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Abstract
To date, the assessment of public health consequences of air pollution has largely focused on a
single-pollutant approach aimed at estimating the increased risk of adverse health outcomes
associated with the exposure to a single air pollutant, adjusted for the exposure to other air
pollutants. However, air masses always contain many pollutants in differing amounts, depending
on the types of emission sources and atmospheric conditions. Because humans are simultaneously
exposed to a complex mixture of air pollutants, many organizations have encouraged moving
towards “a multi-pollutant approach to air quality.” While there is general agreement that multi-
pollutant approaches are desirable, the challenges of implementing them are vast.

In this commentary, we discuss a multi-pollutant approach for controlling ambient air pollution
that describes multi-pollutant concepts for different aspects of air quality management and
science: (1) scientific estimation of the health risk of multiple pollutants; (2) setting of regulatory
standards for multiple pollutants; and (3) simultaneously implementing compliance with
regulatory standards for multiple pollutants.

Air pollution policies worldwide are typically geared toward control of a single pollutant. In
the last few decades, most epidemiologic studies of air pollution and health have focused on
estimating the adverse effects associated with ambient exposure to a single pollutant,
adjusted for exposure to other pollutants and potential confounders. However, the human
body is actually exposed to multiple air pollutants at once, in a complex mixture.

The rationale for the historical focus on single-pollutant research compared with multi-
pollutant research is clear: single-pollutant research is easier to conduct; the results are more
clearly interpretable; and the vast majority of air quality policies to protect human health are
based on single-pollutant strategies. In fact, under the Clean Air Act, the U.S.
Environmental Protection Agency (EPA) has the responsibility for setting a separate air
quality standard for each criteria pollutant. For example, the scientific literature provides
evidence on how carbon monoxide (CO) affects various human health endpoints, the EPA
sets a numerical standard for CO intended to protect human health with an adequate margin
of safety, and other agencies such as a state governments may develop and implement
emissions-control strategies to achieve those standards. This approach does not account for
the health responses associated with the simultaneous exposure of multiple pollutants.
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The scientific community and the U.S. EPA are moving toward a multi-pollutant approach
to quantify the health consequences of air pollution mixtures as a whole, while recognizing
that such a paradigm shift will be challenging.1-5 In 2004, two reports of the U.S. National
Research Council recommended the development of a multi-pollutant approach to air quality
control. These reports questioned whether the current focus on single-pollutant science, and
on separate National Ambient Air Quality Standards for each of the six criteria pollutants,
truly addresses the health burden experienced by the population.3,4 The move toward a
“one-atmosphere” approach has been in progress for some time, as evidenced by the EPA’s
development of the Community Multiscale Air Quality regional air-quality modeling
system6 that simultaneously estimates levels of multiple air pollutants, including ozone and
particulate matter (PM).

There are many elements that support a multi-pollutant approach. For example, this
approach could: (1) characterize more fully the complexity of the exposure and their health
impacts (e.g. humans breathe ozone, PM, and other pollutants simultaneously); (2) identify
the most harmful pollution emission sources (e.g., industrial smokestack or automobiles),
thus allowing more targeted regulation; and (3) aid effective management of air quality (e.g.
reduced hydrocarbon emissions from mobile sources, which would affect levels of PM,
ozone and air toxics). However, a multi-pollutant approach to air quality presents many
challenges.

In this commentary we discuss the following multi-pollutant concepts: (1) the estimation of
how exposure to multiple pollutants simultaneously affects the risk of adverse health
response; (2) the design of policies aimed at controlling air quality of multiple pollutants
simultaneously; and (3) the design of compliance strategies for multiple pollutants.

A MULTI-POLLUTANT APPROACH TO AIR QUALITY
Multi-pollutant Approach to Estimation of Health Risk

Many studies from a variety of disciplines (including epidemiology, human exposure
assessment, and toxicology) have been conducted to characterize the human health response
to air pollution. However, most of these studies report the health effect of one pollutant
adjusted for the exposure to other pollutants and confounders (e.g., 7,8). In this paper, we
define a “multi-pollutant approach to estimation of health risk” as an investigation that
focuses on estimating the total health effect associated with the exposure to multiple
pollutants. This total health effect requires acknowledgement that the health burden from
simultaneous exposure to multiple pollutants may differ from the sum of individual effects
estimated from single pollutant models. As an example, synergistic effects have been
reported for the simultaneous exposures of cigarette smoking and asbestos.9,10

A variety of approaches can be applied to estimate total health effect from multiple
pollutants. A first approach is the use of statistical regression models having as predictors a
main effect for each pollutant (adjusted for exposure to the other pollutants) and an
interaction term for each pair of pollutants (“the statistical interaction approach”). From the
fitted values of the regression model, we can estimate total effect and the associated
statistical uncertainty. Similar statistical models can be defined to account for higher-order
interactions and therefore to capture the health burden associated with the simultaneous
exposure to more than two pollutants. A note of caution: the results of any regression model
become highly unstable when incorporating two or more pollutants that are highly correlated
(e.g. PM10 and nitrogen dioxide [NO2] both indicators of urban pollution). In this case, the
regression model cannot reliably estimate the main effects of these two pollutants nor their
interaction. Ideally, knowledge about the biological mechanisms of how air pollution
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adversely affects health could be incorporated in the development of the statistical model, as
several pollutants might lead to the same biologic mechanism of injury.

Statistical regression models with interaction terms for estimating total effect of multiple
exposures have started to appear in the literature. In animal studies of environmental
exposures, approaches to interaction terms include the use of multiple combinations of
exposures. For example, one study used four groups of exposures to estimate the total effect
on pulmonary function associated with simultaneous exposure to ozone and nanoparticles.11

Current statistical methods are inadequate for addressing the health risks of multiple
pollutants and estimating high order interactions. Dimension reduction of some form is
needed to reduce the data to a set of key predictors and to remove predictors that do not have
explanatory power. Regression shrinkage and penalization methods such as the lasso12 and
its numerous variants attempt to identify a small subset of individual predictors that are
highly associated with the response. Penalization methods in general have the advantage that
the estimated regression coefficients are directly interpretable and the response variable is
used in the estimation procedure, unlike with standard dimension reduction methods such as
principal components or factor analysis. Bayesian analogues, such as stochastic search
variable selection,13 have similar estimation and model selection properties. The estimation
of interactions between pollutants is of particular scientific interest;14 however,
incorporating interaction effects into any regression model results in an explosion of
parameters that need to be estimated. Current methods such as the lasso, SSVS (statistical
search variable selection), and related methods handle large numbers of parameters by
removing spurious predictors in the model, or by grouping highly correlated predictors.15,16

A challenge requiring methodologic development is that current methods treat all predictors
symmetrically and do not take advantage of the hierarchical nature of the air pollution
mixture as a whole. Air pollution can be divided into groups of constituents (e.g. based on
sources or chemical properties) that can be further divided into their constituents. Current
methods for high-dimensional regression analysis approach the problem in an
“unsupervised” manner, grouping correlated predictors without incorporating prior scientific
information.

Statistical methods for clustering components of an air pollution mixture based on their
biologic mechanism, emission sources, or ability of predict the outcome can be borrowed
from other disciplines. New statistical methods have been developed in genomics to handle
large amounts of data. Logic regression has been proposed to explore interactions in high-
dimensional genomic data.17 There have also been relevant developments in survival
regression analyses with a large number of correlated covariates18 and methods for
supervised clustering of genes (see for example 19,20).

A second approach for estimating the total health effect of multiple exposures is to use the
ambient levels of one pollutant to represent the combined exposure to several pollutants or
to an emission source (“the indicator approach”). For instance, selenium PM2.5 has been
used as an indicator of the overall coal combustion mixture.21 Other examples include
sulfate as a marker of regional pollution22 and PM2.5 filter absorbance as a marker for diesel
particles.23

A third approach is to define the exposure to one or more emission sources through source
identification methods, including factor analysis and source apportionment techniques. For
example, one can assign PM chemical constituent data to emission sources by using
statistical methods for data reduction, such as principal component analysis, factor analysis,
and hierarchical clustering.24,25 Specifically a Bayesian structural equation model was
developed that jointly specifies an exposure model, (using a factor analysis to assign PM
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chemical constituents to emission sources, e.g. source profiles) and a health-effect model
(estimating the association between health outcomes and the source profiles).26 These
statistical methods for data reduction summarize the levels of many pollutants to define
emission profiles (e.g., crustal, oil combustion, traffic, vegetative burning) (see for
example 27-32).

Regardless of the approach, there are additional challenges in estimating the health effects of
multiple exposures.

Inadequate data—Different air pollutants are measured with varying frequency and with
different measurements by season. For example, ozone is typically measured daily and PM
is measured every 6 days. Ozone is often measured during the warm season only, whereas
PM is measured throughout the year. Therefore a study of these pollutants in combination
would have a much smaller dataset available than a study of either pollutant alone. Another
example of inadequate data is mercury exposure from industrial sources (primarily through
coal and oil combustion). Such exposure is not routinely measured in its airborne form,
although efforts are underway to establish comprehensive mercury monitoring networks.33

Better methods for collecting and processing exposure data include land-use regression
modeling, satellite imagery, air quality modeling, kriging and other spatial interpolation
methods, and human exposure modeling.7,34-38 These methods can generate estimates of
pollution levels in locations and time periods where monitoring data are not available;
however, as these are estimated values, they introduce their own uncertainties and
limitations. Methods such as kriging and inverse-distance weighting are constrained by the
data and location of the existing monitoring network. Air-quality modeling produces more
accurate estimates for some pollutants than for others. Researchers often face a tradeoff
between the certainty of data and the statistical power of a larger dataset.

Data Analysis—Studies of air pollution and health address a growing number of
pollutants, particularly in the chemical components of PM. Many pollutants have similar
emission sources or formation pathways, or are precursors to other pollutants. Estimation of
the total effect of multiple exposures is challenged by these interconnections among
individual pollutants. For example, nickel and vanadium PM levels can be highly correlated,
as both often result from oil combustion. The effect estimate for an association between a
health outcome and nickel could represent the effect of vanadium, or the effect of other
products of oil combustion. In such cases, researchers may apply the indicator approach
described above using the levels of a single pollutant, such as nickel, to represent the overall
source mixture. However, as the pollutants have multiple sources, this technique does not
provide a unique identifier for a source. Another complexity of data analysis is that some
pollutants are in the formation pathway of others. For instance, volatile organic compounds
are precursors to tropospheric ozone, and nitrogen oxides (NOx) are precursors to ozone as
well as secondary particles.

Statistical approaches to a large set of correlated exposure variables include dimension
reduction techniques aimed at transforming several correlated exposure variables into a
smaller set of almost independent key predictors. Dimension reduction techniques have been
used to conduct multi-pollutant studies of air pollution and health. These include the source
apportionment methods described (e.g., factor analysis to identify mobile combustion and
soil particles32). Dimension reduction methods are attractive from a regulatory standpoint
because they help to identify specific targets of regulatory intervention. However, these
approaches also have limitations. The focus on just a few sources might omit other
important (but perhaps more-difficult-to-measure or less-understood) sources. In addition,
some source-related approaches require information that may be poor quality or not
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available at all. For example, comparison of factor analysis results generated by different
research teams on the same dataset found similar conclusions but with specific differences
such as how to disentangle diesel from gasoline vehicle pollution.29 It is also difficult to
generalize results from source-based analyses to other areas because of the location-specific
nature of most source signals. Further, source-based approaches have the general limitation
that they substitute one complex mixture (the air) with another complex mixture (the
source). The scientific questions involving sources and pollutants can also be somewhat
circular. When a given pollutant is associated with adverse health outcomes, the next
scientific question may be whether that pollutant is acting as a marker for a particular
source; however, if a given source is identified, the next scientific question may be what
pollutant or set of pollutants in that source make it harmful.

Exposure assessment—Strategies to improve exposure measurement may work better
for some pollutants than for others. While statistical models can account for measurement
uncertainty to some degree, the uncertainty may not be fully known or quantified, and will
vary by pollutant. Different monitoring networks provide varying quality of estimates based
on the number of monitors available, the position of monitors (e.g., distributed more evenly
across a county or clustered), the nature of the monitor location (e.g., near major roadway
versus background monitor), and potentially different frequency of measurement.

Broad classes of measurement error include: (1) instrument measurement error; (2) detection
limits; (3) exposure measurement error relating to the discrepancies between ambient
monitor values and personal exposure; and (4) spatial misalignment when the exposure area
(e.g., county) and the exposure estimates (e.g., a small number of monitors within a county)
are not spatially matched. Instrument measurement error can produce monitor values that are
either higher or lower than the true value. For example, one study found sulfate PM2.5 levels
to be under estimated by 30 to 40%.39 The quality and consistency of measurement
methodologies can differ by pollutant providing, for example, less certain and comparable
estimates for organic carbon matter PM than for many other pollutants. Levels of some
pollutants may be below current detection limits, and such data are often addressed by
substituting a zero or other fixed value, thereby obscuring variation in pollutant
concentrations at low levels. The relation between ambient monitor values and personal
exposure varies by indoor-outdoor activity patterns, the person, and the pollutant.40 Personal
monitors have been used to estimate air pollution in some studies,41 and yet the use of
personal monitors to estimate exposure can be cost-prohibitive and impractical for large or
long-term studies.

The spatial misalignment between the exposed populations and the monitor sites can
obscure within-community variability in pollution concentrations and can create a type of
measurement error that has been largely ignored. Without proper adjustment, the health-
effect risk estimates of the different pollutants can be biased. Recent work has described
various approaches for addressing this problem and has introduced statistical approaches for
estimating health risks with multivariate adjustment for the spatial variation of the
pollutants.42,43 The degree of spatial misalignment will differ by pollutant, as some
pollutants are more homogenous across large areas than others, and will also differ by
spatial area. Even if a standard protocol of a given spatial unit (e.g., county-level resolution)
is applied, spatial misalignment may vary by area. For example, some counties in the U.S.
are considerably larger than others, creating a higher probability of exposure error
depending on the monitor coverage. For example, San Bernardino County, California is over
1500 times larger in land area than Kalawao County, Hawaii.44

While issues of exposure error are relevant to health studies of a single pollutant, such errors
take on a larger role in multi-pollutant studies. Each type of measurement error can affect

Dominici et al. Page 5

Epidemiology. Author manuscript; available in PMC 2012 October 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the exposure estimates for various pollutants differently. A multi-pollutant study often has
better exposure estimates for some pollutants than for others, and the true nature of the
exposure error for each pollutant may be poorly understood. This can complicate the
estimation of the health burden of an air pollution mixture.

The special case of particulate matter—Multi-pollutant research has already been
widely conducted with respect to particulate matter. Most studies of PM and health have
based exposure on total mass of a particular size distribution (e.g., PM10, PM2.5). Studies on
PM size distribution (e.g., 45,46) have been a step towards identifying the part of the PM
mixture that is more harmful to human health. As total suspended particles (TSP), PM10,
and PM2.5 represent somewhat different sources, with crustal materials falling generally in
the larger range and combustion particles falling in the smaller range (<2.5 μm). However,
even within each size range, particulate matter is inherently a multi-pollutant, with a varying
mixture of chemical components. The PM chemical composition varies greatly across the
U.S. and by season, and chemical composition may affect toxicity.46-49

While research on PM total mass does study a complex mixture, current research has made
substantial progress in studying health effects of PM in a multi-pollutant context by
examining which PM sources or chemical components are more strongly associated with
human health. High-priority questions on PM and human health have shifted from the health
effects of total mass to the sources and attributes of PM (e.g., size fraction, chemical
components, etc.) primarily responsible for various health outcomes. Multi-pollutant
epidemiologic studies of PM chemical components can be conducted on local and national
scales now that daily concentration data are available through EPA monitoring of pollutants
at a large number of U.S. locations.47,50-52 This represents an opportunity for multi-city
research of PM chemical components that was not previously feasible.

Multi-pollutant Approach to Regulation
Air quality standards are based mostly on a summary of the scientific evidence on the health
impact of each pollutant separately, with input from a scientific advisory committee and
public comment. For example, the National Ambient Air Quality Standards are established
for the six criteria pollutants separately, and PM is considered as a single pollutant based on
total mass and size distribution without consideration of its chemical form. While regulators
are fully aware that the ambient levels of the criteria pollutants are related (e.g., NO2 is a
precursor to ozone, while both are criteria pollutants) and that air pollution is a complex
mixture, each standard is designed to reduce harm to human health for that individual
pollutant, regardless of the levels of other pollutants.

The ability of decision-makers to establish multi-pollutant policies is currently limited by
the availability of multi-pollutant science on how air pollution mixtures affect health.
However, as the scientific community embraces a multi-pollutant framework and provides
epidemiologic evidence on air pollution mixtures, multi-pollutant air quality standards will
become possible. Some examples are described below to illustrate how a multi-pollutant
framework could be applied to air quality regulation.

Setting standards for combinations of air pollution levels—If the total health
effects of multiple exposures (and their statistical uncertainty) could be reliably estimated,
then air standards could be based on levels of multiple pollutants. For example, if strong
evidence were found that the risk of the adverse effects of PM2.5 is higher on days with
ozone levels higher than a certain level, then, in principle, it would be possible to define a
standard for PM2.5 that would take into account the levels of ozone.
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The U.S. EPA Air Quality Index provides a single score for air quality by converting air
pollution levels for five pollutants to an overall quality scale of 0 to 500 (0 representing the
best air quality and 500 the worst).53 The EPA has assigned a general health condition to the
index level. For example, an Air Quality Index of 0 to 50 represents “healthy” air quality.
Air Quality Index levels of 101 to 150 represent air quality levels that may be “hazardous”
for sensitive individuals. An individual air quality index is calculated for every pollutant,
and an overall Air Quality Index is based on the highest index for any single pollutant.
While this index is not an air quality regulation, it provides an example of how multiple
pollutants could be considered together to set a health-based standard.

Setting standards for emission sources—If a specific source is identified as
particularly harmful to human health, the development of regulations could target the
emissions from that source (e.g., by capping total emissions from a specific industry). This
strategy would cover all primary and secondary pollutants from that source. For example, if
oil combustion-related particles were identified to be more toxic than crustal-related
particles, then a regulation could target the levels of the PM2.5 chemical components
corresponding to and identified source rather than target the PM2.5 total mass. Examples
include Mexico’ s Hoy no Circula restrictions on driving based on license plate numbers and
London’s fee program for driving during peak traffic times in designated high traffic
areas.54

Setting standards for health risk—Standards could be set more generally to achieve
some health benchmark. For example, regulations could require that the excess number of
deaths attributable to air pollution exposure not exceed a given percentage of the baseline
mortality for a given area. Such a regulatory standard could specify the various air pollutants
or sources eligible for adjustment in order to obtain the desired reduction health risk. For
instance, one community might achieve lower mortality through reducing particulate matter
levels, while another community could lower ozone levels to achieve the same health
benefit. This type of multi-pollutant regulation would require an understanding of the health
risks of the various different pollutants in key indicators of health. The structure of such a
regulation would have to be based on an understanding of the interaction between pollutants.
For example, if there is no interaction between two pollutants, decision-makers could reduce
either of them to obtain the required reduction in health risk. If there were interaction, this
interaction would have to be understood and quantified so decision-makers could
incorporate this interaction in estimates of the health benefits achieved by various
combinations of the pollutant levels.

Multi-pollutant Approach to Achieving Compliance
We have described how multi-pollutant science could in principle estimate the total health
effect associated with simultaneous exposure to several pollutants, and how regulators could
develop air quality standards that are based on the levels of multiple pollutants. A third
aspect of a multi-pollutant approach to air quality management is the development of
strategies for achieving compliance with single-pollutant air quality standards while at the
same time accounting for the relationships among the various pollutants. For example, a
strategy to lower levels of one pollutant, say PM, may also affect the levels of other
pollutants, say ozone. Rather than construct a separate compliance strategy for each air
pollutant standard, decision-makers could evaluate various compliance strategies and
determine their collective impact.

Recently there have been efforts to develop compliance strategies for multiple pollutants. As
an example, the Detroit Multi-pollutant Pilot Project aims to develop a framework to control
air quality by a collective assessment of control strategies to address criteria pollutants,
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hazardous air pollutants, visibility, and ecosystems, and with consideration of other issues
such as energy use and climate.55 The project involves detailed analysis of emissions, air
quality modeling, etc., and is specifically focused on multi-pollutant approaches to manage
air quality including regulatory compliance. The project evaluates how various potential
control strategies, could affect the levels of a variety of air pollutants, rather than developing
a separate strategy for each pollutant. While such an approach to compliance would be a
significant improvement over considering compliance for each pollutant alone, it still relies
on existing single-pollutant standards, which in turn rely on risk estimation for single
pollutants.

Multi-pollutant approaches to air-quality management improve upon current approaches by
understanding how emissions affect concentrations of numerous pollutants (including
chemical and physical transformation). A variety of technologies and tools are available to
assess the effects of various control strategies on multiple pollutants simultaneously,
including assessment of compliance with regulatory standards. These include air quality
modeling, mathematical optimization, and other approaches to develop the most efficient
compliance policies. For instance, a state could evaluate several compliance policies with
the objectives of meeting specific air quality targets (i.e., regulatory standards for each
pollutant), minimizing cost, and providing relatively even distribution of health benefits, or
whatever goals the state designates.

CONCLUSIONS
Greater public health protection from air pollution can be achieved by shifting from a single-
pollutant approach to a multi-pollutant approach. For this transition to succeed, fundamental
changes in the way science approaches air pollution studies and new methodologic
developments are needed. Researchers are moving toward this new approach, as evidenced
by the case of particulate matter, which was first treated as a single pollutant through studies
of total mass, then as a set of different size distributions, then a set of single pollutants
through studies of separate chemical components, and most recently to studies of the
complex mixture of particles from specific sources. This trajectory is also evidenced by the
U.S. EPA’s recent request for proposals on Clean Air Centers, which highlights the
importance of multi-pollutant research.56

Several organizations and policy-makers have encouraged a move from single-pollutant
approaches towards a “one atmosphere” system to control air quality.3-5,57,58 The EPA’s
Scientific Advisory Board Particulate Matter Research Centers Advisory Panel
recommended that future attention should be directed towards integrated assessments of
multiple air pollutants.59 These reports provide compelling reasons for a multi-pollutant
approach. However, the actual implementation of their recommendations is daunting. This
area of research remains incompletely developed, to the point that scientists and regulators
may use the term “multi-pollutant approach” in different ways—one referring to the
estimation of the health burden from simultaneous exposure to a complex air mixture, and
the other to compliance with multiple air pollutant regulations.

Each aspect of a multi-pollutant approach (scientific assessment of health risk, the setting of
regulations, and compliance with regulations) has to recognize the involvement of multiple
pollutants. Most important, the development of a multi-pollutant approach requires scientific
knowledge of how pollutant mixtures affect health. There several hypothesized mechanisms,
including mechanisms that are likely shared by multiple pollutants. Future efforts to address
health effects of mixtures should rely on our understanding of these biologic mechanisms.
For example, scientific knowledge explaining the potential synergism among pollutant
exposures (i.e., increased total pollutant solubility/bioavailability, oxidative potential, etc),
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should inform the characterizations of air pollution mixtures—similar to what is done in
genomics, where genes tend to be clustered based on their biologic functions.

As scientists, policy-makers, and other decision-makers move toward a multi-pollutant
approach to air quality control, it is critical that the various constituencies understand the
differences and overlap in multi-pollutant concepts, and the need for future research in all of
these areas.

From an atmospheric-science point of view, the relationships among pollutants are well
understood. However, the state of the science on how simultaneous exposure to multiple
pollutants affects human health in real-world settings is in its early stages. One of the
important components of a multi-pollutant approach to risk estimation is the development of
statistical models that can estimate the total health effect associated with the simultaneous
exposure to multiple pollutants including their potential interactions. This is a promising
area of future development of statistical methods. However, multi-pollutant statistical
models face greater risks for misspecification and spurious conclusions than single pollutant
models. In order to extend beyond exploratory analysis, information from other disciplines
and past epidemiologic investigations is necessary to develop an initial model formulation
by (1) determining which pollutants to include, (2) selecting the relevant health outcomes to
study, and (3) building an appropriate functional form for the relationships among
pollutants. Findings contributing to understanding biological mechanisms, such as from
toxicology or human exposure studies, can help reduce dimensionality and inform the
structure of statistical models. In turn, epidemiologic studies can test specific hypotheses in
real-world settings and human populations that link back to biological findings.

The study of multiple pollutants will require collaboration across various disciplines. This
presents its own challenges, such as defining common language. In studies of air pollution
and human health, the synergistic effect of more than one environmental agent is often
defined as an interaction. However, the word “interaction” has different meanings across
scientific disciplines. From a statistical standpoint, “interaction” can refer to the risk
associated with changes in the product of two variables (in this case, the concentrations of
two pollutant levels). If the statistical interaction between two pollutants is not null, then the
total effect of multiple pollutants cannot be estimated by taking the sum of effects based on
single-pollutant research. From a biologic standpoint, “interaction” can refer to multiple
pathways of various exposures or factors in physiological changes (e.g., gene-environment
interaction refers to how environmental exposures affect individuals differently based on
their genetics). These definitions are separate from “interaction” in atmospheric chemistry,
such as how nitrogen oxides and volatile organic compounds interact together to form
tropospheric ozone.

In a multiple-pollutant approach to air quality, connections between epidemiology and
toxicology could become increasingly important. Toxicology can study multiple pollutants
in a controlled setting, whereas epidemiology can examine effects of ambient air pollution
levels in large real-world human populations. Animal-exposure studies have investigated
exposure to multiple pollutants, including investigations of the pollutants for confounding
and interaction.14,60,61 However, a multipollutant approach to toxicology is also challenged
by the increasing cost and time required to expose a large number of animals to several
pollutants simultaneously.

Multi-pollutant concepts could be further expanded to consider other pathways of
environmental exposure, such as ingestion, dermal exposure, or mother-to-fetus pathways.
Some air pollutants have well established multiple exposure pathways (e.g., lead).
Understanding the health effects of the total environment (i.e. air, water, agriculture) can
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perhaps be seen as a long-term objective. As we move toward a “one atmosphere” approach
and as scientific understanding of the health impacts of air pollution grows, decision-makers
may eventually be able to regulate air pollution sources and the overall air pollution mixture
more effectively, perhaps even to achieve a “one environment” approach.
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