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Abstract
Background—Epidemiological studies that assess the health effects of long-term exposure to
ambient air pollution are used to inform public policy. These studies rely on exposure models that
use data collected from pollution monitoring sites to predict exposures at subject locations. Land
use regression (LUR) and universal kriging (UK) have been suggested as potential prediction
methods. We evaluate these approaches on a dataset including measurements from three seasons
in Los Angeles, CA.

Methods—The measurements of gaseous oxides of nitrogen (NOx) used in this study are from a
“snapshot” sampling campaign that is part of the Multi-Ethnic Study of Atherosclerosis and Air
Pollution (MESA Air). The measurements in Los Angeles were collected during three two-week
periods in the summer, autumn, and winter, each with about 150 sites. The design included
clusters of monitors on either side of busy roads to capture near-field gradients of traffic-related
pollution.

LUR and UK prediction models were created using geographic information system (GIS)-based
covariates. Selection of covariates was based on 10-fold cross-validated (CV) R2 and root mean
square error (RMSE). Since UK requires specialized software, a computationally simpler two-step
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procedure was also employed to approximate fitting the UK model using readily available
regression and GIS software.

Results—UK models consistently performed as well as or better than the analogous LUR
models. The best CV R2 values for season-specific UK models predicting log(NOx) were 0.75,
0.72, and 0.74 (CV RMSE 0.20, 0.17, and 0.15) for summer, autumn, and winter, respectively.
The best CV R2 values for season-specific LUR models predicting log(NOx) were 0.74, 0.60, and
0.67 (CV RMSE 0.20, 0.20, and 0.17). The two-stage approximation to UK also performed better
than LUR and nearly as well as the full UK model with CV R2 values 0.75, 0.70, and 0.70 (CV
RMSE 0.20, 0.17, and 0.17) for summer, autumn, and winter, respectively.

Conclusion—High quality LUR and UK prediction models for NOx in Los Angeles were
developed for the three seasons based on data collected for MESA Air. In our study, UK
consistently outperformed LUR. Similarly, the 2-step approach was more effective than the LUR
models, with performance equal to or slightly worse than UK.

Keywords
Universal kriging; land use regression; spatial modeling; air pollution; exposure assessment; Los
Angeles

1. Introduction
A central challenge in epidemiological analyses of the long-term impact of air pollution
exposure on health is assigning exposures to individual subjects in cohort studies. Seminal
studies in the field assigned exposures using area-wide monitored concentrations in different
geographic regions (Dockery et al., 1993; Pope et al., 2002), but this approach ignores
small-scale variation between individuals living within the same geographic region. More
recent studies have incorporated intra-urban variation in ambient concentrations, with the
exposures estimated by a variety of methods ranging from assigning the value measured at
the nearest monitor to the subject’s home, to using distance to traffic as a proxy for traffic-
related pollution, to predicting concentrations from complex spatial or spatio-temporal
statistical models (Miller et al., 2007; Basu et al., 2000; Ritz et al., 2006; Puett et al., 2009;
Adar et al., 2010).

Exposure studies have shown that levels of road traffic pollutants vary substantially within
cities, often on the scale of meters (Briggs et al., 2000; Zhu et al., 2002; Gilbert et al., 2003).
As such, studies have modeled intra-urban variation using multivariate regression based on
Geographic Information System (GIS) covariates, often referred to as “land use” regression
(LUR) (Briggs et al., 1997; Hoek et al., 2008; Brauer et al., 2003; Jerrett et al., 2005a; Su et
al., 2009), and the geostatistical method kriging (Jerrett et al., 2005b; Künzli et al., 2005;
Beelen et al., 2009). Little has been done, however, to explore the degree to which the
predictive power of these models can be improved by combining predictions from LUR with
smoothing of correlated residuals through universal kriging (UK).

The current study is motivated by the Multi-Ethnic Study of Atherosclerosis and Air
Pollution (MESA Air), a prospective cohort study funded by the Environmental Protection
Agency (EPA) to assess the associations between chronic exposure to air pollution and
changes in sub-clinical markers of cardiovascular disease. Exposure assessment is based on
existing regulatory monitoring networks as well as supplemental monitoring campaigns that
include data collected at irregularly spaced times and locations (Cohen et al., 2009). Here we
focus on spatial analysis of one of these supplementary monitoring campaigns, the
“snapshot” campaign, which was designed to characterize spatial variability and roadway
gradients using samples collected simultaneously at multiple locations across each city
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during three seasons. Ultimately, exposures for MESA Air will be predicted using a spatio-
temporal model that incorporates all of the available monitoring data (Szpiro et al., 2010;
Lindström et al., 2011; Sampson et al., 2011). The spatial analysis we present here provides
insights into variable selection for the spatio-temporal model.

This paper focuses on evaluating spatial methods for predicting concentrations of gaseous
oxides of nitrogen (NOx) from the MESA Air snapshot campaign in Los Angeles, CA. We
compare the performance of LUR with UK, which can be viewed as a generalization of
LUR that also incorporates kriging in order to exploit spatial correlation. We also consider a
computationally simpler 2-step approximation to UK.

2. Methods
2.1. Study Design and Data

The Ogawa method was used to measure NOx concentrations (NO, NO2, NOx, and SO2
Sampling Protocol Using the Ogawa Sampler; Ogawa and Company, U.S.A., Inc.: Pompano
Beach, FL, 1998). Concurrently deployed duplicate samples were used to assess precision.
The mean relative percent difference for these samples in MESA Air was 5.2% with an
RMSE of 6.1 ppb.

The snapshot campaign in downtown and coastal Los Angeles consists of 449 2-week
average concentration measurements of NOx. These samples were collected during three 2-
week periods in June 2006, October 2006, and January 2007. The sampling periods were
chosen to capture seasonal differences and the sampling locations were chosen to maximize
the variability of measured concentrations, characterize different land use categories, and
cover the geographic region as broadly as possible. This campaign is described in greater
detail by Cohen et al. (2009). In each round of monitoring, the majority of monitors were
arranged in clusters of six, with three on either side of a major road at distances of
approximately 50, 100, and 300 meters from the road. An example of an idealized roadway
gradient cluster is shown in Figure 1.

Over 300 GIS-based covariates were calculated for MESA Air. As described below, some
were combined into composite covariates, and others were excluded because they did not
have sufficient variability in the dataset. The approximately 65 covariates considered for
model development are summarized in Table 1. All of the land use covariates were derived
using the ArcGIS (Version 9.3, ESRI, Redlands, CA) software package based on land use
data from the US Geological Survey (Price et al., 2006) roadway information from
TeleAtlas Dynamap 2000(TeleAtlas ®, Lebanon, NH), and census data from the US
Department of Commerce (2001). Census feature class codes (CFCC) were used to
categorize roadways. The largest roads are designated as A1 (primary highways with limited
access) while other major roads are designated as A2 (primary roads without limited access)
or A3 (secondary and connecting roads). We derived an intense land use covariate that
combines industrial, residential, transportation, commercial and services land use and an
open space covariate that is the sum of bays, croplands and pastures, wetlands, forests,
groves, rangeland, and sandy beach areas. These combined covariates were created for
parsimony and because many of these land use and open space covariates did not have
sufficient variability to be included in our models alone. The distance to coast variable is
based on the Tele Atlas Dynamap 2000 County Boundary defined border of the Pacific
Ocean.
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2.2. Analysis
2.2.1. Land use regression and universal kriging—In this section we give a brief
description of LUR and UK as well as an ad-hoc 2-step approximation to UK that can be
easily fit using widely available software. We separately fit LUR and UK models to the log-
transformed NOx concentration data from each of the three seasons. Log transformed NOx
concentrations approximated a Normal distribution. Additional details of the LUR, UK, and
the 2-step approach can be found in the Appendix.

LUR models are multiple linear regressions that assume independent residuals and use GIS-
based covariates to predict concentrations at locations without measurements. UK can also
be seen as a regression with geographic covariates but with the addition of correlated
residuals. In other words, UK allows information about nearby concentration measurements
to influence the predictions through the estimated correlation structure.

Kriging is a minimum mean-squared error approach to spatial prediction (Cressie, 1993;
Banerjee et al., 2004). Unlike ordinary and simple kriging that assume an underlying
constant mean surface, UK can be easily integrated with a regression model. The mean and
covariance parameters for UK are estimated together using maximum likelihood through the
geoR package in R (Ribeiro and Diggle, 2001). We assumed an exponential correlation
structure.

ArcGIS is a widely available tool, but it does not allow UK with an arbitrary set of
covariates or using maximum likelihood fitting. The ‘universal’ kriging option within
ArcGIS models the spatial correlation as expected and allows the mean to be defined as a
function of the latitude and longitude, but does not allow the use of land use covariates to be
included in the mean model. The ‘simple’ and ‘ordinary’ krigings methods in ArcGIS model
the spatial correlation and fit a constant mean. With these limitations in mind we also
evaluated an ad-hoc 2-step approach to prediction, first estimating the LUR model assuming
independent errors and then using simple kriging in ArcGIS to estimate the dependence in
the LUR residuals and exploit this dependence to improve the predictions by smoothing.
This approach, which is similar but not identical to UK, has some advantages: it allows for
spatial structure in the residuals, whereas LUR does not, and it can be implemented with
ArcGIS, whereas UK with land use covariates cannot. The 2-step procedure performs well
in our examples, but we note that it may not be optimal because, unlike in UK, the
regression coefficients are estimated without accounting for spatial correlation.

2.2.2. Cross-validation—The analysis in this paper employs a 10-fold cross-validation
approach (Hastie et al., 2001). The exposure data are split into ten roughly equal size groups.
To account for our unique study design, the clusters of six monitors were always kept within
the same group. Then one group of data is set aside (test set) and the model is fit on the
remaining nine groups (training set). The model estimated using the training set is used to
predict values at the monitor locations in the test set. This is repeated until predictions for all
groups have been generated. To evaluate the predictive ability of the model, R2 and RMSE
are calculated based on comparing these predicted values to the observations. We refer to
these as the cross-validated (CV) R2 and RMSE.

2.2.3. Model selection—Variable selection was done separately for each season and
modeling approach (LUR or UK), all starting with the same set of covariates. We excluded
covariates without at least 5% nonzero values in our data. Then the least absolute shrinkage
and selection operator (lasso) was implemented as a prescreening tool via the glmnet
function found in the R package glmnet (Friedman et al., 2010). The tuning parameter λ was
selected to yield 15–20 nonzero regression coefficients from the lasso. We followed the
lasso algorithm with a modified exhaustive search of the possible covariate combinations.
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The exhaustive search approach ensures that the model selection process accounts for the
spatial correlation in the data, while the lasso algorithm does not account for this correlation.
The final models were selected based on predictive ability as measured by cross-validated
R2 and RMSE.

In our exhaustive search, we considered no more than one buffer size for each covariate in
any given model. In a recent paper, Su et al. (2009) reported on a methodology for selecting
both a small- and long-range buffers for some geographic covariates. We restricted our
models to a single (typically small) buffer size in the interest of parsimony and because
coefficients for long-range buffer covariates are difficult to interpret in a model that predicts
local concentrations.

In addition to the separate models for each season, a “common” model for all seasons was
chosen via an exhaustive search of covariates that performed well in each of the seasons.
When multiple models had the same cross validated R2 and RMSE, the most parsimonious
model was chosen.

3. Results
A total of 148, 152, and 149 monitoring locations were included in the analysis for summer,
autumn, and winter, respectively. Sampling dates, cluster, and individual site allocations are
summarized in Table 2a. Figures 2a, 2b, and 2c display the locations of the monitors in each
season and their measured concentrations. Clustered data locations have been spread on the
map for display purposes. Notably, there is evidence of a large-scale spatial gradient, with
some of the lowest concentrations observed near the coast and higher values inland. We also
see evidence of the roadway gradients, particularly inland where the highest concentrations
in a given cluster are found at the monitors closest to the roads. In Table 2b we see that the
magnitude of variability differs by season and the majority of the variability in NOx
concentrations is between the individual sites and clusters as opposed to within clusters.
Road clusters have similar means to individual sites. Except in summer, road cluster means
are more variable than individual sites.

Results for models using variables selected based on LUR are shown in Table 3a. Using
these variables, the LUR models explained 74%, 60%, and 67% of the variability with
RMSE of 0.20, 0.20, and 0.17 in the summer, autumn, and winter, respectively. In all
seasons UK and the 2-step approach had a cross validated R2 greater than those of the LUR
model (using variables selected for LUR). The distance to nearest A1 roadway and distance
to coast covariates were present in the best models for all three seasons.

Results for models using variables selected based on UK are shown in Table 3b. The UK
predictions explained 75%, 72%, and 74% of the variability with RMSE of 0.20, 0.17, and
0.15 in the summer, autumn, and winter, respectively. As with the variables selected based
on LUR, we see that UK and the 2-step approach consistently outperform LUR in terms of
prediction accuracy. Distances to nearest A1 roadway, coast, and commercial or service
locations were included in the best model for each season.

The degradation in prediction accuracy for LUR models in winter in Table 3b compared
with Table 3a is noteworthy. The difference is likely due to the fact that the winter LUR
model selected based on UK fails to account for large scale spatial structure, while the
corresponding model selected based on LUR includes additional covariates (D2R, D2Ryard)
that have the potential to capture large-scale spatial structure.

We also identified a model that is common for all seasons. Here common is defined as
having the highest average cross-validated R2. The estimated coefficients and prediction
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performances for the common model are shown in Table 4. Overall the summer model is the
most distinct, in part because large-scale spatial structure is captured in the mean model by
the distance to coast covariate, resulting in a smaller estimated range. This may be related to
the dominant on-shore wind in the Los Angeles region during the summer season. In the
winter and autumn seasons, the wind is more variable so distance to coast is not as
predictive of NOx concentrations, and we find a longer range for the residual spatial
correlation.

Figures 3a, 3b, and 3c show scatterplots of the observed and cross-validated predicted NOx
concentrations (including 95% prediction intervals) at all of the monitoring locations in each
of the three seasons, based on the common UK model. There are no notable outliers, and the
prediction quality and interval coverage appear generally good, consistent with the R2 values
reported above.

The coefficient estimates vary across seasons, although mostly without changing sign. The
two exceptions are A1 roads within 50 meters and population in a 5 km buffer; both these
coefficients have negative signs in summer, although they also have very large standard
errors. The common model consistently performed well in all seasons with cross-validated
R2 of 0.70, 0.68, and 0.72 (RMSE 0.21, 0.18, and 0.16) in the summer, autumn, and winter,
respectively. As in the case of individual models for each season, UK and the 2-step
approach have better predictive ability than LUR.

To further illustrate the advantages of UK, Figure 4a, 4b, and 4c show the variograms for the
residuals in the summer, autumn, and winter season, respectively, from ordinary least
squares regression models with covariates chosen in the common LUR and UK models. The
residuals for both models clearly exhibit spatial structure. The initial drop in semivariance
around 100 meters is likely due to a combination of wind direction coupled with our
clustered design that is keenly sensitive to local traffic effects; Vienneau et al. (2010)
observed a similar phenomenon in their LUR models. As an additional test for spatial
correlation, we applied a Moran’s I test with inverse-distance weighting (Paradis et al.,
2004). The Moran’s I test was statistically significant with p < 0:001 for all six sets of
residuals. The LUR approach does not exploit the spatial correlation for predictions, instead
assuming independent observations. UK estimates the covariance and incorporates the
spatial structure in predictions; the result is improved predictive performance.

4. Discussion
Epidemiological studies of air pollution and health outcomes rely on quality predictions of
air pollution concentrations at sites without monitoring data. The modeling approaches taken
in this paper have proven to be effective at capturing small-scale variability, as measured by
cross-validated R2, and are reasonably straightforward to implement in readily available
software (e.g. ArcGIS, R).

In our study, UK yielded cross-validated R2 for log-transformed NOx concentrations
ranging from 0.72–0.75. The best models selected for LUR were not as good but were still
able to achieve reasonable predictive ability (CV R2 ranged from 0.60–0.74). Previous LUR
studies of oxides of nitrogen (NO, NO2, or NOx) have yielded cross validated R2 values
ranging from 0.49–0.87 (Hoek et al., 2008).

A recent paper that analyzed NOx concentrations in Los Angeles reported an R2 value of
0.92 based on LUR, but this number is estimated using a single test set of only 16 locations
so it is difficult to assess its generalizability (Su et al., 2009). Other considerations such as
the distribution of monitor locations and variability in measured concentration also impact

Mercer et al. Page 6

Atmos Environ. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



R2 and may explain the difference between our results and those reported by Su et al.
(2009).

Previous studies have shown LUR performing better than ordinary kriging, which relies
solely on spatial smoothing without incorporating covariates. Few studies have compared
LUR and UK or entertained a 2-step approach along the lines of the one we describe. One
exception is a recent paper that demonstrated the superiority of UK over other modeling
approaches in mapping background air pollution across the European Union (Beelen et al.,
2009). In our study, UK consistently outperformed LUR. Similarly, the 2-step approach was
more effective than the LUR models, with performance equal to or slightly worse than UK.
Even for the models selected for their LUR performance, the UK and 2-step approaches
performed as well or better in all seasons.

Since air pollution emission and dispersion is a deterministic process, one might argue that
the improved performance via correlated residuals masks the absence of important variables
from our models. However, the inability to collect or precisely quantify all variables
affecting pollution should be viewed as an inherent aspect of exposure assessment. Even
with MESA Air’s highly detailed set of GIS variables, there remained substantial
unaccounted-for spatial correlations. Hence, incorporating these correlations in the model is
the preferred approach both practically and conceptually.

Our results indicate that the 2-step approach has predictive ability similar to UK. This is
encouraging since it provides an additional option for researchers less familiar with using
flexible tools to fit UK models (such as geoR). The 2-step approach is based on first fitting a
mean model using standard linear regression and then modeling the spatial correlation
between residuals using tools available in ArcGIS. This approach is preferable to choosing
between ordinary kriging (assuming a constant mean) and land use regression (assuming
independence).

The important model selection stage still needs to be performed separately. At present, there
is no single optimal solution for model selection. However, it is important to choose an
approach that works well for the research problem at hand, and appropriately handles highly
correlated covariates (e.g. traffic density or population in different size buffers).

Validation is an essential part of assessing the performance and robustness of a model, and
its design should be considered carefully. The results in this paper use 10-fold cross-
validated R2 (Hastie et al., 2001), with specific consideration given to the clustered design of
our the monitoring data. Since we used cross-validation as part of the model selection
procedure, our reported prediction accuracy may still be somewhat optimistic because the
same data were used for selection and final evaluation. As an alternative to cross validation,
some authors (e.g. Su et al. (2009)) consider a test data set that is separate from the training
data. This has the virtue of providing independent test data, but if the test data set is
relatively small (which it often must be in order to have sufficient training data available to
fit the model) the resultant R2 value can be less informative than the cross-validated R2

about sensitivity of the model to possible extreme observations. Moreover, as is the case
with cross validation, typically the test set’s locations are similar in nature to the training set,
and not to the eventual target locations thus the estimated prediction accuracy may be
biased.

There was considerable variability between seasons in the magnitude, and in some cases
also the signs, for the common model coefficient estimates and spatial covariance model
parameters shown in Table 4. In particular, summer has the shortest range, indicating the
spatial correlation is the smallest in this season, while autumn and winter show evidence of
longer range correlation. One possible explanation for this discrepancy is that the distance-
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to-coast covariate captures the effect of prevailing winds in summer and accounts for the
dominant spatial structure in the data, whereas this simple covariate does not account for the
more complex circulation patterns in autumn and winter. The variability between seasons
suggests that it would be unwise to use our dataset to naively model all three seasons jointly
or to combine them in a single model to predict long-term average concentrations. Instead,
we incorporate our findings from analyzing the snapshot data into the MESA Air spatio-
temporal model (Szpiro et al., 2010; Lindström et al., 2011) to reliably predict NOx
concentrations at subject locations over several years and derive long-term average
exposures for the time periods of interest based on these predictions.
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Appendix

Land use regression model
Take our monitoring data to be Y ⃗ = (Y (s1),…, Y (sn))T, where Y (si) is the observed
concentration at location si. We also have a set of M (where M ≥ n) land use covariates to be
used as predictors. We model the data as:

equivalently,

where X(s) are the GIS-based covariates from sampled sites, respectively. Let s0 indicate
locations without concentration data (e.g. subject homes) and Y (s0) be the corresponding

unobserved concentration at location s0. The estimated regression parameters  are used to
predict NOx concentrations at unmeasured location with:

Universal Kriging
Regression and covariance parameters are estimated by fitting the following model with the
geoR package in R Ribeiro and Diggle (2001):

A covariance function must be specified. We use the exponential covariance model, which
models the covariance of two measurements as a function of the distance between them such
that

where d is the distance between observations. A theoretical variogram for the exponential
correlation function is shown in Figure 5.
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Assuming Y ⃗ (s) and Y ⃗ (s0) are jointly normal, from standard multivariate normal theory we
have the result:

where  Predictions for unmeasured locations s0 are generated using the
conditional distribution of unobserved data given observed data at locations s:

2 - step predictions with LUR & simple kriging
As in LUR the multivariate regression model Y ⃗ (s) = X(s)β ⃗ + ε ⃗ is fit, where ε ⃗ ~ N(0, ν2).
Simple kriging is used with the regression residuals, ε ⃗, to estimate Σ(σ2, τ2, φ). Then, as in
universal kriging, predictions are based on the normal conditional expectation of Y ⃗ (s0)
given Y ⃗ (s). Operationally, this involves adding the land use regression predictors with the
simple kriging prediction.
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Research Highlights

• Land use regression (LUR) and universal kriging (UK) predict NOx in Los
Angeles

• UK with traffic, population, land use, and geographic covariates outperforms
LUR

• Optimal model choice varies between three seasons

• Nearly-optimal model performs well in all three seasons
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Figure 1.
Idealized road gradient sampling scheme.
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Figure 2.
a Los Angeles sampling locations and concentrations in Summer 2006. The circles represent
monitor locations. The distance between monitors and size of monitors have been
exaggerated to make visualization of all locations possible.
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b Los Angeles sampling locations and concentrations in Autumn 2006. The circles represent
monitor locations. The distance between monitors and size of monitors have been
exaggerated to make visualization of all locations possible.
c Los Angeles sampling locations and concentrations in Winter 2007. The circles represent
monitor locations. The distance between monitors and size of monitors have been
exaggerated to make visualization of all locations possible.

Mercer et al. Page 15

Atmos Environ. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
a Universal kriging predictions and 95% prediction intervals and observed concentrations in
Summer 2006.
b Universal kriging predictions and 95% prediction intervals and observed concentrations in
Autumn 2006.
c Universal kriging predictions and 95% prediction intervals and observed concentrations in
Winter 2007.

Mercer et al. Page 16

Atmos Environ. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
a Display of the variograms for land use regression and universal kriging common model
residuals for the summer season. The dotted black line is the covariance function estimated
by the model for each approach.
b Display of the variograms for land use regression and universal kriging common model
residuals for the autumn season. The dotted black line is the covariance function estimated
by the model for each approach.
c Display of the variograms for land use regression and universal kriging common model
residuals for the winter season. The dotted black line is the covariance function estimated by
the model for each approach.
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Figure 5.
Theoretical exponential variogram.
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Table 1

GIS-based variables considered for model development. A1 roads are primary highways with limited access,
A2 roads are primary roads without limited access, and A3 roads are secondary and connecting roads

Predictor Variable Symbol Units Buffer radii Functional Form

Non-roadway

Population Pop Total
people
within
buffer
(m)

500,1000,1500,2000, 2500,3000,5000, 10000,15000 scaled by 1/100,000

Intense Use Land Int km2 50, 100, 150, 300, 500 750, 1000, 1500, 2000, 3000 scaled by 1/100

Open Space Land Open km2 50, 100, 150, 300, 500 750, 1000, 1500, 2000, 3000 untransformed

Distance to Coast D2C meters n/a trunc. 15km & 25km
scaled by 1/100,000

Distance to industrial
Source (e.g., D2Comm:

dist. to commercial,
D2Lport: dist. to large port,
D2Ryard: dist. to rail yard)

D2(variable) meters n/a

Roadway

Distance to nearest A1, A2,
or A3

D2R meters n/a Log101

Distance to nearest A1 D2A1 meters n/a Log101

Distance to nearest A2 D2A2 meters n/a Log101

Distance to nearest A3 D2A3 meters n/a Log101

Length of A1 roads within
buffer

A1 meters 50, 100, 150, 300, 400, 500, 750, 1000, 5000 10000,
15000

scaled by 1/10,000

Length of A2 and A3 roads
within buffer

A23 meters 50, 100, 150, 300, 400, 500, 750, 1000, 5000 10000,
15000

scaled by 1/100,000

1
Minimum distance of 10 meters.
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Table 2a

Summary of Los Angeles NOx snapshot monitoring locations

Summer Autumn Winter

Dates
Start 6/27/2006 10/17/2006 1/23/2007

End 7/12/2006 11/3/2006 2/7/2007

Samples

Total 148 152 149

Clusters 24 24 23

Individuals 14 13 20
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Table 2b

Summary of Los Angeles NOx snapshot concentrations (ppb)

Summer Autumn Winter

All Sites
Mean 34.2 75.1 95.3

Variance 132.1 551.0 728.4

Clusters

Mean 34.3 74.7 96.0

Between Variance 89.6 450.5 620.4

average w/in Variance 65.9 152.5 170.0

Individual Sites
Mean 31.2 77.7 91.0

Between Variance 144.8 359.2 571.8
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Table 2c

Summary of Los Angeles log(NOx) snapshot concentrations (log(ppb))

Summer Autumn Winter

All Sites
Mean 3.47 4.27 4.51

Variance 0.15 0.10 0.09

Clusters

Mean 3.47 4.26 4.52

Between Variance 0.14 0.09 0.08

average w/in Variance 0.04 0.02 0.02

Individual Sites
Mean 3.35 4.32 4.48

Between Variance 0.24 0.06 0.07
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Table 3a

Cross validated R2 (RMSE) calculated for land use regression, universal kriging, and the 2-step approach for
the ‘best’ model as chosen for predictive ability of land use regression in each season (on log(ppb) scale) for
NOx

Season Covariates LUR UK 2-step

Summer D2A1, D2C, D2Comm, A23_50m, A1_50m, D2Lport, Int_3k 0.74 (0.20) 0.75 (0.19) 0.75 (0.19)

Autumn D2A1, D2C, D2Comm, A23_50m, A1_50m, POP_5k 0.60 (0.20) 0.72 (0.17) 0.70 (0.17)

Winter D2A1, D2C, A23_500m, D2R, Int_3k, D2Ryard 0.67 (0.17) 0.67 (0.17) 0.68 (0.17)
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Table 3b

Cross validated R2 (RMSE) calculated for land use regression, universal kriging, and the 2-step approach for
the ‘best’ model as chosen for predictive ability of universal kriging in each season (on log(ppb) scale) for
NOx

Season Covariates LUR UK 2-step

Summer D2A1, D2C, D2Comm, A23_50m 0.70 (0.21) 0.75 (0.20) 0.75 (0.20)

Autumn D2A1, D2C, D2Comm, A23_50m, A1_50m, POP_5k 0.60 (0.20) 0.72 (0.17) 0.70 (0.17)

Winter D2A1, D2C, D2Comm, A23_400m, A1_50m, Int_3k 0.48 (0.22) 0.74 (0.15) 0.70 (0.17)

Atmos Environ. Author manuscript; available in PMC 2012 August 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mercer et al. Page 25

Table 4

Estimated parameters and standard errors for common model (on log(ppb) scale) for NOx. Details about the
scaling of the covariates can be found in Table 1

Parameter Summer Autumn Winter

Regression coefficient estimate (SE)

intercept 2.927 (0.25) 4.214 (0.25) 3.684 (0.25)

D2A1 −0.269 (0.04) −0.161(0.04) −0.137 (0.03)

A1_50m −4.002 (7.02) 10.972 (5.37) 8.664 (4.26)

A23_400m 0.403 (0.28) 0.233 (0.22) 0.551 (0.19)

Pop_5k −0.012 (0.03) 0.112 (0.03) 0.021 (0.03)

D2C 7.424 (0.69) 0.484 (0.92) 1.334 (1.03)

Int_3k 1.754 (0.77) 0.845 (0.76) 3.746 (0.88)

D2Comm −1.507 (0.97) −3.846 (0.80) −2.071 (0.78)

Covariance

φ ̂ (range in meters) 5,702 15,432 13,021

σ ̂2 (partial sill) 0.030 0.016 0.027

τ̂2 (nugget) 0.011 0.023 0.010

Cross Validated R2(RMSE)

LUR 0.66 (0.22) 0.55 (0.19) 0.50 (0.21)

UK 0.70 (0.21) 0.68 (0.18) 0.72 (0.16)

2-step 0.70 (0.21) 0.66 (0.18) 0.70 (0.17)
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