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Abstract
Developing suitable exposure estimates for air pollution health studies is problematic due to
spatial and temporal variation in concentrations and often limited monitoring data. Though land
use regression models (LURs) are often used for this purpose, their applicability to later periods of
time, larger geographic areas, and seasonal variation is largely untested. We evaluate a series of
mixed model LURs to describe the spatial-temporal gradients of NO2 across El Paso County,
Texas based on measurements collected during cool and warm seasons in 2006–2007 (2006–7).
We also evaluated performance of a general additive model (GAM) developed for central El Paso
in 1999 to assess spatial gradients across the County in 2006–7. Five LURs were developed
iteratively from the study data and their predictions were averaged to provide robust nitrogen
dioxide (NO2) concentration gradients across the county. Despite differences in sampling time
frame, model covariates and model estimation methods, predicted NO2 concentration gradients
were similar in the current study as compared to the 1999 study. Through a comprehensive LUR
modeling campaign, it was shown that the nature of the most influential predictive variables
remained the same for El Paso between the 1999 and 2006–7. The similar LUR results obtained
here demonstrate that, at least for El Paso, LURs developed from prior years may still be
applicable to assess exposure conditions in subsequent years and in different seasons when
seasonal variation is taken into consideration.
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1. Introduction
In urban areas, emissions from motor vehicles are a major source of air pollution and
contributor to chronic and acute respiratory illness (Health Effects Institute, 2010). Accurate
exposure estimates are a crucial component of environmental epidemiology studies of air
pollution. However, developing suitable exposure metrics for traffic-related air pollutants is
problematic due to spatial and temporal variation in concentrations and often limited
monitoring data. Land use regression models (LURs) have gained acceptance as a valid,
cost-effective method of modeling the intra-urban spatial variability in air pollution for
health effect studies. LURs combine land use characteristics such as distance to roads, traffic
intensity and elevation from geographic information systems (GIS) and air pollution
monitoring data to estimate exposures at unmonitored locations. LURs have performed well
when validated against direct measurements, reporting correlation coefficients ranging from
0.36–0.82 (Hoek et al. 2008). However, only a limited number of studies have assessed the
stability of LURs to predict ambient exposures across larger geographic areas, during
different seasons and in later years (Poplawski et al., 2009; Eeftens et al., 2011).

Exhaust from motor vehicle traffic is a significant source of oxides of nitrogen (NOx),
carbon monoxide, non-methane volatile organic compounds and particulate emissions.
Nitrogen dioxide (NO2) is a US EPA criteria air pollutant commonly used indicator for air
pollution generated by mobile and stationary sourcesFour international ports of entry are
located in El Paso county. A fifth, in Santa Teresa, New Mexico is located 35 miles west of
downtown El Paso. These border crossings represent the second highest rates of
international passenger and commercial traffic between the United States and Mexico
(Rajbhandari et al. 2009).

Previous studies of NO2 and other air toxics in the U.S.-Mexico border community of El
Paso, TX identified significant spatial variation of NO2 via direct measurements and LUR
modeling (Gonzales et al., 2005; Smith et al., 2006). Most of the spatial variation in NO2 in
El Paso was explained in the LURs by traffic patterns and density, elevation, population
density, distances to major nitrogen oxide (NOx) emissions sources, and international border
crossings (Gonzales et al. 2005; Smith et al. 2006; Funk et al. 2001). These initial studies
were conducted in central El Paso during cool weather conditions when thermal inversions
impacted pollutant concentrations. Since these studies were initially conducted, El Paso has
experienced significant population growth both within and beyond the city limits into the
surrounding area. In 2009, an estimated 750,000 people lived in the county, an increase of
10% from 2000 (U.S. Census Bureau, 2010). A component of the University of New
Mexico-University of Texas at El Paso Advanced Research Cooperation in Environmental
Health (ARCH) Program on Border Asthma measured year-round passive NO2 monitoring
across the entirety of El Paso County between 2006 and 2007. The ARCH study provided an
opportunity to evaluate the earlier LUR models with NO2 measurements collected seven to
eight years later, across larger geographic areas, and during different seasons.

We had two objectives for this study. The first was to develop LURs for the County of El
Paso, TX based on NO2 concentrations measured in 2006–7, contemporaneous land use
characteristics, and the impact of seasonal variation. The second was to evaluate how well
the LUR model developed for El Paso in 1999 estimated NO2 concentrations compared to
the 2006–7 measurements.
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2. Methods
2.1 Air monitoring

Ambient NO2 was measured during the cool season months of December and March
(temperature range 1–21 °C) and the warm season months of May and August (temperature
range 16–34 1 °C) in 2006 and 2007 (2006–7). Average ambient NO2 concentrations were
determined on a weekly basis during the year 2007 for 7 weeks between May and August, 4
weeks between December and March, and 3 weeks between May and July. Weeklong
integrated sampling was chosen to represent chronic ambient exposures. Samples were
collected at least seven days apart, except in two cases. Ogawa Model 3300 passive
samplers were used for NO2 monitoring (Ogawa & Co., Pompano Beach, FL, USA).
Samplers were placed in shelters and suspended at breathing zone height of 1.5–2 m.
Samplers were analyzed by ion exchange chromatography at the Carlsbad Environmental
Monitoring & Research Center (Carlsbad, NM). Ion exchange chromatography was also
used to quantify NO2 in the 1999 study conducted by Smith et al. (2006). Field quality
control included the field blanks, and collocated replicate samples.

2.2 Selection of air monitoring sites
Our NO2 monitoring sites were selected to capture large-scale spatial gradients in NO2
exposures across the entire El Paso ARCH health study area. The selected monitoring sites
were located within infrastructure property owned by the El Paso Water Utilities (EPWU)
and continuous ambient monitoring stations (CAMS) operated by State of Texas
Commission on Environmental Quality (TCEQ) as shown in Fig. 1. Spatially-representative
sites were selected based on traffic and other urban land-use variables from available GIS
databases. During the first year of the study, NO2 measurements were made at 12 locations.
Sites were selected to represent approximate uniform distribution of NO2 concentration
gradients previously described by Gonzales et al. (2005) and Smith et al. (2006). Site I was
replaced with a nearby location (Site Ia) when the property was sold after the first year of
monitoring. The monitoring network was augmented during the second year by selecting an
additional 8 water facility locations. The additional locations were selected by applying two
optimal design criteria to the candidate LUR variables used in prior El Paso spatial studies:
road density, distance to freeway, distance to border crossing, distance to major petroleum
facility, and population density. Two design criteria were applied to evaluate the suitability
of candidate locations to inform an LUR model based on these variables. The first
minimized the confidence interval for the LUR model coefficients (D-criteria), which
ensured that sites near the extremes of the variable space were not under-represented
(OPTEX procedure in SAS v9.2,). The second, a space-filling criterion, ensured uniform
coverage of intermediate values within the design (U-criteria).

During both years, passive NO2 samplers were collocated at four TCEQ sites (sites D, F, H,
and J) to assess potential bias in NO2 measurements relative to corresponding reference
method measurements reported in the EPA AQS database. Hourly results from TCEQ sites
were downloaded from the US EPA Air Quality System (AQS) and averaged over passive
monitor sampling periods to create comparison values. AQS data were required to exhibit a
data completeness level of at least 75% (i.e. 75% of valid hourly data) within each of the
sampling periods.

2.3 GIS variables
GIS variables were generated using ArcView v3.2 and ArcMap v9.3 & 10 (ESRI 2010) with
statistical analyses implemented in SAS version 9.2 (SAS, 2008). Data sources for variables
were: 1) water utility site location from the El Paso municipal government; 2) 2005 traffic
volume data estimates for El Paso County (El Paso Metropolitan Planning Organization); 3)
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U.S. Census data (US Census Bureau, 2010); 4) point source location and emissions data
from the EPA 2002 National Emission Inventory database; 5) elevation (Gesch et al., 2002);
and 6) vehicle border crossing locations (Paso del Norte Mapa). It should be noted that
traffic volume estimates from 2005 and point source emissions data from 2002 were used as
surrogates for 2006–7 conditions. Although some traffic information was available for
2006–7, evaluating and converting these limited data into a suitable format for modeling
was not feasible within the study’s time constraints. The 2002 point source emissions were
the most recent publicly available data at the time.

Based on previous results, source locations for NOx or volatile organic compounds (VOC)
that totaled more than 10,000 kg per year were also included in analyses (Smith et al. 2006).
Traffic intensity was calculated for different distances from measurement and prediction
locations following Smith et al (2006) and using their Arcview programming. The traffic
intensity measure was calculated by multiplying traffic volume estimates (vehicles day−1)
within a distance buffer times their respective segment lengths (km), summing these
products over all segments in the buffer, and then dividing the sum by the total buffer area
(km2). Comparisons of monitoring information and LUR variables in this study versus the
1999 El Paso study (Smith et al., 2006) are presented in Table1.

2.4 LURs
Our model-building strategy began with a LUR model that incorporated the variables used
by Smith et al. (2006) and Gonzales et al. (2005) with subsequent modifications to account
for the expanded spatial and temporal domain of this study. Gonzales et al. (2005) used log-
log regression and Smith et al. (2006) used general additive models (GAM) to assess spatial
gradients across El Paso. We used mixed model regression analysis with random site and
week effects and temporally correlated within-site residual errors (SAS v9.2 proc MIXED)
to estimate land use regression model coefficients. Within-site temporal autocorrelation was
modeled with a Gaussian covariance function in which the decline in correlation was
proportional to the squared temporal difference between measurements. LURs were assessed
by examining Akaike Information Criterion (AIC) corrected for small sample size. By
convention, models that have AIC values that differ by no more than 2.0 are considered
equivalent, and those differing between 2.0 to 10.0 also have substantial empirical support
(Burnham and Anderson, 2002). Collinearity between land use variables was evaluated in
each model by examining the variance inflation factor (VIF). VIF statistics for all LURs
developed were < 4.1, suggesting that the model variables were not encumbered by
collinearity (O’Brien, 2007). We allowed variables to enter the model if a) their role as a
measure of source intensity or dispersion process could be pre-defined, and b) the sign of the
regression coefficient accorded with this expectation (Briggs et al., 1997; 2000). Given the
relatively small data set, the criterion of a p-value of 5% or less was relaxed, accepting the
possibility of overfitting the model. To offset the risk of overfitting, AIC was used to
intentionally penalize models with too many parameters.

Model A was intended to be the closest match to the Smith et al. (2006) model, given that
the current study expanded the range of VOC point sources and introduced seasonality.
Model A included elevation, traffic intensity within a 1000 m buffer, population density,
distance to border crossing, distance to a major VOC source, distance to a NO2 source, and a
binary indicator for cool/warm season differences in average concentrations. Model B tested
one-way interactions between season, elevation, and distance to NO2 sources. An interaction
between season and LUR variables was necessary because the NO2 concentrations in
outlying areas did not increase as much as centrally located sites during high NO2 periods
during the cool season. The interaction term allowed slopes to be different to accommodate
a different concentration surface by season. In Model C the traffic intensity variable buffer
distance was changed to 1500 m, and an interaction between traffic intensity and distance to
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NO2 sources was added. Model D added a term for population density to Model C. In Model
E traffic intensity was replaced with distance to a major highway, which varies by season
(distance-season interaction), distances to VOC sources and to the border, elevation, and
population density. LUR model performance was evaluated based on variance component
estimates which are detailed in the Supplementary Information.

3. Results
3.1 NO2 measurements

Table 2 shows summary statistics of the air pollutants collected at the study sites for each
season. NO2 concentrations averaged 5 to 6 ppb lower than cool season samples in the prior
El Paso study. As in the previous study, concentrations were highest in central El Paso with
lower values in the east and west. In general, pollutant levels were higher in winter than
summer. The exception to this pattern was Site M, which was higher in the warm season (27
ppb) than in the cool season (10 ppb). Weekly NO2 concentrations at site O were greater
than 20 ppb in both seasons. Countywide, the geometric mean of NO2 was 14.7 ppb (95%
CI = 10.3 – 21.1) in the cool season and 7.1 ppb (95% CI = 6.6 – 8.9) during the warm
season. The NO2 concentrations measured by the passive monitors averaged 1.0 ppb
(average error ±3.7 ppb) higher than NO2 measured at co-located TCEQ monitors (R2 =
0.89).

3.2 LURs
Summary statistics for land use variables used in the 2006–7 and 1999 El Paso NO2 LURs
are shown in Table 3. Several land use variables had similar distributions across the two
studies: distances to the international border crossings and to freeways, elevation, and
census tract population density. The minimum and median traffic intensities at buffer
distances ≤1000 m, were higher in the 1999 study. No differences were noted at larger
buffer distances. Differences in traffic intensities at smaller buffer distances were caused by
a different approach to developing the traffic intensity data layer. Smith et al. smoothed the
raw traffic intensity data layer and we did not, which produced areas of zero traffic intensity
because locations were not close enough to streets with traffic data. Because a larger
geographic area was used in the 2006–7 study, more VOC sources were included in the
2006–7 models than in the 1999 models. In addition, the 2006–7 LURs used log-
transformed NO2 as the dependent variable.

NO2 concentrations predicted in Model A were inversely associated with elevation, distance
to border crossing in central El Paso, and population density, but increased significantly with
increasing traffic intensity within 1000 m (Table 4). The slopes for elevation and distance to
major NOx sources were significantly steeper for the warmer season measurements than for
cooler season measurements when NO2 concentrations decreased rapidly with increasing
distance from areas of higher concentration (Model B).

We compared LURs that used traffic intensity, similar to the 1999 LUR model in Smith et
al. (2006), with models that used distance to different road classes (Table 4). All five models
(A–E) performed well in terms of explaining spatial variation in NO2 concentration across
the County (see text and Table S1 in Supplemental Information). AIC values for models A–
E differed by < 9 units. Rather than arbitrarily choose one of these five models as “best,” the
approach taken here was to utilize the average of the different predictions from Models A–E.
Given that the five models used same or similar variables and were not radically different,
averaging had the advantage of incorporating as much information as possible from all the
various predictors into the final estimate. Hence, the resulting predicted value was
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considered to be reasonably robust with respect to model misspecification. (Burnham and
Anderson (2002) provide further details on averaging model estimates.)

3.3 2006–7 LUR model performance
LUR--predicted NO2 concentrations for each ARCH study strata, and averaged over the five
LURs, are shown in Figure 2. These figures show generally higher predicted NO2 levels in
the central section of El Paso where traffic intensity is greatest.

There were no apparent spatial trends in the prediction errors based on examination of leave-
one-out cross-validation measures and studentized residuals. The largest, although the
largest absolute errors tended to be near the study area boundaries. For example, sites M and
L were the westernmost and easternmost sites, respectively and had the largest likelihood
displacement statistics (13.2 and 28.4, respectively) and the largest Cook’s D (5.2 and 1.4,
respectively). Although these locations were influential, their presence in the dataset did not
drastically change the estimated slopes or predicted values. We also examined sensitivity of
predictions from Model D to a relatively high NO2 measurement at site M in July 2007.
When this measurement was omitted, the predicted value at M was 4.5 ppb lower in the
warm season and 3.8 ppb lower in the cool season relative to predictions based on the full
data set. Predictions for all other sites in the warm season were within ±0.6 ppb and were
±1.7 ppb in the cool season predictions. (See supplementary information on further
discussion of the predictions of the separate LURs.)

3.4 Performance of 1999 model
When the 1999 EPA GAM model was updated using land use regression variables from
2006–7 the predictions tended to have a positive bias that varied in magnitude by season and
location (Figure 3). (The 1999 study was based only on cool season measurements that
averaged 3–5 ppb higher than cool season measurements from this study.) The 1999 model
had a smaller bias in the cool season samples than during the warm season samples.
Locations with the largest positive bias were J, L, and R that are in the eastern and
southeastern part of the study area. The westernmost site M was located in the far
northwestern part of the study area and had measured NO2 values that were greater than
predicted by the 1999 model. All four sampling sites identified above were outside the 1999
spatial sampling domain.

Although the 1999 model predictions did not always agree well with the magnitude of our
measurements, they were correlated over the spatial distribution (i. e., generally, areas which
were relatively high (or low) in the 1999 predictions were relatively high (or low) based on
the latter measurements). Correlations (Pearson’s ρ) between 1999 model predictions and
cool season measurements by week were between 0.39 and 0.65 and between 0.10 and 0.62
for warm season weeks. The spatial correlation between the average of cool season
measurements with 1999 model predictions was equal to 0.65 (P = 0.002), but the
correlation with average warm season concentrations was only 0.20 (P = 0.4). When sample
locations outside the 1999 spatial sampling frame were excluded from the analysis, cool
season correlation increased to 0.91 (P < 0.001) and warm season correlation increased to
0.78 (P = 0.001).

Discussion and conclusion
Five LURs were initially considered for generating predictions of large-scale spatial
gradients of ambient NO2 in El Paso County. Model performance suggested that no one
model was clearly superior to the others; thus, model estimates were averaged to mitigate
possible effect(s) of model misspecification on the final prediction (REF). Averaging was
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considered to be relatively more robust compared to arbitrary selection of one of the five
LUR estimates.

Most LUR studies typically choose one model to develop predictions. For example, it is
possible to simply choose the most parsimonious model, i.e. that with the fewest parameters.
However, model averaging employed here weighted the model predictions based on the
models’ AIC values, thus incorporating parsimony since the AIC penalizes models as the
parameter count increases. As noted above, the averaging procedure mitigates the possible
effect(s) of model misspecification on the final prediction. Averaging the models does
necessitate running all the models to generate separate predictions. Though running five
LUR models instead of one may seem laborious, the major effort in predicting exposures
entails the assembly of model variables and collection of new ambient monitoring data.
Against this required effort, the running of five models versus one represents relatively little
extra work for the trade off of reduced exposure misclassification.

Despite differences in sampling time frame, model covariates and model estimation
methods, the predicted NO2 concentration gradients were similar in the current study as
compared to the 1999 El Paso study conducted by Smith et al. (2006). Model-based
estimation of chronic NO2 concentration gradients using land use variables was not sensitive
to changing environments or analysis methodology. The current work shows that a LUR
model for ambient NO2 concentrations in El Paso was applicable after a period of 7-years.
The similar LUR results obtained here demonstrate that for El Paso, LURs developed from
prior years may still be applicable to assess ambient exposure conditions for subsequent
years. Through a comprehensive LUR modeling campaign, it was shown that the nature of
the most influential predictive variables remained the same for El Paso between 1999 and
2006–7. The various LURs evaluated in this study provide flexibility in assessing predictor
variable influences for future spatial studies in El Paso.

As expected, NO2 measurements indicated seasonal differences in NO2 concentrations with
higher levels measured in winter versus summer. Higher NO2 wintertime concentrations
have also been found in other LUR studies in Dallas and Cleveland during winter and
summer seasons using the same sampling methods (Smith et al., 2011, Mukerjee et al.,
2011). Both the 2006–7 and 1999 LURs were developed using NO2 concentrations
measured during the cool season months and their NO2 predictions were most highly
correlated for these months (ρ = 0.91). During other seasons, the LUR model developed in
1999 over predicted ambient NO2 levels measured in 2006, but captured the similar spatial
gradients as was indicated by the statistically significant correlation with warm season
measurements (ρ = 0.78). The over prediction could be partially explained by overall lower
regional NO2 ambient levels in 2006, as reported by the EPA National Air Trends website.
Nonetheless, explicit distinction between warm and cool seasons in the LURs developed
here has also been found to be significant in LURs developed in Cleveland (Mukerjee et al.,
2011). If the health issue being studied has a seasonal aspect, it would be beneficial for the
corresponding LURs to account for this distinction.

Although in numerous LUR models population density has a positive coefficient reflecting
its role as a surrogate for pollution sources, a negative coefficient is observed in the current
LUR models. In Smith et al. (2006), population density in El Paso was estimated with the
loess portion of the semi-parametric model, and indeed higher population was associated
with higher NO2 concentrations. However, a negative association was observed in
preliminary LUR models for particulate matter in 2006–7 El Paso ARCH study, though not
included in the final published models. A possible explanation for this association is the
location of commercial and industrial corridors with high motor vehicle traffic densities in
areas of relatively low population density. The current result for population density may also
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be a reflection of 1) the use of block groups instead of census tracts as in Smith et al. (2006)
to calculate population density; 2) the expansion to include more point sources than Smith et
al. (2006); and 3) the geographic extension from within the El Paso city limits to the entirety
of El Paso County. Though median population is roughly similar, the present study
encompasses a broader range of population densities than did the earlier study (Table 3).
Further, the occurrence of point sources in the more sparsely populated areas of the county
may have led to this somewhat curious result, although the overall relationship may not have
been strong enough to show up in the collinearity check. For small buffer sizes (<500m),
monitoring sites in commercial and industrial areas could have also contributed to the
observed inverse association.

As encountered during the 1999 study, the spatial distribution of NO2 concentrations
measured in 2006–7 varied similarly by city section with the central El Paso exhibiting
higher NO2 levels than the outlying north and east areas. Though the slope of some 2006
LUR variables were steeper for warm season data to account for higher NO2 concentrations
close to major sources and less variable concentrations near the edge of the study area far
from sources, overall spatial gradients were reproducible across seasons. There were no
apparent spatial trends in the 2006–7 prediction errors based on examination of studentized
residuals, although the largest absolute errors tended to be near the study area boundaries
(sites L and M). Spatial variability in the measured and modeled NO2 concentrations across
El Paso County indicate that NO2 data from monitoring sites should not be extrapolated to
surrounding areas, since concentrations varied by sources, land cover and topography.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A LUR model for ambient NO2 concentrations in El Paso was applicable 7
years after its development.

• The most influential predictive variables remained the same for El Paso between
the 1999 and 2006.

• The LUR models evaluated provide flexibility in assessing predictor variable
influences.
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Figure 1.
Locations of 2006–7 NO2 monitoring sites (A), and the locations of 1999 Smith et al. (2006)
NO2 monitoring sites (B). Sites A through L were established in 2006. Sites M through T
were added in 2007.
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Figure 2.
Predicted NO2 for child asthma study strata in El Paso County, TX for warm (A) and cool
(B) seasons. Estimates are weighted averages over LUR models A – E.
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Figure 3.
Comparison of measured NO2 with values predicted by the 1999 EPA GAM model (Smith
et al. 2006) using updated land use variable inputs. Boxplots show the distribution of
differences between measured and predicted values by start of sample week (A) and by
sampling location (B).
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Table 1

Summary of land use regression model parameters in the 2006–7 a and the 1999 b El Paso studies

NO2 measurement 2006–7 El Paso County Study a 1999 El Paso Study b

Samplers and duration 7-day passive samples (Ogawa) 7-day passive samples (Ogawa)

Temporal sampling Cool Season: 4 weeks, November-
March 2006 and 2007
Warm Season: 14 weeks, May -
August 2006 and 2007

Cool Season: 2 weeks, November -
December 1999

Spatial sampling 21 sites throughout El Paso County:
Water utility locations and regulatory
air monitoring stations operated by
TCEQ sites

22 schools in El Paso city limits
used for LUR development; 2
regulatory air monitoring stations
operated by TCEQ used for
validation

Modeling Methods

Estimation Models Linear Mixed Model
(log-transformed pollutants)

General Additive Model

GIS-derived Covariates Elevation,
Traffic Intensity,
Population Density,
Distance to the international border
crossing
Distance to Freeways
Distance to major VOC and/or NOx
source (>10,000 kg/year)
Season

Elevation,
Traffic Intensity,
Population Density,
Distance to the international border
crossing
Distance to oil facilities

a
Seven weeks of NO2 monitoring conducted May-August 2006, four weeks December 2006-March 2007, and three weeks May-July 2007;

b
Smith et al. (2006)
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Table 2

Comparison of measured NO2 concentrations collected during the 2006–7 and the 1999 b El Paso studies by
sector.

El Paso Sectors

Season Measured NO2 Concentrations

2006–7 Study a
Mean (Range),

ppb
1999 Study b

Mean (Range), ppb

Central c Cool
Warm

22 (5, 37)
13 (2, 45)

28 (18, 37)
-

Eastern d Cool
Warm

14 (4, 35)
8 (1,34)

19 (11, 28)
-

Western e Cool
Warm

15 (8, 24)
10 (4, 41)

21 (12, 27)
-

Entire study area Cool
Warm

17 (4, 37)
10 (1, 45)

22 (11, 37)
-

a
Cool Season: 4 weeks, November- March 2006 and 2007; Warm Season: 14 weeks, May -August 2006 and 2007

b
Smith et al. (2006) 2 weeks cool season monitoring in November and December 1999, all sites located at elementary schools within the El Paso

city limits and within the El Paso sectors listed.

c
Corresponds to 2007–7 monitoring sites C, H, I, Ia and O

d
Corresponds to 2007–7 monitoring sites D, E, J, K, L, P, Q, R, S and T

e
Corresponds to 2007–7 monitoring sites A, B, M and N
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