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Introduction

Fetal growth and development are complex processes that can be 
influenced by a myriad of environmental conditions and expo-
sures, including xenobiotics,1 maternal stress and psychology,2 
maternal nutrition and activity3,4 and sociodemographic factors.5 
This intrauterine environment is critical in “programming” the 
fetus for various health and disease outcomes throughout life.6 
The placenta effectively mediates the appropriate response to and 
integration of such environmental signals, allowing for healthy 
growth and development. Adverse intrauterine conditions can 
alter placenta gene expression and subsequent functions resulting 
in alteration of infant growth,7,8 which in turn has been linked to 
an increased incidence of metabolic and cardiovascular disease.9

The changes in placental gene expression resulting from the 
intrauterine environment can be attributed in part to epigene-
tic alterations. Numerous links have been made between infant 
growth restriction and specific epigenetic alterations, including 
changes to gene imprinting status and to DNA methylation, 
thereby implicating such regulation in appropriate growth and 
development.10-12 DNA methylation has been associated with 
the regulation of genes regulating trophoblast migration and 
invasion,13 as well as to endometrial receptivity to implanta-
tion.14 Animal models have suggested that methylation plays a 
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critical role in placenta development, and alterations to its meth-
ylation pattern can lead to adverse placenta morphology and 
birth outcome.15 In humans, normal hypermethylation of the 
vitamin D 24-hydroxylase gene is thought to allow for greater 
availability of vitamin D at the maternal-fetal interface,16 while 
altered DNA methylation of specific genes in imprinting control 
regions, including one controlling H19/IGF2 in the placenta, has 
been linked to preeclampsia and intrauterine growth restriction 
(IUGR).17,18

As the placenta plays a critical role in responding to the intra-
uterine environment and in controlling infant growth, and as 
the environment can influence the pattern of DNA methylation, 
we sought to examine the association between infant growth 
and profiles of genome-wide, gene-specific DNA methylation 
in human placenta. These data will allow us to identify general 
epigenomic alterations in the placenta related to an adverse intra-
uterine environment, represented by poor fetal growth.

Results

DNA methylation patterning in the human placenta. DNA 
methylation profiles were obtained on 206 term human pla-
centa samples using the Human–Methylation–27 BeadChip 
array. Table 1 describes the maternal and infant characteristics 
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the training data using these 22 loci resulted in 5 methylation 
classes (Fig. 3A). Classes 1 and 2, the left-most branches of the 
dendrogram, contained 56% of all the samples, with 40 obser-
vations and 37 observations, respectively (Fig. 3A). The remain-
ing samples were predicted to be within the right branches of 
the dendrogram, with Class 3 containing 43 observations, and 
Classes 4 and 5 both having 9 observations. There was a highly 
significant difference in the prevalence of SGA or IUGR placen-
tas across all classes (p = 0.0007, Permutation Chi Square test). 
Notably, the left classes (Classes 1 and 2) contained a greater 
proportion of samples from growth restricted infants while the 
right-most classes (3–5) showed reduced prevalence of growth 
restricted samples (Fig. 3A).

Using the RPMM solution based on the training data and 
a naïve Bayes procedure, we predicted methylation class for the 
observations in the testing data (Fig. 3B). The samples were pre-
dicted to be members of the defined RPMM classes with a distri-
bution within the classes similar to that observed in the training 
data (Fig. 3B). SGA or IUGR diagnosis was again significantly 
different by class (p = 0.0087, Permutation Chi Square test), with 
the left branch classes (1 and 2) containing 70% of all SGA and 
IUGR samples. No samples in the testing dataset were predicted 
to be in Class 5. There were no significant associations between 
predicted methylation class and infant gender, delivery method, 
maternal age or maternal BMI (Sup. Table 2). To examine the 
validity of the methylation at these points, we specifically exam-
ined the methylation of these 22 loci in the 12 placenta samples 
with replicate arrays. The mean difference between the repli-
cates for the 22 loci selected did not exceed 0.17 (Sup. Table 3), 
which is the reported sensitivity of the Infinium Golden Gate 
Methylation array,20 suggesting that differences between placen-
tas located on different BeadChip arrays were related to biologi-
cal variance and not chip to chip platform variance.

To estimate the association between predicted methylation 
class and SGA or IUGR diagnosis while controlling for poten-
tial confounders, a multivariable logistic regression model was 
constructed (Table 2) using the testing data. Controlling for 

of the randomly generated training and testing datasets. As these 
profiles represent term births and were oversampled for growth 
restricted infants, the mean gestational age was 38 weeks for both 
groups, and growth restricted infants (SGA or IUGR) made up 
43% of the population. There were no significant differences in 
the clinical characteristics between training and testing sets as 
demonstrated by the associated p values.

Platform variability across BeadChips was assessed by profil-
ing a reference sample derived from peripheral blood DNA on 
each array. The correlation coefficients calculated between each 
combination of control blood arrays had a median value of 0.98. 
As an additional measure of array reproducibility, 12 placenta 
samples were repeated across arrays. A median correlation coef-
ficient of 0.95 was found between the 12 technical replicates  
(Sup. Fig. 1), indicating agreement within each sample.

To identify those genomic loci most significantly associated 
with SGA or IUGR diagnoses, a linear mixed effects model 
was fit using the training data only for each of the 26,486 
autosomal loci in the dataset. These linear effects models had 
as their response, arc-sine square-root transformed meth-
ylation β value, a fixed-effect term indicating growth status  
(i.e., SGA/IUGR or AGA), and a random-effect term for 
BeadChip. Figure 2 depicts the volcano plot of the fixed effect 
estimates from the linear mixed effects models, representing the 
magnitude of the association between DNA methylation extent 
at each locus and growth status on the x-axis and the log p value 
of the test of the association on the y-axis. The greater number 
of points on the left-hand side of the volcano plot indicates that 
there are a larger number of loci whose methylation is inversely 
associated with SGA or IUGR status.

DNA methylation profiles are significantly associated 
with SGA or IUGR status. Using the nested cross-validation 
procedure described in Koestler et al.,19 we determined that 
the most appropriate number of loci to include in the RPMM 
was 22. Those 22 loci along with the estimates of association 
of growth status and corresponding genomic information are 
listed in Supplemental Table 1. Subsequently, fitting RPMM to 

Table 1. Characteristics of the subjects involved in the study

 Characteristics Total Training Testing p values

n = 206 n = 138 n = 68

Growth status

AGA, n (%) 117 (56.8) 79 (57.2) 38 (55.9)

SGA or IUGR,  n(%) 89 (43.2) 59 (42.8) 30 (44.1) 0.77

Infant birth weight in grams

AGA, mean (SD) 3255.4 (515) 3247.6 (538) 3271.7 (473)

SGA or IUGR, mean (SD) 2519.4 (418) 2555.2 (413) 2448.9 (425) 0.60

Infant gender

Females 99 (48) 66 (48) 33 (48.5)

Males 107 (52) 72 (52) 35 (51.5) 0.89

Infant gestational age in weeks 38.2 (2.0) 38.3 (1.8) 38.0 (2.3) 0.68

Maternal age in years 27.9 (5.9) 27.6 (5.7) 28.5 (6.3) 0.32

p values were calculated using a Permutation Chi-square test for growth status and gender and a Kruskal-Wallis test for birth weight, gestational age 
and maternal age.
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Wilcoxon rank sum test, are listed in Table 4 and include NFE2, 
C/EBPβ and FOXO4.

Discussion

A number of studies have begun to examine the association 
between growth restriction and epigenetic regulation in fetal tis-
sues including placenta.16-18,21-23 Much of the recent research on 
placental epigenetics has focused on the role of genomic imprint-
ing and new technologies have been developed to more efficiently 
identify imprinted genes.24 From this we have learned much about 
the timing of epigenetic remodeling25 and the role of specific 
genes, including imprinted tumor-suppressor genes in the human 
placenta.26 Specific genes, such as H19/IGF2, have been studied 
in the context of growth restriction, demonstrating differential 

infant gender, delivery method, maternal age and maternal BMI, 
infants whose placenta methylation profile was predicted to be 
in Classes 1 and 2 had nearly 3 times the odds of being SGA or 
IUGR compared to infants predicted to be in Classes 3–5 (OR 
2.94; 95% CI 1.05, 7.38). There were no significant associations 
observed between SGA or IUGR diagnosis and infant gender, 
delivery method, maternal age, nor maternal BMI.

Of the 22 genes present in our profile, fourteen demon-
strated reduced methylation associated with SGA or IUGR 
diagnosis, while only OMG, PDC, RPE65, SERPINA5, APBA2, 
CHML, SLC25A18 and MEP1A showed increased methylation 
(Sup. Table 1). To examine the potential biological relevance 
of genes targeted for alteration and to explore which biologi-
cal systems are most affected, a gene-set enrichment analysis 
(GSEA) based on KEGG-defined pathways was performed. 
Using the combined training and testing data, we compared 
pathways that were over-represented among loci associated with 
altered growth status. Pathways with a nominal p < 0.05 for 
both a GSEA statistic and independent Wilcoxon rank sum test 
are listed in Table 3 and include pathways important in neuro-
degenerative diseases such as Alzheimer and Huntington dis-
ease, as well as basic cellular functions including protein export, 
transcription and DNA repair.

In addition to examining the functional consequences of dif-
ferential methylation in placentas of growth restricted and normal 
infants, we hypothesized that the observed differential methyla-
tion profiles may represent an altered epigenetic process related 
to the intrauterine environment and growth. This process may 
result from cell signaling leading to epigenetic alterations at spe-
cific regions targeted by certain transcription factors. Therefore, 
we examined over-representation of transcription factor binding 
sites (TFBS) within 1 kb of loci exhibiting differential methyla-
tion by growth status. The over-represented TFBS, again with 
a nominal p < 0.05 for both a GSEA statistic and independent 

Table 2. Multivariable analysis of the association between predicted SSRPMM class for the observations in the test data and SGA or IUGR classification; 
controlled for infant gender, maternal age, delivery method, parity, maternal BMI at time of delivery and maternal smoking during pregnancy

Covariates Odds Ratios (95% CI) of being SGA or IUGR p value

Classes 3–5, n(%) 9 (30) Reference

Classes 1–2, n(%) 21 (70) 3.93 (1.13, 15.3) 0.038

Infant Gender n(%)

Male 35 (51) Reference

Female 33 (49) 0.95 (0.26, 3.48) 0.931

Maternal Age in years, mean (SD) 28.5 (6.3) 0.99 (0.88, 1.12) 0.878

Delivery Method n(%)*

Vaginal 43 (65) Reference

C-Section 23 (35) 3.56 (0.74, 21.93) 0.132

Parity, mean (SD) 0.7 (0.8) 0.85 (0.30, 2.42) 0.752

Maternal BMI, mean (SD)** 25.4 (4.8) 0.99 (0.86,1.13) 0.851

Maternal Tobacco n(%)

No 62 (91) Reference

Yes 6 (9) 3.32 (0.28, 107.33) 0.400

*missing data on 2 samples. **missing data on 16 samples.

Table 3. Gene set enrichment analysis (GSEA) of KEGG pathways over-
represented amongst loci associated with SGA or IUGR status

Entry Pathway
p value 

GSEA
p-value 
Wilcox

hsa05016 Huntington disease 0.002 0.002

hsa05010 Alzheimer disease 0.021 0.006

hsa03020 RNA polymerase 0.017 0.026

hsa03060 Protein export 0.028 0.028

hsa03440 Homologous recombination 0.033 0.05

Table 4. Gene set enrichment analysis (GSEA) of transcription factor 
binding sites over-represented within 1 kb of loci associated with SGA or 
IUGR status

Pathway p value GSEA p value Wilcox

NFE2 0.024 0.05

C/EBPbeta 0.033 0.031

FOXO4 0.037 0.035
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by DNA methylation can provide insight into the global regula-
tion of the genome. In order to avoid the confounding effects of 
premature birth, we only included placentas from patients with 
gestational age >36 weeks. Our analysis, using a novel validated 
statistical strategy aimed not at identifying a single locus whose 
methylation is associated with growth, but more importantly, a 
pattern of alterations, identified that the pattern of methylation 
of 22 critical loci is highly predictive of SGA or IUGR diagnosis. 
The identified pattern is potentially indicative of altered cel-
lular processes leading to targeted DNA methylation altera-
tions that are linked to infant growth restriction. The GSEA 
examining transcription factor binding sites is aimed at better 
characterizing genomic similarities amongst loci whose methyl-
ation was associated with growth status. The CCAAT/enhancer 
binding protein β (C/EBPβ) is a downstream effector of estro-
gen-mediated implantation and decidualization,30 and controls 
target genes such as PLAC1, which are involved in the mater-
nal-placental interface.31 Thus, DNA methylation of CEBPβ 
target genes may affect the maternal-fetal interface, resulting 
in growth restriction. The GSEA also identified over-represen-
tation of FOXO4 TFBS as targets of methylation alteration. 
FOXO4, a homeobox transcription factor, has been localized 
to differentiated syncytiotrophoblasts32 and has been shown to 
be involved in cellular stress responses.33 It may likewise play a 
role in integrating environmental signals, resulting in altered 
placenta function and infant growth.

The GSEA of KEGG pathways revealed two neurological dis-
ease pathways: Huntington disease and Alzheimer disease. While 
it is unlikely that the methylation patterns we identified in the 
placenta are directly linked to the development of these diseases 
later in life, it is known that the placenta plays a critical role in 
neuropeptide homeostasis for the developing fetus.34-36 The pla-
centa has been postulated to represent the “third brain” that links 
the developed (maternal) and developing (fetal) brains,35 play-
ing a critical role in the pathophysiology of intrauterine insults 
on the developing nervous system.37 Placental production of 
the corticotropin-releasing hormone (CRH) and thyrotropin-
releasing hormone (TRH) subserves intrauterine hypothalamic 
control of fetal pituitary development throughout most of ges-
tation.38,39 Thus, our findings may represent alterations to such 
pathways related to growth restriction and potentially linking 
growth restriction with neurodevelopmental and mental health 
outcomes later in life. Additional studies are warranted to expand 
on these examinations and these later life endpoints to clarify the 
biological mechanisms at play.

It is important to note that we cannot definitively determine 
if these altered profiles of DNA methylation are a response of 
the placenta to the intrauterine environment and/or growth 
restriction, or are extant, such that they have led to the growth 
phenotypes observed. Nonetheless, by oversampling for infants 
who were small for gestational age, we generated a robust inter-
rogation of the effects of intrauterine growth on placental DNA 
methylation and identified strong, significant and independent 
associations between these specific profiles of DNA methylation 
and infant growth. An additional limitation of this study lies in 
the overrepresentation of CpG island-associated loci found on 

methylation of the imprinting control regions in placentas from 
growth restricted infants.17,18 A number of other imprinted loci, 
such as PHLDA2, ILK2, NNAT, CCDC86, PEG10, PLAGL1, 
DHCR24, ZNF331 and CDKAL1 have been shown to demon-
strate differential expression between growth restricted and non-
restricted infant placentas.10 Animal models have described the 
functional significance of alterations in imprinting; for example, 
loss of the maternal allele of Grb10 limits placental size and 
efficiency.27 Our goal in this study was to build on this knowl-
edge and to expand the examination of epigenetic alterations to 
encompass a larger genome-wide profile of genes, beyond those 
genes subjected to regulation by genomic imprinting, and thus 
to identify if the intrauterine environment can be represented by 
gross alteration to the epigenetic landscape of the placenta.

We focused our investigation on methylation patterning due 
to the highly stable nature of DNA methylation marks. Previous 
studies have shown that labor induces altered expression of genes 
in the human placenta28 and, while the methylation status is sta-
ble, the corresponding gene expression may not be.29 Therefore, 
we believe that examination of methylation may reflect changes 
occurring over the course of in utero development and not only at 
the final moments of pregnancy and delivery. We used a relatively 
unbiased, genome-wide method to identify loci whose methyla-
tion status in the term placenta was most associated with infant 
birth weight as a marker of growth. The genome-wide analysis 
was driven by our hypothesis that the complex and multifacto-
rial outcome of infant growth in the relatively non-pathologic 
context from which our population is drawn, results from the 
interplay of various genes, and thus, profiling their regulation 

Figure 1. Data analysis schematic. Placenta samples were split into 
training and testing datasets matched with equal proportions of SGA or 
IUGR samples in each group. Semi-Supervised Recursively Partitioned 
Mixture Model data analysis was used to rank the methylation of each 
locus as associated with SGA or IUGR diagnosis.
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in accordance with protocols approved by the Institutional 
Review Boards of both Women and Infants Hospital and Brown 
University. The diagnosis of IUGR was made through sono-
graphic measurements demonstrating an estimated fetal weight 
less than the 10th percentile for gestational age. Measurements 
also included abdominal circumference, biparietal diameter, 
femur length and head circumference.45 Samples were collected 
from women between the ages of 18–42, considered at term 
(≥36 weeks) with no history of preeclampsia, gestational dia-
betes, psychological disorders, and whose infants were viable, 
with no known genetic disorders. Placenta samples were col-
lected within 2 h of parturition by excising 6–8 small pieces 
(massing approximately 1 g each), free of maternal decidua, 
from the maternal side of the placenta 2 cm from the umbili-
cal cord insertion site. The sample was immediately placed in 
RNAlaterTM (Applied Biosystems, Inc., Foster City, CA) and 
stored at 4°C. At least 72 h later, placenta samples were blotted 
dry of RNAlaterTM and stored at -80°C until processed. Data on 
the infant’s birth weight, length, gender, IUGR status, mater-
nal demographics and delivery history were recorded from the 
medical chart. The birth weight percentile was calculated from 
the infant’s birth weight and gestational age using the Fenton 
growth chart.46

DNA extraction and modification. DNA was extracted 
from the placenta samples using the QIAamp DNA Mini Kit  

the Illumina Infinium Human Methylation27 
BeadArray. Ongoing research is now revealing 
that gene regulatory methylation events may 
occur in regions outside of CpG islands, such 
as on CpG shores found up to 2 kb upstream 
of the regulated gene.40 More comprehensive 
approaches including more inclusive arrays 
and genome-wide sequencing will be needed 
to fully identify all regions contributing to the 
regulation of infant growth.

The biological basis and implications of 
these altered profiles remains unclear. One 
possibility is that these different profiles rep-
resent changes in the population of cells pres-
ent in the placenta. It is clear that individual 
tissues and cells demonstrate unique patterns 
of DNA methylation41 and that altered DNA 
methylation can identify specific sub-pop-
ulations of cells in a highly sensitive man-
ner.42 Thus, within our placenta tissues we 
may be detecting, changes in the distribution 
of mature trophoblasts, immune cells and 
stromal cells, or even changes to sub-popula-
tions of these cells within these placenta tis-
sue samples. Alternatively, these profiles may 
reflect phenotypic differences in the maturity 
or differentiation of cells in the placenta, as 
it is clear that epigenetic mechanisms play 
critical roles in cellular differentiation.43 The 
difficulty in obtaining placental tissue from 
uncomplicated pregnancies at various time 
points throughout pregnancy limits available data that could be 
used to examine this hypothesis more definitively.

In summary, we have demonstrated the methylation profile 
of 22 genes from human term placentas yielded five different 
classes, and that these classes differed significantly by SGA or 
IUGR diagnosis. This work serves as a proof of principle that 
variation in the DNA methylation profile of human term placenta 
can serve as a marker of growth. Further analysis is warranted to 
elucidate additional covariates, including environmental factors 
and exposures that may be affecting the methylation profiles that 
distinguish these classes. As prospective associations have already 
been demonstrated for peripheral blood-based methylation pro-
files and diseases such as acute myeloid leukemia, longitudinal 
follow-up on these subjects may demonstrate the prospective util-
ity of these placenta-specific methylation profiles.44 This would 
strengthen our hypothesis that epigenetic alterations in the pla-
centa are acting functionally to program the health of an indi-
vidual far beyond the intrauterine environment.

Methods

Study design. From September 2008 through September 2009, 
206 residual placenta samples, oversampled for SGA infants (<10th 
percentile of birth weight) or with a diagnosis of IUGR, were 
collected from Women and Infants Hospital in Providence, RI  

Figure 2. Association between methylation and birth weight. Volcano plot examining the as-
sociation between SGA or IUGR diagnosis and methylation extent across all 26,486 autosomal 
loci examined. Negative log-transformed p values generated from the linear mixed effects 
model are plotted against the model coefficient (adjusting for gestational age). The area 
above the solid blue line indicates a p value < 0.05. This coefficient represents the magnitude 
of the effect of SGA or IUGR status on methylation.
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was performed on 26,486 loci. We have previously demonstrated 
that DNA methylation detected using this array-based approach 
can be verified using alternative strategies including bisulfite 
sequencing approaches.48,49

Statistical methods. The statistical workflow is illustrated 
in Figure 1. We used Semi-Supervised Recursively Partitioned 
Mixture Models (SS-RPMM),19 to identify methylation profiles 
associated with SGA or IUGR diagnosis. This method uses a 
Recursively Partitioned Mixture Model (RPMM),50 for cluster-
ing methylation data. RPMM is an unsupervised model-based 
method for clustering data that has been demonstrated to per-
form effectively and efficiently for methylation data derived from 
the Illumina array technologies.41,49,51-53 Such an approach allows 
for inference in addressing the associations between the methyla-
tion-based clusters and covariates.

Training and testing sets were obtained by randomly sam-
pling from the total population within infant gender and a 
β-distributed RPMM was fit to the training data using the M 
CpG loci most associated with SGA or IUGR diagnosis, where 
M was determined as described in Koestler et al.19 The resulting 
model provides a latent class structure on the pre-selected loci, 
which was then used in conjunction with naïve Bayes procedure, 
to predict methylation class for the observations in the masked 
testing data. To ensure that the predicted methylation classes for 
the testing data were not due to factors other than SGA or IUGR 
diagnosis, the association between potential confounders and 
the predicted methylation classes were examined. Chi-Square 

(Qiagen, Inc., Valencia, CA) following manufacturer’s proto-
cols. Purified DNA was quantified with the NanoDrop ND1000 
spectrophotometer, and 1 μg of placental DNA was bisulfite 
modified using the EZ DNA Methylation Kit D5008 (Zymo 
Research, Irvine, CA). In addition, a single peripheral blood 
sample from an adult not associated with the study was extracted 
and bisulfite modified in the same manner as the placenta sam-
ples and was included on each BeadChip to allow for inter-array 
normalization.

Infinium DNA methylation microarray. Methylation profiling 
was performed using the Illumina Infinium Human Methylation27 
BeadArray (Illumina, San Diego, CA) at the UCSF Institute for 
Human Genetics Genomic Core Facility following standard-
ized protocols at the facility. The methylation status of a specific 
CpG site was calculated from the intensity of the methylated (M) 
and unmethylated (U) alleles, as the ratio of fluorescent signals  
β = Max(M,0)/[Max(M,0) + Max(U,0) + 100]. On this scale, 0 
< β < 1, with β values close to 1 indicating complete methylation 
and β values close to 0 indicating no methylation. Quality assur-
ance was assessed by detection p values, and no locus had a siz-
able fraction (>25%) of p values above a predetermined threshold 
(10-5). In addition, the multivariate characteristics (e.g., Cholesky 
residuals47 or Mahalanobis distance based on fitted mean vec-
tor and variance-covariance matrix) of array control probes sup-
plied by Illumina were used to diagnose problems such as poor 
bisulfite conversion or color-specific problems; none were noted. 
Finally, only autosomal loci were considered, thus our analysis 

Figure 3. Methylation profiles defined by 22 loci are associated with infant growth status. The Recursively Partitioned Mixture Model-based classifica-
tion of placenta samples (columns) based on 22 loci (rows) is depicted on the heatmap, with the five classes separated by red lines in the (A) training 
and (B) testing series. The prevalence of growth restriction or normal births within each of the classes is shown below the heatmap. The Chi-square 
p value listed below the tables indicates a significant difference in the proportion of SGA participants between classes for both training and testing 
datasets.
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