THE ROLE OF α_1 AND α_5 SUBUNIT-CONTAINING GABA$_A$ RECEPTORS IN MOTOR IMPAIRMENT INDUCED BY BENZODIAZEPINES IN RATS

Marija Milića, Jovana Divljakovića, Sundari Rallapallib, Michael L. Van Linnb, Tamara Timića, James M. Cookb, and Miroslav M. Savića*

aDepartment of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia

bDepartment of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA

Abstract

Benzodiazepines negatively affect motor coordination and balance and produce myorelaxation. The aim of the present study was to examine the extent to which populations of GABA$_A$ receptors containing α_1 and α_5 subunits contribute to these motor-impairing effects in rats. We used the nonselective agonist diazepam and the α_1-selective agonist zolpidem, as well as nonselective, α_1- and α_5-subunit-selective antagonists flumazenil, βCCT and XLi093, respectively. Ataxia and muscle relaxation were assessed by rotarod and grip strength tests performed 20 minutes after i.p. treatment. Diazepam (2 mg/kg) induced significant ataxia and muscle relaxation which were completely prevented by pretreatment with flumazenil (10 mg/kg) and βCCT (20 mg/kg). XLi093 antagonized the myorelaxant, but not ataxic actions of diazepam. All three doses of zolpidem (1, 2 and 5 mg/kg) produced ataxia, but only the highest dose (5 mg/kg) significantly decreased the grip strength. These effects of zolpidem were reversed by βCCT at doses of 5 and 10 mg/kg, respectively. The present study demonstrates that α_1 GABA$_A$ receptors mediate ataxia and indirectly contribute to myorelaxation in rats, while α_5 GABA$_A$ receptors contribute significantly, although not dominantly, to muscle relaxation but not ataxia.

Keywords

ataxia; muscle relaxation; rotarod; grip strength; rat

INTRODUCTION

Benzodiazepines (BZs) were introduced into clinical practice at the beginning of the 1960s and since then have been widely prescribed as anxiolytic, hypnotic, anticonvulsant and myorelaxant drugs. During the 1990s, it became clear that pharmacological effects of BZs are mediated via positive modulation of four different subtypes of GABA$_A$ receptors.

*Corresponding author: Dr Miroslav M. Savić, Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia Tel.:+381-11-3951280 Fax: +381-11-3972840 miroslav@pharmacy.bg.ac.rs (M. M. Savić).

Conflicts of Interest: We have no conflict of interest to declare.

Publisher’s Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
namely those containing the α_1-, α_2-, α_3-, or α_5-subunit, in addition to the γ_2 subunit (Sieghart 2006). Genetic and pharmacological studies, by the means of the generation of mutant mouse lines [α_1(H101R), α_2(H101R), α_3(H126R) and α_5(H105R) knock-ins] (Rudolph and Mohler 2004) and synthesis of novel, subtype-selective ligands, have helped in linking particular behavioral response to specific GABA$_A$ receptor subtypes. Sedative effects of BZs were principally attributed to the α_1-GABA$_A$ receptor subtype, anxiolytic actions to α_2/α_3- containing receptors, anterograde amnesic effects to α_1/α_5 subtypes and anticonvulsant activity partially to α_1-GABA$_A$ receptors (McKernan et al. 2000; Low et al. 2000; Collinson et al. 2002; Savić et al. 2009).

Benzodiazepines negatively affect motor coordination and balance, i.e. they induce ataxia, which is together with myorelaxation often referred to as motor impairment (Verster et al. 2002; Licata et al. 2009). In contrast to ataxia, myorelaxation can be therapeutically desirable, and disentangling the molecular substrates of these two effects would benefit the development of compounds with an improved pharmacological profile. Like sedation, the impaired coordination and balance were also ascribed to potentiation at α_1-GABA$_A$ receptors and these results were consistent with experiments in both rodents and non-human primates (McKernan et al. 2000; Platt et al. 2002; Licata et al. 2009). Ligands that lack or have substantially decreased activity at α_1-GABA$_A$ receptors, compared to conventional nonselective benzodiazepines, did not engender ataxia over the wide dose range tested (Licata et al. 2005; Mirza et al. 2008; Savić et al. 2008; Atack 2010). The experiments on genetically-modified mice have excluded the role of the α_1 subunit as a molecular substrate of myorelaxation (Rudolph et al., 1999; McKernan et al. 2000) and found that the myorelaxant properties of diazepam are mainly mediated by α_2-GABA$_A$ receptors; at very high doses of diazepam, the α_3- and α_5-GABA$_A$ receptor subtypes may also become implicated (Crestani et al. 2001). However, a number of pharmacological studies have shown that muscle relaxation induced by nonselective BZ site agonists could be reversed by the use of the α_1-GABA$_A$ selective antagonist β-CCt, demonstrating ambiguity in this area (Griebel et al. 1999; Licata et al. 2009).

The overall aim of the present study was to examine, by pharmacological means, the extent to which α_1- and α_5-GABA$_A$ receptor subtypes contribute to BZ-induced ataxia and muscle relaxation in Wistar rats, and to provide further information on the molecular substrates of these two effects. Benzodiazepine-induced ataxia in rodents is usually measured using the rotarod test (Mirza et al. 2008; Savić et al. 2008), while the myorelaxant effects of BZs are often assessed using the grip strength test (Maurissen et al. 2003). In the present study we used diazepam, a ligand with high efficacy and no selectivity for GABA$_A$ receptor subtypes, and the α_1-GABA$_A$ receptor-selective agonist zolpidem, which possesses intermediate and no affinity for α_2/α_3 and α_5-GABA$_A$ receptor subtypes, respectively (Sanna et al. 2002). By the use of the GABA$_A$ nonselective antagonist flumazenil, the α_1-subunit affinity-selective antagonist β-CCt (Shannon et al. 1984) and the α_5-subunit affinity- and efficacy-selective antagonist XLi093 (Li et al. 2003), we examined the degree to which zolpidem- and diazepam-induced ataxia and myorelaxation could be antagonized.

METHODS

Subjects

Male Wistar rats, weighing 200–230g, were supplied by Military Farm, Belgrade, Serbia. Rats were housed in groups of six and were maintained under standard laboratory conditions (21 ± 2°C, relative humidity 40–45%) with free access to pellet food and tap water. They were kept on 12:12 h light/dark cycle with lights on at 07.00 h. All handling and testing took place during the light phase of the diurnal cycle. Experiments were carried out in accordance with the ethical guidelines of the National Institutes of Health (NIH).
with the EEC Directive 86/609 and were approved by the Ethical Committee on Animal Experimentation of the Faculty of Pharmacy in Belgrade.

Rotarod test

Motor performance was assessed using an automated rotarod (Ugo Basile, Italy). Before testing, rats were trained for three days until they could remain on a revolving rod for 120 s with acceleration from 15 rpm to 25 rpm. During the training days, all animals were given three training sessions of 2 min each, with a 30 min inter-session interval. On the fourth day, rats that fit the given criteria were selected for inclusion in the experiment. Groups of 6–8 animals received one of the following treatments: diazepam (0 and 2 mg/kg) in combination with 8CCt (0, 1, 5, 20 and 30 mg/kg), flumazenil (0, 10 and 20 mg/kg), or XIi093 (0, 10 and 20 mg/kg), as well as zolpidem (0, 1, 2 and 5 mg/kg) and zolpidem (0 and 2 mg/kg) combined with 8CCt (0, 5 and 20 mg/kg) or flumazenil (0, 10 and 20 mg/kg). Latency to falling off the rod was recorded automatically for each animal.

Grip strength test

This test was used to examine the myorelaxant properties of agonists, antagonists and their combinations. Two experiments were performed: in the first, animals received diazepam (0 and 2 mg/kg) in combination with three levels of flumazenil (0, 10 and 20 mg/kg), 8CCt (0, 20 and 30 mg/kg) and XIi093 (0, 10 and 20 mg/kg); in the second experiment, animals received zolpidem (0, 1, 2 and 5 mg/kg) and zolpidem (0 and 5 mg/kg) in combination with 8CCt (0 and 10 mg/kg). After administration of the appropriate treatment, rats were allowed to grip with their front paws a metal trapezoid wire attached to a grip-strength meter (Ugo Basile, Italy). Grip strength was tested by dragging the rat gently by the tail. The apparatus measured the pull force (expressed in grams) necessary to overcome the animal's forelimbs grip-strength to the bar connected to a force transducer. Each animal was given three consecutive trials and the maximum value was taken.

Drugs

The compounds used were diazepam (Galenika, Serbia), zolpidem (Toronto Chemical Research, Canada), flumazenil (Feicheng BoYuan Fine Chemicals Co., Ltd, China), XIi093 (4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid, 8-ethyl-5,6-dihydro-5-methyl-6-oxo-, 1,3-propanediyl ester), the α5-subunit affinity- and efficacy-selective antagonist and 8CCt (t-butyl-β-carboline-3-carboxylate), the α1-subunit affinity-selective antagonist; the latter two agents were synthesized at the Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, USA. The ligands were suspended in a solvent containing 85% distilled water, 14% propylene glycol and 1% Tween-80. All animals received two i.p. injections consisting of the appropriate ligand(s) and/or solvent (in a total volume of 2 ml/kg), twenty minutes before the testing. When a combination of two compounds was administered, the first compound was injected into the lower right and the second into the lower left quadrant of the peritoneum.

Statistics

All numerical data presented in the figures are shown as the mean ± S.E.M. The dose response of zolpidem was assessed using one-way ANOVA, with post-hoc Student-Newman-Keuls test (SNK). The effects of combined treatments were assessed using two-way ANOVA with post-hoc SNK test, where applicable.
RESULTS

Rotarod

Animals that received 2 mg/kg diazepam spent significantly less time on the rotarod than the control group of rats (Fig. 1; p<0.001). When diazepam was injected immediately after flumazenil, a significant main effect of flumazenil [F (2, 40) = 18.07, p<0.001] and diazepam × flumazenil interaction [F (2, 45) = 18.07, p<0.001] were found. Both 10 mg/kg and 20 mg/kg of flumazenil antagonized the motor incoordination induced by diazepam (Fig. 1a; both p<0.001 compared to 2 mg/kg diazepam). Similarly, co-administration of βCCt resulted in a significant treatment effect [F(4,68)= 4.05, p<0.005] and a significant diazepam × βCCt interaction [F(4,77)=3.83, p<0.01]. While the two lower doses of βCCt (1 and 5 mg/kg) failed to antagonize the diazepam-induced motor impairment, co-administration of the two higher doses of βCCt (20 and 30 mg/kg) significantly increased the time spent on the rotarod (Fig. 1b; both p<0.001), when compared to diazepam dosed at 2 mg/kg. XLi093, an α5-selective antagonist, did not antagonize the diazepam-induced motor incoordination (Fig. 1c).

All three doses of zolpidem (1, 2 and 5 mg/kg) impaired motor coordination (Fig. 2a; p<0.001 in all three cases). Pretreatment with flumazenil significantly influenced the zolpidem-induced ataxia [zolpidem: F(1,37)=114.02, p<0.001; zolpidem × flumazenil interaction: F(2,42)=108.54, p<0.001]. When compared with animals that received only 2 mg/kg of zolpidem, animals treated with the combination of zolpidem 2mg/kg + flumazenil (10 or 20 mg/kg) spent significantly more time on the rotarod (Fig. 2b; p<0.001 and p<0.001, respectively). The effect on motor coordination of βCCt [F(1,34)=73.94, p<0.001] and the zolpidem × βCCt interaction [F(2,39)=40.61, p<0.001] were also significant. The subsequent post hoc test showed that both 5 and 20 mg/kg of βCCt antagonized the zolpidem-induced ataxia (Fig. 2c; both p<0.001, compared to 2 mg/kg zolpidem). There was also a significant difference in the time spent on the rotarod between animals that received 2 mg/kg zolpidem + 5 mg/kg βCCt and animals that received only 5 mg/kg βCCt (p<0.025).

None of the antagonists (flumazenil, βCCt and XLi093) itself impaired the motor performance on the rotarod.

Grip strength

Application of 2 mg/kg diazepam produced significant muscle relaxation (Fig. 3; p<0.01, relative to control). For the combination of diazepam + flumazenil, two-way ANOVA showed significant effects of diazepam [F (1, 31) =6.09, p<0.02] and the flumazenil × diazepam interaction [F (2, 36) =5.94, p<0.01]; co-administration of flumazenil (10 and 20 mg/kg) reversed the diazepam-induced myorelaxation (Fig. 3a; p<0.001 and p<0.01, compared to diazepam 2 mg/kg, respectively). As with flumazenil, the effect of βCCt did not reach statistical significance while the effect of diazepam [F (1, 28) =7.82, p<0.01] as well as the interaction [F (2, 33) =5.83, p<0.01] were significant. There were significant differences between the group that received 2 mg/kg diazepam and groups that received 2 mg/kg diazepam with either 20 mg/kg or 30 mg/kg of βCCt (Fig. 3b; p<0.05 and p<0.001, respectively). The assessment of the results obtained with the α5-selective antagonist showed no significant effect of XLi093 on grip strength [F (2, 30) =2.46, NS] but a significant diazepam × XLi093 interaction [F (2, 35) =6.18, p<0.01]; the differences between groups that received diazepam + XLi093 (10 and 20 mg/kg) and the group that received diazepam were statistically significant (Fig. 3c; p<0.002 and p<0.005, respectively).

Zolpidem significantly decreased grip strength [F (3, 20) =10.34, p<0.001]. Muscle relaxation was significant with 5 mg/kg zolpidem (p<0.001) while the two lower doses (1 mg/kg and 2 mg/kg) were at the control level (Fig. 4a). When the combination 5 mg/kg...
zolpidem + 10 mg/kg βCCt was assessed, significant effects of zolpidem \([F(1,15)=19.74, p<0.001]\), βCCt \([F(1,15)=16.11, p<0.001]\) and their interaction \([F(1,18)=27.53, p<0.001]\) were found. While βCCt itself did not alter grip strength, its addition to zolpidem reversed the zolpidem-induced muscle relaxation (Fig. 4b; \(p<0.001\), compared to 5 mg/kg zolpidem).

DISCUSSION

Studies on genetically modified mice, in which a distinct α subunit of GABA\(_A\) receptors is rendered insensitive to diazepam, represent valuable tools in revealing which receptor subtype is necessary for the expression of a specific behavioral response. These experiments pointed toward α\(_1\)-GABA\(_A\) receptors as the main subtype in eliciting ataxia in mice (McKernan et al. 2000). In the present study, diazepam- and zolpidem-induced ataxia on the rotarod in rats were successfully antagonized with the α\(_1\)-selective antagonist βCCt. Because of its 20-fold selectivity for α\(_1\)-GABA\(_A\) receptors compared with α\(_2\)-GABA\(_A\) and α\(_3\)-GABA\(_A\) receptors, βCCt is one of the most selective BZ-site ligands identified to date (Cox et al. 1995; Huang et al. 2000). In many behavioral studies, βCCt successfully reversed effects of BZs related to the α\(_1\)-GABA\(_A\) receptor subtype, such as ataxia, sedation and anticonvulsant activity (Griebel et al. 1999; Platt et al. 2002; Savić et al. 2009). However, not all experiments using βCCt as the α\(_1\)-selective ligand have reported antagonism of the diazepam-induced ataxia in mice or rats. Such discrepancies may have resulted from differences in experimental design. Shannon and colleagues (1984) reported that administration of 30 mg/kg βCCt did not attenuate the diazepam-induced ataxia in mice. The degree of motor impairment was assessed using an inverted-screen test, where the concomitant myorelaxation was likely to influence the performance of the test. Another study found that motor incoordination engendered by diazepam, triazolam and zolpidem in mouse pups was not sensitive to βCCt (Rowlett et al. 2001). However, motor impairment was related to rolling motions, as opposed to normal locomotor activity of mouse pups, and probably involved a predominantly spinal mechanism and engagement of α\(_2\)- and α\(_3\)-GABA\(_A\) receptor subtypes (McKernan and Whiting 1996). In the present study, the dose of βCCt needed to antagonize zolpidem-induced ataxia was substantially lower than the dose that antagonized the effect of diazepam (5 mg/kg vs. 20 mg/kg). This implies that an effect of diazepam, possibly myorelaxation, mediated by receptors other than the α\(_1\)-GABA\(_A\) receptor, may have contributed to the influence of diazepam, but not zolpidem, on rotarod test performance. In this scenario, the dose of 20 mg/kg of βCCt may have either blocked the α\(_1\)-GABA\(_A\) receptor population more completely or started to prevent binding of diazepam to non α\(_1\)-GABA\(_A\) receptors.

The possibility that the α\(_5\)-GABA\(_A\) receptor subtype exhibits a modulatory role on behavioral effects predominantly conferred via the α\(_1\) subunit, such as sedation, tolerance development and memory impairment, has been previously proposed (van Rijnsoever et al. 2004; Savić et al. 2008; Savić et al. 2009). Hence, we tested the ability of the α\(_5\) selective antagonist XLi093 to influence the diazepam-induced ataxia. At the dose of 20 mg/kg, which was previously shown to intensify diazepam-induced sedation (Savić et al. 2009), XLi093 did not significantly affect the motor-impairing effect of diazepam. This means that ataxia, as assessed in the rotarod test in rats, is not dependent on activation of α\(_5\)-GABA\(_A\) receptors.

While genetic studies did not detect any role of the α\(_1\) subunit in mediating muscle relaxation (Rudolph et al. 1999; McKernan et al. 2000), the data from experiments with subtype-selective ligands varied from study to study depending on the species used and the dose of agonist or antagonist applied (Griebel et al. 1999; Elliot and White, 2001; Licata et al. 2009). In a radiotelemetric study in rats, zolpidem at the dose of 5 mg/kg, but not 2.5 mg/kg, induced a significant decrease in electromyographic activity, a parameter aimed to assess

Behav Pharmacol. Author manuscript; available in PMC 2013 April 1.
muscle relaxation (Elliot and White, 2001). In the present study, significant myorelaxation observed after both diazepam and zolpidem administration was prevented by pretreatment with bCCt. As the dose of zolpidem producing myorelaxation (5 mg/kg) was substantially higher than the minimal dose that induced ataxia (1 mg/kg), the possibility that zolpidem-induced myorelaxation is not mediated via \(\alpha_1 \)-GABA\(_A\) receptors needs to be discussed. Despite its binding preference for \(\alpha_1 \)-GABA\(_A\) receptors, zolpidem also binds to and potentiates effects at \(\alpha_2 \)-GABA\(_A\) and \(\alpha_3 \)-GABA\(_A\) receptors (Sanna et al. 2002). The in vivo selectivity of zolpidem for the \(\alpha_1 \)-enriched cerebellum, in contrast to \(\alpha_2/\alpha_3 \)-enriched spinal cord, assessed through the reduction in flumazenil binding, is generally less than the \(\alpha_1 \) selectivity of this compound in vitro (Atack et al. 1999). However, the displacement curve for zolpidem in the spinal cord of rats (Benaviders et al., 1992) and mice (Atack et al., 1999) is relatively flat, and very high doses of zolpidem (>30 mg/kg in mice; Atack et al., 1999) are needed for half-inhibition of radio-labeled flumazenil binding in this region predominantly implicated in GABA-mediated myorelaxation (Bohlhalter et al., 1996). Thus, one can conclude that muscle-relaxant effect of zolpidem at the dose of 5 mg/kg may not be exclusively mediated by \(\alpha_2 \)-GABA\(_A\) receptors, the subtype largely responsible for the muscle-relaxant effect of diazepam (Crestani et al. 2001). On the other hand, bCCt (30 mg/kg) reversed diazepam-induced muscle relaxation in mice (Griebel et al. 1999) and at the dose of 3 mg/kg it attenuated myorelaxant properties of several nonselective benzodiazepine agonists in squirrel monkeys (Licata et al. 2009). The propensity of bCCt to antagonize some of the principally non-\(\alpha_1 \) mediated effects of diazepam was also shown in the elevated plus-maze and light-dark test of anxiety (Griebel et al. 1999; Belzung et al. 2000).

Nonetheless, a potentiating effect of 30 mg/kg bCCt on the anxiolytic actions of BZs in rats has also been repeatedly reported (Savić et al. 2004; 2005), which cannot be a consequence of putative antagonism on \(\alpha_2 \)-GABA\(_A\) receptors. Assessment of the ability of 10 mg/kg bCCt (i.p.) to displace the radio-labeled flumazenil in mice indicates that bCCt at the given dose level preferentially targets the cerebellum, while it binds to less than 40% of GABA\(_A\) receptors, mainly of the \(\alpha_2 \)-subtype, in the spinal cord (Rowlett et al. 2005). Given the doses of zolpidem and bCCt that we used, we hypothesize that under our experimental conditions the actions of these ligands may, to a small extent, have involved the \(\alpha_2 \)-, in addition to the predominantly affected \(\alpha_1 \)-GABA\(_A\) receptor subtype. In the presence of intense activation of \(\alpha_1 \)-GABA\(_A\) receptors by a large dose of zolpidem, the presumed small involvement of \(\alpha_2 \)-GABA\(_A\) receptors may have been large enough to trigger muscle relaxation.

The contribution of the \(\alpha_5 \) subunit in mediating the muscle-relaxant effect of diazepam was observed in \(\alpha_5 \) (H105R) mutant mice (Crestani et al. 2002). Here we report on antagonism of the muscle-relaxant effect of diazepam with the \(\alpha_5 \) selective ligand XLI093 in rats. Nonetheless, muscle relaxation can be achieved without apparent activation of \(\alpha_5 \)-GABA\(_A\) receptors, as demonstrated in experiments with zolpidem (Elliot and White, 2001; Licata et al. 2009). Furthermore, an \(\alpha_2/\alpha_3 \) selective compound devoid of agonistic activity at the \(\alpha_5 \) subunit exerted muscle relaxation in monkeys (Licata et al. 2005). These results suggest that the role of the \(\alpha_5 \) subunit in the BZ-induced myorelaxation could be described as non-dominant, but still significant, and prompt further investigation.

The present study demonstrates that \(\alpha_1 \)- and \(\alpha_5 \)-GABA\(_A\) receptor subtypes differentially contribute to motor impairing effects of BZs in rats. While activation of \(\alpha_1 \)-GABA\(_A\) receptors is a prerequisite for eliciting ataxia, these receptors are probably not directly involved in mediating muscle relaxation but still may contribute to manifestation of this effect triggered by a small fraction of activated \(\alpha_2 \)-GABA\(_A\) receptors. On the other hand, activation of \(\alpha_5 \)-GABA\(_A\) receptors contributes significantly, although not dominantly, to muscle relaxation, but not ataxia. Thus, in the quest for ligands with an improved pharmacological profile, it could be of importance to avoid substantial potentiation through...
α1 subunits, if ataxia is to be prevented, whereas a certain level of activation at both α1 and α5 subunits could be advantageous when muscle relaxation is required.

Acknowledgments

The authors acknowledge the support by The Ministry of Science, R. Serbia - Grant No. 175076 (MMS) and by NIMH grant MH-046851 (JMC).

Source of Funding: The work has been funded by The Ministry of Science, R. Serbia – Grant No. 175076 (MMS) and by NIMH grant MH-046851 (JMC)

REFERENCES

Licata SC, Platt DM, Cook JM, Sarma PV, Griebel G, Rowlett JK. Contribution of GABAA receptor subtypes to the anxiolytic-like, motor, and discriminative stimulus effects of benzodiazepines: studies with the functionally selective ligand SL651498 [6-fluoro-9-methyl-2-phenyl-4-

Figure 1.
The influence of pretreatment with antagonists flumazenil (Flu), β-CCt and XLi093 on diazepam-induced (Dzp) ataxia on the rotarod. Data are mean ± S.E.M. from n=8 rats per group. ***p<0.001 versus vehicle; ++p<0.01 versus 2 mg/kg diazepam; +++p<0.001 versus 2 mg/kg diazepam.
Figure 2.
Effects of zolpidem (Zol) on rotarod performance and the influence of pretreatment with flumazenil (Flu) and β-CCt on ataxia induced by zolpidem (2 mg/kg). Data are mean ± S.E.M. from n=6 rats per group. *p<0.05 versus vehicle; ***p<0.001 versus vehicle; +++p<0.001 versus 2 mg/kg zolpidem.
Figure 3.
The influence of pretreatment with the antagonists flumazenil (Flu), β-CCt and XLi093 on the diazepam-induced (Dzp) muscle relaxation measured in the grip strength test. Data are mean ± S.E.M. from n=8 rats per group. **p<0.05 versus vehicle; ***p<0.001 versus vehicle; *p<0.05 versus 2 mg/kg diazepam; ++p<0.01 versus 2 mg/kg diazepam; +++p<0.001 versus 2 mg/kg diazepam.
Figure 4.
(a) Muscle relaxant effect of zolpidem (Zol) and (b) the influence of pretreatment with βCCt. Data are mean ± S.E.M. from n=6 rats per group. **p<0.05 versus vehicle; ***p<0.001 versus vehicle; +++p<0.001 versus 5mg/kg zolpidem.