The supplementary material contains the proof of Theorem 2.

Appendix 4. Proof of Theorem 2

It suffices to show that, with probability tending to one,

$$\mathcal{P}_{ij}\hat{g} = 0 \iff \mathcal{P}_{ij}g_0 = 0,$$

$$\hat{\beta}_j = 0 \iff \beta^0_j = 0$$

for $j = 1, \ldots, d$. Without loss of generality, we focus on the case $d = 2$, i.e. $g(x_1, x_2) = b + \beta_1 k_1(x_1) + \beta_2 k_1(x_2) + g_{11}(x_1) + g_{12}(x_2)$, where $g_{ij}(x_j) \in \mathcal{S}_{\text{per},j}$, in the proof. Note that in this case the sample size n is m^2 since we assume $n_1 = n_2 = m$. We have three major steps in the proof.

Step I: Formulation

Let $\Sigma = \{R_{1i}(x_{i,1}, x_{k,1})\}_{i,k=1}^{m}$ be the $m \times m$ marginal Gram matrix corresponding to the reproducing kernel for \mathcal{S}_{per}. Let $\mathbf{1}_m$ be a vector of m ones. Assuming the observations are permuted appropriately, we can write the $n \times n$ Gram matrix $R_{11} = \Sigma \odot (\mathbf{1}_m \mathbf{1}_m')$ and $R_{12} = (\mathbf{1}_m \mathbf{1}_m') \odot \Sigma$, where \odot stands for the Kronecker product between two matrices. Let $\{\xi_1 = \mathbf{1}_m, \xi_2, \ldots, \xi_m\}$ be an orthonormal (with respect to the inner product $\langle \cdot, \cdot \rangle_m$ in \mathbb{R}^m) eigensystem of Σ with corresponding eigenvalues $m\eta_1, \ldots, m\eta_m$ where $\eta_1 = (720m^4)^{-1}$. Thus, we have

$$\langle \xi_i, \xi_j \rangle_m = 0 \implies \frac{1}{m} \sum_{i=1}^{m} \xi_{ij} = 0 \text{ for } j \geq 2,$$

$$\langle \xi_j, \xi_j \rangle_m = 1 \implies \frac{1}{m} \sum_{i=1}^{m} \xi_{ij}^2 = 1 \text{ for } j \geq 1.$$
From \cite{Uteras1983}, we know that \(\eta_2 \geq \eta_3 \geq \ldots \geq \eta_m \) and \(\eta_i \sim i^{-\alpha} \) for \(i \geq 2 \).

Let \(\Upsilon \) be the \(m \times m \) matrix with \(\{ \xi_1, \ldots, \xi_m \} \) as its columns. We then define a \(n \times n \) matrix \(\mathbf{O} = \Upsilon \otimes \Upsilon \). It is easy to verify that the columns of \(\mathbf{O} \), i.e. \(\{ \tilde{\xi}_i : i = 1, 2, \ldots, n \} \), form an eigensystem for each of \(\mathbf{R}_{11} \) and \(\mathbf{R}_{12} \). We next rearrange the columns of \(\mathbf{O} \) to form \(\{ \zeta_{ij} \} \) so that their first \(m \) elements are those corresponding to nonzero eigenvalues for \(\mathbf{R}_{11} \) and the rest \((n - m) \) elements are given by the remaining \(\tilde{\xi}_i \) for \(j = 1, 2 \). The corresponding eigenvalues are then \(\eta_{ij} = n \eta_i \) for \(i = 1, \ldots, m \) and zero otherwise. It is clear that \(\{ \tilde{\xi}_1, \ldots, \tilde{\xi}_n \} \) is also an orthonormal basis in \(\mathbb{R}^n \) with respect to the inner product \(\langle u, v \rangle_n \). Thus we have \(\mathbf{O}^T \mathbf{O} = n \mathbf{I} \) and \(\mathbf{O} \mathbf{O}' = n \mathbf{I} \).

Recall that our estimate \((\hat{\beta}, \hat{g}_{11}, \hat{g}_{12}) \) is obtained by minimizing

\[
\frac{1}{n} (\mathbf{y} - \mathbf{T} \beta - \mathbf{R}_{w_1, \theta} \mathbf{c})'(\mathbf{y} - \mathbf{T} \beta - \mathbf{R}_{w_1, \theta} \mathbf{c}) + \lambda_1 \sum_{j=1}^{d} w_{0j} |\beta_j| + \tau_0 \mathbf{c}' \mathbf{R}_{w_1, \theta} \mathbf{c} + \tau_1 \sum_{j=1}^{d} w_{1j} \theta_j,
\]

over \((\beta, \mathbf{c}, \theta) \), see (5.3). For simplicity, we hold \(\tau_0 = 1 \). By using the special construction of \(\mathbf{O} \), i.e. \(\mathbf{O} \mathbf{O}' = n \mathbf{I} \), we can rewrite (8.20) as

\[
(\mathbf{z} - \mathbf{O}' \mathbf{T} \beta/n - \mathbf{D}_\theta \mathbf{s})'(\mathbf{z} - \mathbf{O}' \mathbf{T} \beta/n - \mathbf{D}_\theta \mathbf{s}) + \lambda_1 \sum_{j=1}^{d} w_{0j} |\beta_j| + s' \mathbf{D}_\theta \mathbf{s} + \tau_1 \sum_{j=1}^{d} w_{1j} \theta_j,
\]

where \(\mathbf{z} = (1/n) \mathbf{O}' \mathbf{y} \), \(\mathbf{s} = \mathbf{O}' \mathbf{c} \), \(\mathbf{D}_\theta = \sum_{j=1}^{d} \theta_j w_{1j}^{-1} \mathbf{D}_j \) and \(\mathbf{D}_j = (1/n^2) \mathbf{O}' \mathbf{R}_{1j} \mathbf{O} \) is a diagonal \(n \times n \) matrix with diagonal elements \(\eta_{ij} \). We further write \(\mathbf{O}' \mathbf{T} \beta/n = (b, 0, 0, \ldots)' + \mathbf{O}' \mathbf{t}_1 \beta_1/n + \mathbf{O}' \mathbf{t}_2 \beta_2/n \), where \(\mathbf{T} = (\mathbf{1}_n, \mathbf{t}_1, \mathbf{t}_2) \) and

\[
\mathbf{t}_1 = (1/m - 1/2, 2/m - 1/2, \ldots, 1/2)' \otimes \mathbf{1}_m, \tag{8.22}
\]

\[
\mathbf{t}_2 = \mathbf{1}_m \otimes (1/m - 1/2, 2/m - 1/2, \ldots, 1/2)' \tag{8.23}
\]

Due to the orthogonality of basis \(\{ \zeta_{ij} \} \) for any \(j \), we can further write (8.21) as

\[
L(\mathbf{s}, \beta, \theta) = (z_{11} - b - t_{1,11} \beta_1 - t_{2,11} \beta_2 - \theta_1 \eta_{11} s_{11})^2 + \left(\sum_{i=2}^{m} \sum_{j=1}^{d} \sum_{i=1}^{d} \right)
\]

\[
(z_{ij} - t_{1,ij} \beta_1 - t_{2,ij} \beta_2 - \theta_j \eta_{1j} s_{ij})^2 + \sum_{i=1}^{m} \sum_{j=1}^{d} \eta_{ij} \theta_j w_{1j}^{-1} s_{ij}^2 + \lambda_1 \sum_{j=1}^{d} w_{0j} |\beta_j| + \tau_1 \sum_{j=1}^{d} w_{1j} \theta_j, \tag{8.24}
\]

where \(t_{1,ij} = \zeta_{ij} \mathbf{t}_1/n \), \(t_{2,ij} = \zeta_{ij} \mathbf{t}_2/n \), \(z_{ij} = \zeta_{ij} \mathbf{y}/n \) and \(s_{ij} = \zeta_{ij} \mathbf{c} \).
Note that our estimate \((\hat{\beta}, \hat{g}_{11}, \hat{g}_{12})\) are related to the minimizer of (8.24), denoted by \((\hat{\beta}, \hat{s}, \hat{\theta})\), as shown in (5.2). Thus, we first analyze \((\hat{\beta}, \hat{s}, \hat{\theta})\). Straightforward calculation shows that \(\hat{s}_{11} = 0\) and \(z_{11} - \hat{\beta} - t_{1,11}\hat{\beta}_1 - t_{2,11}\hat{\beta}_2 = 0\). Thus, we only need to consider minimizing
\[
L_1(s, \beta_1, \beta_2, \theta) = \left(\sum_{i=2}^{m} \sum_{j=1}^{d} + \sum_{i=1}^{m} \sum_{j=2}^{d} \right) \left[\left(z_{ij} - t_{1,ij}\beta_1 - t_{2,ij}\beta_2 - \theta_j w_{ij}^1 \eta_{ij} s_{ij}^2 \right)^2 + \eta_{ij} \theta_j s_{ij}^2 \right] + \lambda_1 \sum_{j=1}^{d} w_{0j} |\beta_j| + \tau_1 \sum_{j=1}^{d} w_{1j} \theta_j,
\]
(8.25)

We minimize \(L_1(s, \beta_1, \beta_2, \theta)\) in two steps. Given fixed \((\beta_1, \beta_2, \theta)\), we first minimize \(L_1\) over \(s\). Since \(L_1\) is a convex function in \(s\), we can obtain the minimizer
\[
\hat{s}_{ij} (\beta_1, \beta_2, \theta) = \frac{z_{ij} - t_{1,ij}\beta_1 - t_{2,ij}\beta_2}{1 + \theta_j \eta_{ij} / w_{ij}}.
\]
(8.26)

Plugging (8.26) into (8.25), we obtain \(L_1(\hat{s}(\beta_1, \beta_2, \theta), \beta_1, \beta_2, \theta)\), denoted as \(L_2(\beta_1, \beta_2, \theta)\):
\[
L_2(\beta_1, \beta_2, \theta) = \left(\sum_{i=2}^{m} \sum_{j=1}^{d} + \sum_{i=1}^{m} \sum_{j=2}^{d} \right) \left[\left(z_{ij} - t_{1,ij}\beta_1 - t_{2,ij}\beta_2 \right)^2 \right] + \lambda_1 \sum_{j=1}^{d} w_{0j} |\beta_j| + \tau_1 \sum_{j=1}^{d} w_{1j} \theta_j.
\]
(8.27)

Step 2: Prove \(P_{1j} \hat{g} = 0 \iff P_{1j} g_0 = 0\)

In this step we consider selection consistency for \(P_{1j} g\). We first verify that \(L_2(\beta_1, \beta_2, \theta)\) in (8.27) is convex in \(\theta\) for any fixed values of \(\beta_1\) and \(\beta_2\) by obtaining that
\[
\frac{\partial^2 L_2(\beta_1, \beta_2, \theta)}{\partial \theta_j^2} = 2 \left(\sum_{i=2}^{m} \sum_{j=1}^{d} + \sum_{i=1}^{m} \sum_{j=2}^{d} \right) \left[\frac{\eta_{ij}^2 (z_{ij} - t_{1,ij}\beta_1 - t_{2,ij}\beta_2)^2}{(1 + \theta_j \eta_{ij} / w_{ij})^3} \right] > 0,
\]
\[
\frac{\partial^2 L_2(\beta_1, \beta_2, \theta)}{\partial \theta_j \theta_k} = 0 \text{ for } j \neq k.
\]

By the above convexity, we know \(\hat{\theta}_j = 0\) if and only if
\[
\left(\frac{\partial}{\partial \theta_j} |_{\theta_j = 0} \right) L_2(\beta_1, \beta_2, \theta) \geq 0,
\]
which is equivalent to
\[
U_1 = \sum_{i=2}^{m} \eta_{i1} (z_{i1} - t_{1,i1}\hat{\beta}_1 - t_{2,i1}\hat{\beta}_2)^2 \leq \tau_1 w_{11}^2,
\]
(8.28)
\[
U_j = \sum_{i=1}^{m} \eta_{ij} (z_{ij} - t_{1,ij}\hat{\beta}_1 - t_{2,ij}\hat{\beta}_2)^2 \leq \tau_1 w_{1j}^2 \text{ for } j \geq 2.
\]
(8.29)

36
We define \(a_{ij} = \zeta_{ij}'G_1/n\), where \(G_1 = (G_1(x_1), \ldots, G_1(x_n))'\) and \(G_1(x_i) = \sum_{j=1}^d g_{ij}^0(x_{ij})\).

Combining the fact that \(z_{ij} = \zeta_{ij}'y/n\), we have the following equation:

\[
z_{ij} - t_{1,ij}b_{1}^{0} - t_{2,ij}b_{2}^{0} = a_{ij}, \tag{8.30}
\]

where \(e_{ij} \sim \text{i.i.d. } N(0, \sigma^2/n)\) for \(1 \leq i \leq m\) and \(1 \leq j \leq d\). Thus, (8.28) and (8.29) become

\[
U_1 = \sum_{i=2}^{m} \eta_{i1} \left(t_{1,ij}(\beta_1^{0} - \hat{\beta}_1) + t_{2,ij}(\beta_2^{0} - \hat{\beta}_2) + e_{ij} + a_{ij}\right)^2, \tag{8.31}
\]

\[
U_j = \sum_{i=1}^{m} \eta_{ij} \left(t_{1,ij}(\beta_1^{0} - \hat{\beta}_1) + t_{2,ij}(\beta_2^{0} - \hat{\beta}_2) + e_{ij} + a_{ij}\right)^2 \tag{8.32}
\]

by considering (8.30).

In the below, without loss of generality, we assume that \(g_{i2}^0(x_{i2}) = 0\) for \(i = 1, \ldots, n\). We first show \("P_{12g_0} = 0 \implies P_{12\hat{g}} = 0\"\). To show \(P_{12\hat{g}} = 0\), it suffices to show

\[
P(U_2 > \tau_1 w_{12}^2) \to 0. \tag{8.33}
\]

based on the above analysis and (5.2). Note that \(P_{12g_0} = 0\) implies \(a_{i2} = 0\) for all \(1 \leq i \leq m\).

Thus, we have

\[
P(U_2 > \tau_1 w_{12}) = P \left(\sum_{i=1}^{m} \eta_{i2} \left(t_{1,i2}(\beta_1^{0} - \hat{\beta}_1) + t_{2,i2}(\beta_2^{0} - \hat{\beta}_2) + e_{i2}\right)^2 > \tau_1 w_{12}^2\right)
\]

\[
\leq P \left(\sum_{i=1}^{m} \eta_{i2} \left(t_{1,i2}(\beta_1^{0} - \hat{\beta}_1)^2 + t_{2,i2}(\beta_2^{0} - \hat{\beta}_2)^2 + e_{i2}^2\right) > \tau_1 w_{12}^2/3\right)
\]

\[
\leq \sum_{k=1}^{2} P \left(\sum_{i=1}^{m} \eta_{i2} t_{k,i2}(\hat{\beta}_k - \beta_k)^2 > \tau_1 w_{12}^2/9\right) + P \left(\sum_{i=1}^{m} \eta_{i2} e_{i2}^2 > \tau_1 w_{12}^2/9\right). \tag{8.34}
\]

The first inequality in the above follows from the Cauchy-Schwarz inequality. For \(k = 1, 2\), we have

\[
\sum_{i=1}^{m} \eta_{i2} t_{k,i2}^2 \leq \sqrt{\sum_{i=1}^{m} \eta_{i2}^2} \sqrt{\sum_{i=1}^{m} t_{k,i2}^4} \leq \sqrt{\sum_{i=1}^{m} (n\eta_i)^2} \sqrt{\sum_{i=1}^{m} (\zeta_{i2}t_k/n)^4}
\]

\[
\leq n^{-1} \sqrt{\sum_{i=1}^{m} \|\zeta_{i2}\|^4 t_k^4}
\]

\[
\leq n^{-1} \times O(n^{5/4}) = O(n^{1/4}) \tag{8.35}
\]

by considering \(\eta_1 = (720m^4)^{-1}, \eta_i \sim i^{-4}\) for \(i = 2, \ldots, m\), and Hölder’s inequality. By adapting the arguments in Lemma 8.1, we can show

\[
\|\hat{\beta} - \beta_0\| = O_P(n^{-1/5}). \tag{8.36}
\]

37
Now we focus on the first two probabilities in (8.34). Combining (8.35), (8.36) and the condition that \(n^{3/20}w_{12}^2 \to \infty \), we can show that they converge to zero. Let \(V_2 = \sum_{i=1}^{m} \eta_i^2 e_{i2}^2 \). Since \(e_{i2} \) follows \(N(0, \sigma^2/n) \) as discussed above, we have

\[
E(nV_2) \sim \sigma^2 \text{ and } Var(nV_2) \sim \sigma^4.
\] (8.37)

As for the third probability in (8.34), we have

\[
P(V_2 > \tau_1 w_{12}^2/9) \leq P(\left| nV_2 - EnV_2 \right| > n\tau_1 w_{12}^2/9 - EnV_2) \leq \frac{Var(nV_2)}{(n\tau_1 w_{12}^2/9 - EnV_2)^2} \to 0
\]

where the second inequality follows from the Chebyshev’s inequality and the condition that \(n\tau_1 w_{12}^2 \to \infty \). This completes the proof of (8.33), thus shows “\(P_{12}g_0 = 0 \Rightarrow P_{12}\hat{g} = 0 \).”

Next we prove “\(P_{12}\hat{g} = 0 \Rightarrow P_{12}g_0 = 0 \)” by showing the equivalent statement “\(P_{12}g_0 \neq 0 \Rightarrow P_{12}\hat{g} \neq 0 \).” To show \(P_{12}\hat{g} \neq 0 \), it suffices to show

\[
P(U_2 \leq \tau_1 w_{12}^2) \to 0
\] (8.38)

based on the previous discussions. We first establish the following inequalities:

\[
P(U_2 \leq \tau_1 w_{12}^2) \leq P(|U_2 - EW_2| \geq EW_2 - \tau_1 w_{12}^2)
\]

\[
\leq P(|U_2 - W_2| \geq (EW_2 - \tau_1 w_{12}^2)/2) + P(|W_2 - EW_2| \geq (EW_2 - \tau_1 w_{12}^2)/2)
\]

\[
\leq I + II,
\]

where \(W_2 = \sum_{i=1}^{m} \eta_i^2 (e_{i2} + a_{i2})^2 \). By the Cauchy-Schwartz inequality, we have

\[
|U_2 - W_2| \leq 4W_2 + 3 \sum_{k=1}^{2} \sum_{i=1}^{m} \eta_i^2 f^2_{k,i2} (\hat{\beta}_k - \beta_0^k)^2.
\]

Thus, the term \(I \) can be further bounded by

\[
I \leq P(W_2 \geq (EW_2 - \tau_1 w_{12}^2)/16) + \sum_{k=1}^{2} P\left(\sum_{i=1}^{m} \eta_i^2 f_{k,i2}^2 (\hat{\beta}_k - \beta_0^k)^2 \geq (EW_2 - \tau_1 w_{12}^2)/24\right)
\]

\[
\leq I_1 + I_2.
\]

To analyze the order of \(I_1, I_2 \) and \(II \), we need to study the order of \(EW_2 \) and \(VarW_2 \). Note
that \(\mathcal{P}_{12g0} \neq 0 \) implies \(a_{i_0} \neq 0 \) for some \(1 \leq i_0 \leq m \). Thus, we have

\[
E(W_2) \geq E(\eta_{i_0}(c_{e_2} + a_{i_0}^2)) \geq \eta_{i_0}a_{i_0}^2,
\]

(8.39)

\[
Var(W_2) = \sum_{i=1}^{m} \eta_{i_0}^2 Var(c_{e_2} + a_{i_0}^2) = \sum_{i=1}^{m} \eta_{i_0}^2(4n^{-1}a_{i_0}^2\sigma^2 + 2n^{-2}\sigma^4)
\]

\[
\leq 4n^{-1}\sigma^2 \sum_{i=1}^{m} a_{i_0}^2 + 2n^{-2}\sigma^4 \leq 4n^{-1}\sigma^2 \|\mathcal{P}_{12g0}\|_2 + 2n^{-2}\sigma^2 = O(n^{-1})
\]

(8.40)

By (8.39) and Lemma 8.1 we know \((EW_2 - \tau_1w_{12}^2)\) is bounded away from zero. Then, by Chebyshev’s inequality, we have

\[
II \lesssim \frac{Var(W_2)}{(EW_2 - \tau_1w_{12}^2)^2} \rightarrow 0
\]

by (8.40). As for the term \(I_2 \), we can also show it converges to zero by considering (8.35) and (8.36). For the term \(I_1 \), we have

\[
I_2 = P(16(W_2 - EW_2) \geq -\tau_1w_{12}^2 - 15EW_2) \lesssim \frac{Var(W_2)}{(\tau_1w_{12}^2 + 15EW_2)^2} \rightarrow 0
\]

since \((EW_2 + \tau_1w_{12}^2)\) is bounded away from zero and \(Var(W_2) = O(n^{-1})\).

Step 3: Prove \(\hat{\beta}_j = 0 \iff \beta_j^0 = 0 \)

In this step we consider selection consistency for \(\beta_j \). Without loss of generality, we assume that \(\beta_j^0 = 0 \). First, we rewrite (8.27) as \(Q(\hat{\beta}_1, \beta_2, \theta) + \lambda_1 \sum_{j=1}^{d} w_{0j}|\beta_j| + \tau_1 \sum_{j=1}^{d} w_{1j}\theta_j \). Applying the Taylor expansion to (8.27), we have

\[
\frac{\partial L_2(\beta_1, \beta_2, \hat{\theta})}{\partial \beta_2} = \frac{\partial Q(\beta_1, \beta_2, \hat{\theta})}{\partial \beta_2} + \lambda_1 w_{02}\text{sign}(\beta_2)
\]

\[
= \frac{\partial Q(\beta_1^0, \beta_2^0, \hat{\theta})}{\partial \beta_2} + \frac{\partial^2 Q(\beta_1^0, \beta_2^0, \hat{\theta})}{\partial \beta_1 \partial \beta_2} (\beta_1 - \beta_1^0) + \frac{\partial^2 Q(\beta_1^0, \beta_2^0, \hat{\theta})}{\partial \beta_2 \partial \beta_2} (\beta_2 - \beta_2^0)
\]

\[
+ \lambda_1 w_{02}\text{sign}(\beta_2).
\]

(8.41)

Recall that \(||\hat{\beta} - \beta_0|| = O_P(n^{-1/5}) \) by (8.36). Thus, in the below, we only consider \(\beta_1 \) and \(\beta_2 \) satisfying \(||\beta_1 - \beta_1^0|| = O_P(n^{-1/5}) \) and \(||\beta_2 - \beta_2^0|| = O_P(n^{-1/5}) \).

By (8.30), the first term in (8.41) can be written as

\[
-2 \left(\sum_{i=2}^{m} \sum_{j=1}^{d} + \sum_{i=1}^{d} \sum_{j=2}^{d} \right) \left[\frac{(a_{ij} + e_{ij})w_{i2}t_{2j}}{1 + \theta_j \eta_{ij}/w_{1j}} \right]
\]

\[
= -2 \left(\sum_{i=2}^{m} \sum_{j=1}^{d} + \sum_{i=1}^{d} \sum_{j=2}^{d} \right) \left[G_i' \zeta_{ij} \zeta_{ij}^t t_2 + \epsilon' \zeta_{ij} \zeta_{ij}^t t_2 \right]
\]

\[
n^2(1 + \theta_j \eta_{ij}/w_{1j})
\]

\[
= O_P(n^{-1/2}),
\]

(8.42)
where the last equality follows from the orthogonality of the constructed $\{\zeta_{ij}\}$ and Lindeberger-Feller theorem. As for the second term of (8.41), we have

$$
\frac{\partial^2 Q(\beta_1^0, \beta_2^0, \hat{\theta})}{\partial \beta_1 \partial \beta_2}(\beta_1 - \beta_1^0) = 2 \left(\sum_{i=2}^{m} \sum_{j=1}^{d} + \sum_{i=1}^{d} \sum_{j=2}^{d} \right) \frac{t_{1,i}t_{2,ij}}{1 + \hat{\theta}_{ij}/w_{ij}}(\beta_1 - \beta_1^0) \\
= 2 \left(\sum_{i=2}^{m} \sum_{j=1}^{d} + \sum_{i=1}^{d} \sum_{j=2}^{d} \right) \frac{t_{1,i} \zeta_{ij} t_{2}^t}{n^2(1 + \hat{\theta}_{ij}/w_{ij})}(\beta_1 - \beta_1^0) \\
\leq O(n^{-1})O_P(n^{-1/5}) = O_P(n^{-6/5}),
$$

where the last inequality follows from the orthogonality of the constructed $\{\zeta_{ij}\}$ and the forms of t_1 and t_2, i.e. (8.22) and (8.23). By applying similar analysis to the third term in (8.41), we know its order is also $O_P(n^{-1/5})$. In summary, we have

$$
\frac{\partial L_2(\beta_1, \beta_2, \hat{\theta})}{\partial \beta_2} = O_P(n^{-1/5}) + \lambda_1 w_{02} \text{sign}(\beta_2).
$$

(8.43)

We first show "$\beta_2^0 = 0 \implies \hat{\beta}_2 = 0$". If $\beta_2^0 = 0$, then the range of β_2 in (8.43) is $(-Cn^{-1/5}, Cn^{-1/5})$ for some $C > 0$. By the assumed condition that $n^{1/5} \lambda_1 w_{02} \to \infty$, we can conclude that $\partial L_2(\beta_1, \beta_2, \hat{\theta})/\partial \beta_2 < 0$ for $\beta_2 \in (-Cn^{-1/5}, 0)$ and $\partial L_2(\beta_1, \beta_2, \hat{\theta})/\partial \beta_2 > 0$ for $\beta_2 \in (0, Cn^{-1/5})$. In other words, we have

$$
L_2(\beta_1, 0, \hat{\theta}) = \min_{|\beta_2| \leq Cn^{-1/5}} L_2(\beta_1, \beta_2, \hat{\theta}) \text{ with probability tending to one,}
$$

which implies $\hat{\beta}_2 = 0$. We next show "$\hat{\beta}_2 = 0 \implies \beta_2^0 = 0$" by showing the equivalent statement that "$\beta_2^0 \neq 0 \implies \hat{\beta}_2 \neq 0$". For simplicity, we assume $\beta_2^0 = 1$ which means that $\beta_2 \in (1 - Cn^{-1/5}, 1 + Cn^{-1/5})$. Then, by considering the condition $n^{1/5} \lambda_1 w_{02} \to \infty$ in (8.43), we have $\partial L_2(\beta_1, \beta_2, \hat{\theta})/\partial \beta_2 > 0$ which implies that $\hat{\beta}_2 > 0$. This completes the whole proof. \(\square \)