the year. In the U.S., most PM2.5 monitors record a 24-hour
measurement every three days, with some monitors sampling daily or every six days. Ozone
is usually measured hourly, but only for a portion of the year (e.g., April–September).
Limited spatial and temporal resolution hinders statistical power and determines the types of
scientific questions that can be investigated, leaving questions about health effects of
cumulative exposures and in rural environments.

One approach to address these limitations is application of three-dimensional (3-D) air
quality models such as the Community Multi-Scale Air Quality (CMAQ) modeling system.
CMAQ is a sophisticated, state-of-the-art, regional air quality model capable of estimating
concentrations of multiple pollutants at local, regional, or continental scales (Byun and
Schere, 2006). CMAQ combines input from a meteorological model and an emissions model
with simulation of chemical and physical processes to describe pollutant transformation,
transport, and fate (Fig. S1, Supplementary Material). Output includes gridded estimates of
pollutant concentrations and deposition fluxes. Compared to approaches relying exclusively
on monitor data, the use of CMAQ results to estimate exposures offers improved spatial
coverage and greater spatial and temporal resolution.

This study evaluates use of regional air quality modeling results, using CMAQ as an
example, for generating estimates of exposure to air pollutants, as an alternative or
supplement to monitoring data. The primary objectives of this analysis are to evaluate
limitations and advantages of using CMAQ to estimate exposure levels. To achieve this we:
(1) conducted an evaluation of CMAQ performance, emphasizing the use of model results
for exposure estimates; (2) compared characteristics of populations covered and not covered
by the monitoring network; and (3) generated and compared location-specific and spatially-
aggregated exposure estimates using monitoring data and modeling results.
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2. Data and methods
2.1. Air pollution data

We used results from a simulation of CMAQ version 4.5.1 covering much of the eastern
U.S. at a 12 km horizontal grid resolution. Initial and boundary conditions for meteorology
and chemistry were extracted from a 36 km simulation conducted by the Visibility State and
Tribal Association of the Southeast. Meteorology was simulated using the Pennsylvania
State University/National Center for Atmospheric Research 5th generation mesocscale
model version 3.7. The emissions inventory was based on the 1999 National Emissions
Inventory version 2, and was processed using the Sparse Matrix Operator Kernel Emissions
version 2.1. Ground-level PM2.5 (24-hour average) and O3 (8-hour maximum)
concentrations were simulated for grid cells (12 × 12 km) for each day in 2002. Each
estimate represents a volume-averaged concentration over the grid cell. Information on the
CMAQ system (Byun and Schere, 2006; Zhang et al., 2006b, 2006c) and additional details
on this specific simulation, including meteorological and emissions data, are provided
elsewhere (Burr and Zhang, 2011; Morris et al., 2009; Olerud and Sims, 2004; Queen and
Zhang, 2008).

Methods for estimating exposure from monitoring data were designed to emulate those in
the epidemiologic literature (Miller et al., 2007; Peng et al., 2008; Pope et al., 2002; Sarnat
et al., 2009). Monitoring data were obtained from the Air Quality System, which contains
data collected by the U.S. Environmental Protection Agency (EPA), state, local, and tribal
air pollution control agencies. Monitoring data were daily 24-hour average PM2.5 and daily
maximum 8-hour O3 levels for 2002, metrics by which PM2.5 and O3 are regulated. Most
PM2.5 monitors provide data every three days, with some sampling every day or every six
days. For most monitors, O3 was measured every day during “O3 season” (typically April–
September). Only Federal Reference Method-compliant PM2.5 monitors and Federal
Equivalence Method-compliant O3 monitors were considered.

We omitted observations the U.S.EPA coded as problematic (e.g., “lab issues”). Of 738
U.S.EPA PM2.5 monitoring sites in the study area (defined as a monitor within the CMAQ
domain or outside the domain but within 100 km of its border), 117 (16%) had multiple
monitors. Most sites with co-located monitors had only two monitors, for a total of 857
monitors in the study area. Of 752 U.S.EPA O3 monitoring sites in the study area, only one
had multiple monitors, for a total of 753 O3 monitors. Co-located monitors were treated as
repeated measurements, and averaged for each day.

In the analysis of demographic characteristics of populations in counties with and without
monitors, no monitors were omitted due to data availability. For exposure analysis, monitors
with insufficient data to meet inclusion criteria were excluded to reflect exposure estimation
methods typical of health effects studies. Inclusion criteria were selected with the purpose of
being sufficiently stringent to avoid over-representation of particular seasons. For PM2.5,
inclusion criteria were developed based on a one-in-three-day sampling frequency. Thus,
complete data for a monitor in 2002 would include 121 days. Monitors with less than 76%
complete data (i.e., fewer than 91 observations) were excluded. To ensure seasonal
representation, the year was divided into 13 periods of 28 days. Monitors were excluded if
they had fewer than 11 (of 13) 28-day periods with at least one observation per week for
three or more weeks in the period. Within the study area, 218 (25%) of 857 PM2.5 monitors
did not meet inclusion criteria.

Inclusion criteria for O3 were based on a daily measurement frequency during April–
September. We included only monitors with a daily 8-hour maximum reported for a
minimum of 75% of days in April through September. Monitors were also required to have
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data for at least 50% of days in each month for 5 or more months of the 6-month O3 season.
Within the study area, 729 (97%) of 753 O3 monitors met inclusion criteria for exposure
analysis. Fig. S2, Supplementary Material provides the CMAQ domain and monitor
locations.

2.2. Model evaluation: model results vs. monitor data
The CMAQ model has been extensively assessed and updated based on evaluation results,
review panels, and improvements in understanding of modeled processes. Evaluations
indicate CMAQ generally provides reasonable pollution estimates and also identify specific
conditions, locations or processes in which performance could be improved (Appel et al.,
2007; Bailey et al., 2007; Baker and Scheff, 2007; Boylan and Russell, 2006; Eder et al.,
2006; Eder and Yu, 2006; Mueller, 2009; Phillips and Finkelstein, 2006b; Swall and Davis,
2006; Tesche et al., 2006; Zhang et al., 2006b, 2006c). CMAQ was originally designed for
purposes of policy evaluation and assessing attainment of air quality standards. Thus,
previous evaluations were conducted to assess whether the model adequately performs those
functions. Our evaluation was conducted to identify systematic biases for this specific
simulation that could impact exposure estimates in health studies. Model results in the form
of grid cell concentrations were compared with observations at monitors within the grid
cell’s boundaries. Monitoring data used in the model evaluation were equivalent to the
monitoring data used to derive exposure estimates (i.e., subject to the same inclusion/
completeness criteria).

Previous studies compared monitored levels of PM2.5 and O3 to CMAQ estimates for the
eastern, central, and contiguous U.S. (Baker and Scheff, 2007; Boylan and Russell, 2006;
Eder and Yu, 2006; Zhang et al., 2006b, 2006c) using a number of metrics. The metrics used
in this study, such as normalized mean bias and error and mean fractional bias and error, are
frequently used in the model evaluation literature (Boylan and Russell, 2006; Eder and Yu,
2006; Zhang et al., 2006a). In addition, we considered correlation, mean bias, and root
mean-square error. For all metrics other than correlation, superior model performance is
indicated by values approaching zero. Formulas and description of metrics are provided in
Table S1, Supplementary Material.

2.3. Population characteristics in relation to monitor locations
We investigated whether demographics of populations in locations with PM2.5 and O3
monitors differ from populations in areas without monitors using a suite of variables used
previously as indicators of socio-economic status, racial composition, urbanicity, and other
factors (Bell and Dominci, 2008; O’Neill et al., 2003b). The following variables, reported by
county and obtained from the 2000 Census for all counties in the model domain, were
utilized: population self-identified as African-American (Census 2000 Summary File 1,
Table P3 [SF1.P3]), population living in urban settings (Census 2000 Summary File 3, Table
P5 [SF3.P5]), population age 65 years and older (SF3.P8), population age 5 years and
younger (SF3.P8), population using public transport (SF3.P30), population age 25 years and
older with bachelor’s degree (SF3.P37), population age 25 years and older with high school
diploma (SF3.P37), population age 16 years and older that is unemployed (SF3.P43),
median household income in 1999 (SF3.P53), and population in poverty (SF3.P87).
Counties were grouped based on whether the county contained a PM2.5 (or O3) monitor.
Inclusion criteria relating to completeness of monitoring data were not applied.

2.4. Exposure estimates
In health studies, air pollution exposure estimates can be based on a geographic area, (e.g.,
county, zip code), or on an individual location (e.g., study subject’s residence). We
generated spatially-aggregated and location-specific exposure estimates using both monitor
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data and CMAQ simulation results. Monitoring data represent a specific point, while
simulation results are an average concentration over the grid cell volume. Thus, deriving
exposure estimates from monitoring data and model results required different methods.

2.4.1. Spatially aggregated exposure estimates—We generated exposure estimates
at the county level, a spatial unit commonly used in epidemiological studies (Bell et al.,
2004a, 2007b; Dominici et al., 2006; Holloman et al., 2004; Janes et al., 2007; Pope et al.,
2009). County level PM2.5 and O3 concentrations were estimated using two methods: (1)
concentrations from a monitor or average of monitors located within a county; and (2) an
area-weighted average of 12 × 12 km gridded CMAQ model results. For monitoring data,
spatially-aggregated exposure estimates were generated only for counties with monitors and
days with observations. Multiple monitor measurements for the same day and county were
averaged. County level exposure estimates for PM2.5 and O3 derived from monitor data
were possible only for some days in 2002 and for a subset of counties (~25%) within the
model domain. County-level averages based on monitoring data incorporated estimates from
all monitors in a given county, including monitors within 100 km of the study domain in
order to account for counties were partially in and partially out of the study domain.
Exposures based on monitoring data were not estimated for counties without monitors.

Exposure estimates from model outputs were generated for all counties with more than 98%
of county area within the CMAQ domain. County level exposure estimates were calculated
from an area weighted average of CMAQ grid cell(s) containing any portion of the county.
County level exposure estimates derived from model results are available for all days in
2002 and all 1861 counties within the model domain.

2.4.2. Location-specific exposure estimates—We also generated location-specific
exposure estimates reflecting pollutant concentrations at a particular point independent of
political boundaries using modeling results and monitoring data. This is intended to mirror
exposure assessment methods commonly used in epidemiological studies with individual
level location information, such as a cohort study (Brauer et al., 2008; Jerrett et al., 2005b;
Ritz et al., 2002). Many methods to generate location-specific exposures exist (e.g., inverse
distance weighting, kriging). Location-specific exposure fields for PM2.5 and O3 were
estimated using two methods: (1) using monitor data, all locations within the study area
were assigned the concentration level recorded at the nearest monitor location within 50 km
and were not assigned exposures if the nearest monitor was greater than 50 km away; and
(2) using CMAQ results, concentration estimates in the grid cells were designated as the
exposure fields. A distance of 50 km was chosen because it represented a reasonable
distance for extrapolation of observed air pollutant concentrations and has been used
previously in epidemiological settings (Hanigan et al., 2006; Lipsett et al., 2011; O’Donnell
et al., 2011; Spencer-Hwang et al., 2011), but other distances could have been selected with
similar justification.

3. Results
3.1. Model evaluation

Overall PM2.5 concentrations, averaged across the study period and spatial domain for
locations and days with both monitoring and modeled estimates were similar: 13.1 µg/m3 for
modeled concentrations and 13.4 mg/m3 for monitor values. Maximum 8-h ozone levels
were slightly higher for modeled estimates (47.5 parts per billion (ppb)]) relative to
measured values (45.0 ppb). Overall, positive values for annual average bias metrics
(normalized mean bias, mean bias) indicate the model overestimates O3 levels (normalized
mean bias = 4.30%, mean bias = 2.41 ppb), while negative values for PM2.5 suggests the
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model tends to underestimate observed PM2.5 (normalized mean bias = −2.09%, mean bias
= −0.280 mg/m3) (Table S2, Supplementary Material).

To identify seasonal and temporal trends in model performance, monthly normalized mean
bias values were calculated (Fig. 1). Monthly normalized mean bias for O3 ranged from −2
to 12% during the O3 season; monthly normalized mean bias is positive for colder months
when many O3 monitors are not operated. Average monthly normalized mean bias for PM2.5
(range: 730%) demonstrates a distinct seasonal trend: colder months have a positive bias,
while warmer months show a negative bias. Annual measures of bias may be low for PM2.5
because seasonal trends in bias “cancel out.” The mean annual correlation coefficient
between simulated and observed values was 0.640 for PM2.5 and 0.801 O3 (correlation
coefficient during O3 season was 0.755) (Table S3 and Fig. S3 (a) and (b), Supplementary
Material).

We also considered spatial trends in model performance. Annual average normalized mean
bias and correlation were plotted by monitor location to evaluate whether bias and
correlation differed across the study area (Figs. 2 and 3). Generally, annual average
normalized mean bias for PM2.5 were lowest (e.g., less than 710%) in the Midwest, western
Gulf coast, and northeast. Larger positive biases (+10 to +30%) were concentrated in the
Northeast, western and northern Midwestern states, and the Texas coast; larger negative
biases (−10 to −30%) were primarily found in the eastern half of the study area. For O3,
higher annual average normalized mean bias (+10 to +30%) values were most prevalent in
the Southeast, particularly in coastal areas. Generally, correlations between monitored and
modeled concentrations were higher for O3 compared to PM2.5. Correlations for PM2.5
tended to be highest (e.g., 0.61–0.80) in the Northeast and northern Midwest, and lower
(e.g., 0.41–0.60) in parts of the Southeast and Gulf Coast. For O3, correlations were highest
(greater than 0.80) in the upper Southeast, Northeast, and Ohio River valley; correlations
were consistently lower (e.g., 0.61–0.80) in Florida, the Gulf Coast, and around the Great
Lakes.

3.2. Population characteristics for areas with and without monitors
Populations near monitors differed from populations farther from monitors: counties with
monitors tended to have a higher percentage of individuals living in urban areas than
counties without monitors, at 71.2 versus 32.9% urbanicity for PM2.5, and 65.2 compared to
33.6% urbanicity for O3 (Table 1). A larger proportion of individuals use public transport in
counties with monitors. Counties with monitors had higher indicators of socio-economic
conditions with a higher percentage of college graduates, higher median income, and a lower
percentage of residents in poverty than counties without monitors. However, counties with
PM2.5 or O3 monitors also had a lower percentage of residents with high school education
than counties without monitors. Finally, counties with monitors exhibited significantly
higher modeled levels of PM2.5 and O3 than counties without monitors (p-value less than
0.05), although actual differences between modeled annual average concentrations in
counties with and without monitors was ~1.5 µg/m3 for PM2.5 and less than 1 ppb for O3.

3.3. Exposure estimates
3.3.1. Spatially aggregated estimates—We generated daily and annual exposure
estimates aggregated at the county level for PM2.5 and O3 using modeling output and
ambient monitors. There are 1861 counties for which more than 98% of the county area falls
within the CMAQ model domain. Of these, 370 and 454 counties contained at least one
monitor meeting inclusion criteria for PM2.5 or O3, respectively.
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Table 2 describes county level exposure estimates derived from monitoring data and
simulation results for PM2.5 and O3. The table provides information on the population
covered by the exposures, the number of observations or simulation results available, and
the land area covered. Exposures are provided as summary statistics (mean, standard
deviation, minimum, and maximum) of annual average and daily average concentrations.
This table makes comparisons between county level exposure estimates from monitor data
and model results in three ways: (1) all estimates based on monitoring data (columns 1 and
4); (2) model estimates for times and locations (counties) with monitoring estimates
(columns 2 and 5); and (3) all estimates based on modeling results (columns 3 and 6). The
first and third of these summaries use all the monitoring or model simulation results
available and thereby have different sample sizes; however, the second ensures an identical
sample size in terms of counties and days with data, facilitating comparison of monitor-and
model-derived exposure estimates. Model-derived estimates provide greater spatial and
temporal coverage than monitor-based estimates. County level monitor-based estimates
cover 21.5% (5.63 × 105 km2) and 26.0% (6.81 × 105 km2) of land area included in CMAQ
exposure estimates (study domain ~2.65 × 106 km2) for PM2.5 and O3, respectively. The
2000 population included in the 1861 counties with exposure estimates based on the CMAQ
model is 173,675,971. County level exposure estimates based on monitors included 66.5%
(population = 115,494,521) of this total population for PM2.5 and 67.1% (population =
116,536,577) for O3. Overall, approximately 23.4% of the population (40,640,177 persons)
in the study area resides in a county without either a PM2.5 or O3 monitor. For counties with
both monitor- and model-derived exposure estimates, 100% of days had data for the
modeling approach: on average, 44.4% and 69.8% of days had data for PM2.5 and O3,
respectively, using monitor data (for O3, 97.9% of days between April–September had data).

Monitor-derived county level annual average PM2.5 and seasonal average (April–
September) O3 concentrations are shown in Figs. 4(a) and 5(a), respectively. Corresponding
model-derived concentrations are shown in Figs. 4(b) and 5(b). These figures demonstrate
differences in spatial coverage between monitor- and model-based approaches. For counties
with exposure estimates from both approaches, the annual average maximum 8-hour O3
level was 47.2 ppb for the monitoring approach and 49.3 ppb for the model approach.
During April–September, county level O3 exposure estimates averaged 51.9 ppb using
monitors and were somewhat higher (53.1 ppb) using modeling results. County level
exposure estimates for PM2.5 were 13.1 mg/m3 using monitor data, and 11.6 µg/m3 using
simulation results.

3.3.2. Location-specific estimates—Exposure estimates based on specific points were
calculated using model and monitor data, similar to how such estimates could be generated
for an epidemiological study with information on individuals’ locations. Location-specific
exposure estimates based on the nearest monitor (within 50 km) results in exposure
estimates for 59.8% (1.57 × 106 km2) and 63.0% (1.65 × 106 km2) of land area included in
model-based exposure estimates for PM2.5 and O3, respectively (Figs. S4 and S5,
Supplementary Material). There are significant differences in spatial and temporal coverage
between model- and monitor-based approaches. For all locations within the model domain,
100% of days had concentration estimates using model results: on average, 42.6% and
69.9% of days had data for PM2.5 and O3, respectively, using monitor data (for O3, on
average 97.4% of days in April–September had concentration estimates). Typically,
epidemiological studies estimating exposures within a certain radius of a given ambient
monitor will use a uniform buffer size around monitor locations throughout the study area
(Hanigan et al., 2006; Lipsett et al., 2011; O’Donnell et al., 2011; Spencer-Hwang et al.,
2011). Using a uniform buffer size has potential to introduce exposure misclassification,
particularly for large study areas due to differences in spatial heterogeneity by location.
Appropriate buffer size may vary depending on the pollutant of concern, region within the
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U.S., time of year, population density, long-term ambient pollution concentrations, and other
factors (Bell et al., 2011).

4. Discussion
Although reviews of CMAQ performance have identified model strengths and limitations
(Baker and Scheff, 2007; Boylan and Russell, 2006; Eder and Yu, 2006; Mueller, 2009;
Phillips and Finkelstein, 2006a; Swall and Davis, 2006; Tesche et al., 2006), to the authors’
knowledge, no previous work considers how CMAQ performance issues could affect
exposure estimates that might be used in epidemiological studies of air pollution and health.
Our analysis demonstrates that CMAQ performance is different for PM2.5 and O3, and also
depends on the measure used to gauge performance (e.g., bias, error, correlation), season,
the time interval for which each metric is calculated, and location within the U.S. In the case
of PM2.5, long-term averages derived from model results are similar to those derived from
monitor data, but short-term averages (e.g., daily, monthly) overestimate observed PM2.5
levels during winter and underestimate levels in summer. Annual O3 levels derived from
model results overestimate observed concentrations, but limited monitoring data were
available outside of April–September, which hinders assessment of performance during
other months. During months when O3 levels are higher, the model may tend to
underestimate O3 concentrations, evidenced by slightly negative normalized mean bias
values for June–September (Fig. 1). In addition, our evaluation of normalized mean bias and
correlation by location (e.g., Figs. 2 and 3) indicates that annual average normalized mean
bias and correlation vary somewhat by region, with distinct spatial patterns in variation for
PM2.5 and O3.

Traditional exposure assessment using ambient monitors excludes populations distant from
monitors (although definitions of “distant” vary) (Chen et al., 2007; Jerrett et al., 2004;
Sarnat et al., 2006). Based on our exposure estimates and demographic data, approximately
58 and 57 million people in the study area live in counties without PM2.5 and O3 monitors,
respectively. Nearly 41 million people live in counties without either type of monitor. We
found that populations in counties with and without monitors substantially differed by racial
composition, median income, percent of population that are young children or elderly, and
levels of poverty, employment, and education. Several studies have indicated that some
populations may respond to air pollution differently (Bell and Dominci, 2008; Evans and
Kantrowitz, 2002; O’Neill et al., 2003a). Health effect estimates from specific locations,
representing certain populations, may not be applicable to the general population (Sarnat et
al., 2009). Thus, differences between populations covered and not covered by the
monitoring network observed in this study may hinder the ability of epidemiological studies
to fully characterize health effects for the general population or to study how demographic
factors affect susceptibility to air pollution using observations from ambient monitors. This
highlights the need for alternative approaches to exposure assessment.

Addressing bias and errors in simulation results (as compared to monitored observations)
can be aided by model calibration, bias correction, and other methods. Studies indicate that
bias correction is a useful tool for improving model forecasts of both O3 and PM2.5
concentrations (Delle Monache et al., 2006; Djalalova et al., 2010; McKeen et al., 2005),
even across large study areas (e.g., North America, eastern U.S.). Results of a comparison of
two bias correction approaches (hybrid filter, Kalman filter) applied to CMAQ simulation
results indicate that these techniques reduced systematic errors in model forecasts, although
residual error from unsystematic and random errors remained (Kang et al., 2010; Kang et al.,
2008). The study also noted that just as model performance varies across space, the efficacy
of bias correction techniques exhibited spatial variability, which must be considered with
large study areas. Another study evaluated model performance and compared five different
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bias correction approaches using CMAQ simulation results for New York State and PM2.5
and O3 data from U.S.EPA monitors. Overall, adjusted simulation results were in closer
agreement with observed ambient concentrations, but improvements gained through a given
bias correction approach tended to differ depending on pollutant, the metric used to measure
overall error or reduction in error, and the range and magnitude of ambient concentrations,
with some adjustment approaches best at reducing bias at higher observed concentrations
(Hogrefe et al., 2006).

While model calibration and bias correction techniques may be useful in improving model
forecasts of observed concentrations, these methods also have limitations. Typically, bias
correction techniques can only be applied to locations with monitoring data. Further research
is needed to develop methods for extending these techniques to areas without monitoring
data. Thus, bias correction and model calibration techniques are limited in their ability to
address issues such as the lack of data in rural areas, where there is no monitoring data for
calibration, or on days without monitoring data (e.g., colder months for O3 and days
throughout the year for PM2.5 monitors with one-in-three-day sampling schedules). One key
advantage of using regional air quality modeling results to estimate exposure is the ability to
estimate exposures and thereby, health effects, in locations and times without monitoring
data. Until exposure estimates can be improved, one viable approach to address systematic
bias in air quality modeling results is to statistically incorporate the uncertainty into
epidemiological analysis.

Furthermore, other efforts are underway to incorporate regional air quality modeling into
exposure estimates, including development of approaches combining modeled and measured
data (Fuentes and Raftery, 2005; MacMillan et al., 2010). For example, “fused” data uses
spatial-temporal Bayesian hierarchical modeling that integrates information from monitoring
observations with output from regional air quality models (e.g., CMAQ), to estimate
ground-level air pollution concentrations, and has been applied to PM2.5 and O3 (Fuentes,
2009). Such statistical methods are aimed at using multiple types of information to inform
exposure estimates, and also allow researchers to estimate exposure in areas far from
monitors. However, a limitation of these methods is the introduction of additional
uncertainty into resulting exposure estimates. Different spatial resolutions of monitoring
data compared to modeling output may introduce bias into pollution or exposure estimates
produced by the fused approach, prior distributions used for different parameters in the
statistical model may differ by location and air pollutant (Fuentes, 2009; Gotway and
Young, 2002), and model performance and accuracy of exposure estimates in locations with
little or no monitoring data is difficult to evaluate.

In addition to fused data, a number of other approaches have been developed to estimate
individual- and population-level exposures, including various interpolation methods (e.g.,
kriging), land use regression models, air dispersion and human exposure models, aerosol
measurements obtained from satellites, and source- and traffic-proximity analysis (Jerrett et
al., 2005a; MacMillan et al., 2010; Nerriere et al., 2005; Paciorek and Liu, 2009; Stein et al.,
2007; Wong et al., 2004; Zou et al., 2009). Interpolation methods (e.g., nearest neighbor,
inverse distance weighting, kriging) have been used to estimate air pollution exposures in
previous studies (Cohen et al., 2009; Finkelstein et al., 2003; Kunzli et al., 2003), but there
is not yet consensus on which methods are most appropriate for estimating ambient
concentrations to assess health effects. The quality and certainty of estimated exposures are
related to the degree of monitor coverage and spatial heterogeneity of the pollutant within
the study area, while the potential for exposure misclassification persists because estimates
are based on ambient monitoring data and not personal exposure information (Son et al.,
2010; Wong et al., 2004).
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Land use regression models utilize information on land use, population density, traffic
volume, distance to pollutant source, and ambient pollutant concentrations, and may be able
to capture smaller-scale heterogeneity in intra-urban pollutant concentrations (Jerrett et al.,
2005a). While this method is transferable to different locations, data availability (e.g., road,
traffic, land cover, air pollution monitoring) and quality are potentially significant
limitations (Zou et al., 2009). Air dispersion models use information on meteorological
conditions, temperature, topography, road type, vehicle speed, emissions, and dispersion
processes to estimate pollutant concentration profiles. These models can be applied to
different areas or regions of the study area and over different spatial scales (Lipfert et al.,
2006), and can provide ambient concentration estimates in locations without dense
monitoring networks. However, assumptions must be made regarding the chemical and
physical transformation of pollutants and dispersion patterns, model validation is hindered
by the limited spatio-temporal resolution of available monitoring data, and model
simulations may require significant resources in terms of input data and expertise (Zou et al.,
2009).

Exposure and inhalation models using information on ambient pollutant concentrations,
human activity patterns (e.g., time spent in microenvironments), physiology (e.g., age, sex),
and environmental conditions have also been developed to estimate exposure and health
impacts (Fryer et al., 2006). Human inhalation models can model linkages between adverse
health outcomes and air pollution and estimate exposures for individuals (Burke et al., 2001;
Ozkaynak et al., 2008), but can only be utilized in areas with time–activity data that estimate
amount of time spent in different microenvironments (McCurdy et al., 2000).

Remote sensing is yet another method with potential to improve spatial and temporal
resolution of measurements of ambient pollutant concentrations. Aerosol optical depth as
measured by satellites is correlated with ground level PM2.5 concentrations in several
studies (Koelemeijer et al., 2006; Liu et al., 2007a, 2007b, 2007c, 2009, 2005; Pelletier et
al., 2007). Thus far, aerosol optical depth measurements from satellites have not been used
extensively as estimates of exposure to PM2.5 in locations without where there is little PM2.5
monitoring data for validation (Paciorek and Liu, 2009), although this is an area of active
research and improvements.

Lastly, proximity models operate on the assumption that exposure at locations proximate to
an emissions source are higher. Utilizing geographic information systems, proximity models
may be useful in reducing likelihood of exposure misclassification (Nuckols et al., 2004;
Zhan et al., 2006). However, proximity models do not consider pollutant dispersion or
human time–activity patterns and may be less appropriate for secondary pollutants and non-
traffic related pollutants (Ivy et al., 2008). Research has also suggested that the basic
assumption that closer proximity to a source means greater exposure may not always be
valid (Cordier et al., 2004).

How CMAQ performance issues affect exposure and health effect estimates depends on the
type of epidemiological study. Use of model estimates may introduce differential
uncertainty in exposure estimates by season, which is critically important for studies
evaluating daily impacts throughout the year. This issue is of particular concern for
pollutants such as PM2.5, for which health effect estimates vary by season (Bell et al., 2008).
High correlations between observed and modeled concentrations indicate that modeled and
monitored concentrations tend to increase and decrease in tandem. For time-series and case-
crossover studies assessing short-term exposure (e.g., days) and comparing risks across time
within a given community, the relative difference between observations and modeled values
matched in time and space may be more important than absolute pollution levels (Bell et al.,
2004b). In other words, over- (or under-) estimation of pollutant levels by CMAQ may be
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less problematic for such studies as long as estimated and observed values co-vary in similar
patterns.

Cohort designs are suitable for measuring short- and long-term health effects (Kunzli et al.,
2001), and compare exposure levels and health response between different populations or
communities. For these studies, accurate assessment of differences in pollution/exposure
levels between groups being compared is critical. Exposure assessments using air quality
modeling results would be hindered by regional variation in model performance, if groups
being compared represent different locations and communities. Variation in model
performance across time could also detrimentally impact exposure estimates for cohort
studies as some parts of the cohort may have better exposure estimates than others.

Our results indicate key strengths of using 3-D air quality models to estimate air pollution
exposure in health studies including improvements in spatial and temporal coverage. In this
analysis, use of CMAQ simulation results improves sample size, but also changes the nature
of scientific questions that can be addressed. For example, daily data is required to perform
distributed lag epidemiological models of how health responds to cumulative exposure over
previous days. Improved spatial coverage allows study of health effects in rural areas, which
may differ with respect to the air pollution mixture, pollution level, or population
characteristics. These benefits should be weighed against limitations, such as model
performance, the appropriateness of which will depend on epidemiological study design, and
the expertise and information required to run CMAQ or similar models.

The CMAQ model is updated and improved as the science advances or if specific issues are
identified, and inputs (e.g., emissions inventory data) and precursor models are also revised
periodically. The ambient air quality monitoring network also changes over time, as
monitors are added or removed, or new monitoring techniques are implemented. The
frequent changes in the CMAQ modeling system and input data may affect CMAQ
performance in issues critical to use of model results in epidemiological studies. Considering
results from this analysis, it may be advisable to conduct a case-specific evaluation of
whether a regional air quality simulation is appropriate to use for a given exposure
assessment or health study. Air quality modeling is an emerging method for air pollution
exposure assessment with some clear advantages over traditional approaches; evaluation of
strengths and weaknesses ultimately depends on intended application of model results,
acceptable level of uncertainty, population of interest and other factors.
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Fig. 1.
Monthly normalized mean bias in simulated concentrations of PM2.5 and O3
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Fig. 2.
Annual average normalized mean bias (by monitor location)
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Fig. 3.
Annual average correlation between observed and simulated concentrations (by monitor
location)
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Fig. 4.
County-level annual average exposure estimates for 24-hour PM2.5 (a) Monitor-derived and
(b) model-derived
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Fig. 5.
County-level seasonal average (April–Sept.) exposure estimates for 8-hour O3: (a) Monitor-
derived and (b) model-derived
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Table 1

Comparison of population characteristics of counties with and without monitors for PM2.5 or O3.

Median value of census variable (95%
Confidence interval)

Counties with monitor(s) (n = 412,
population = 121.2 × 106)

Counties without monitor(s) (n =
1449,

population = 52.5 × 106)

PM2.5

Population Characteristics (% of county
population)

Self-identified as blacka 16.3 (14.7, 17.8) 12.9 (12.0, 13.8)

Young children (≤5 years)a 7.87 (7.77, 7.96) 7.60 (7.54, 7.65)

Elderly (≥65 years)a 13.2 (12.8, 13.5) 14.6 (14.4, 14.7)

Urbana 71.2 (68.8, 73.6) 32.9 (31.6, 34.2)

High school diplomaa 32.0 (31.3, 32.6) 37.3 (36.9, 37.6)

Baccalaureate degreea 13.6 (13.1, 14.2) 8.86 (8.65, 9.06)

Unemployeda 3.60 (3.50, 3.70) 3.36 (3.29, 3.43)

Povertya 13.0 (12.5, 13.5) 14.9 (14.5, 15.3)

Use public transporta 2.45 (1.82, 3.07) 0.470 (0.424, 0.516)

Median income ($)a 39,786 (38,820, 40,752) 34,152 (33,699, 34,605)

Pollution exposure estimates

Annual average PM2.5 concentration (monitor, µg/m3) 13.1 (12.9, 13.4) —

Annual average PM2.5 concentration (CMAQ, µg/m3)a 11.6 (10.4, 11.9) 10.2 (10.1, 10.3)

O3

Median Value of Census Variable (95%
Confidence Interval)

Counties with monitor(s) (n = 454,
population = 116.5 × 106)

Counties without monitor(s) (n =
1407,

population = 57.1 × 106)

Population characteristics (% of county population)

self-identified as black 14.0 (12.6, 15.4) 13.5 (12.6, 14.5)

Young children (≤5 years)a 7.91 (7.82, 8.00) 7.58 (7.52, 7.63)

Elderly (≥65 years)a 13.0 (12.7, 13.4) 14.7 (14.5, 14.9)

Urbana 65.2 (62.6, 67.8) 33.6 (32.3, 35.0)

High school diplomaa 33.1 (32.5, 33.7) 37.0 (36.7, 37.4)

Baccalaureate degreea 13.4 (12.9, 13.9) 8.79 (8.59, 8.99)

Unemployed 3.35 (3.26, 3.45) 3.43 (3.36, 3.50)

Povertya 11.7 (11.2, 12.2) 15.4 (15.0, 15.7)

Use public transporta 1.96 (1.50, 2.42) 0.563 (0.443, 0.683)

Median income ($)a 41,692 (40,709, 42,674) 33,345 (32,933, 33,757)

Pollution exposure estimatesb

Warm season average O3 concentration (monitor, ppb) 51.9 (51.3, 52.5) —
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Median value of census variable (95%
Confidence interval)

Counties with monitor(s) (n = 412,
population = 121.2 × 106)

Counties without monitor(s) (n =
1449,

population = 52.5 × 106)

Warm season average O3 concentration (CMAQ, ppb)a 53.1 (52.4, 54.1) 52.3 (52.0, 52.5)

a
Indicates significant differences between groups (counties with and without monitors) at p-value < 0.05.

b
O3 pollution exposure estimates are calculated using O3 season data, i.e., April– September, 2002.
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