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Summary
In genome-wide association studies, population stratification is recognized as producing inflated
type I error due to the inflation of test statistics. Principal component-based methods applied to
genotypes provide information about population structure, and have been widely used to control
for stratification. Here we explore the precise relationship between genotype principal components
and inflation of association test statistics, thereby drawing a connection between principal
component-based stratification control and the alternative approach of genomic control. Our
results provide an inherent justification for the use of principal components, but call into question
the popular practice of selecting principal components based on significance of eigenvalues alone.
We propose a new approach, called EigenCorr, which selects principal components based on both
their eigenvalues and their correlation with the (disease) phenotype. Our approach tends to select
fewer principal components for stratification control than does testing of eigenvalues alone,
providing substantial computational savings and improvements in power. Analyses of simulated
and real data demonstrate the usefulness of the proposed approach.
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1. Introduction
In tests of genetic association among unrelated individuals, it is recognized that population
stratification can result in test statistics with inflated apparent significance, resulting in
overall type I error that is far above the nominal level. The method of genomic control
(Devlin and Roeder, 1999; Devlin et al., 2001) was among the first attempts to address this
problem, and is straightforward. For (chisquare) statistics at numerous markers measuring
association with phenotype, an estimate is obtained for the inflation of test statistics beyond
that expected under the null hypothesis and assuming no stratification. Then the test
statistics are all adjusted by the inflation factor. However, a typical genome-wide association
scan (GWAS) tests a very large number of SNP markers, requiring a stringent significance
threshold. In this setting, genomic control can fail to properly control the type I error (Devlin
et al., 2004; Marchini et al., 2004), in part because variance inflation is not constant across
the SNPs.
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Alternatively, the principal component (PC) approach (Price et al., 2006) uses PCs
computed from all genotypes as covariates in phenotype-genotype regression or in stratified
analyses. Results from numerous studies indicate that the PC values often reflect known
substructure and ancestry (Price et al., 2008). A great advantage of the PC approach is its
sensitivity, effectively adjusting test statistics for only those markers contributing to the
stratification. However, several challenges remain for effective PC-based stratification
control. The primary challenge lies in choosing which PCs to include as covariates. Clearly
not all PCs can be included, as there are as many PCs as there are individuals under study.
Price et al. (2006) originally suggested to use the 10 PCs with the highest eigenvalues. These
investigators later proposed using the Tracy-Widom (TW) statistic (Patterson et al., 2006) to
assess significance of eigenvalues to select PCs. However, this approach may detect a very
large number of PCs as significant, with uncertain impact on the analysis. Moreover, the
precise contribution of each PC to the overall type I error has not been established. As we
shall see below, it is entirely possible for a relatively low-ranked PC to have a greater impact
on type I error than a higher-ranked PC.

The paper is arranged as follows. In Section 2, we establish a relationship between PCs and
the average of the test statistics. Based on this relationship, we propose a new method,
EigenCorr, to select PCs based on their eigenvalues and their correlations with the
phenotype. The explicit use of phenotypes in stratification control has been anticipated in
previous work, e.g. Epstein et al. (2007) and Kimmel et al. (2007). However, EigenCorr
provides a direct connection to the type I error inflation introduced by PCs. A
straightforward generalization applies when only a subset of markers are used for
stratification control. In Section 3, we demonstrate the usefulness of EigenCorr via
simulation and real GWAS analysis. In Section 4, we conclude with a discussion of
implications and future directions.

2. Materials and Methods
Let gij be the genotype of SNP i and individual j, where i = 1, …, M and j = 1, …N. We

define a normalized genotype xij as , where

. Let X be the resulting M × N normalized genotype matrix, and xi. the ith

row of X. We have  and . For mathematical precision in later
development, the normalization used here is slightly different from that used in Price et al.
(2006), but produces nearly identical PCs. From the singular value decomposition (SVD) we
obtain X = UDPT, where D is an N × N diagonal matrix of ordered singular values with jth
diagonal element dj, U is an M × N loading matrix, and P is the N × N normalized principal
component matrix. Let p.j be the jth column of P, (i.e.,the jth PC), for j ∈ {1, …, N}. Note

that ,  for k ≠ j, and  for j ∈ {1, .., N − 1} where 1 = {1, .., 1}.
Finally, we use y to denote the vector of N phenotypes.

THEOREM 1: Let , We have , where  is the jth eigenvalue
of XTX.

The proof is given in Web Appendix A. As γj is an inner product between the (normalized)
p.j and y, it is easy to show that
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(1)

where “corr” is the Pearson correlation coefficient. Thus γj is proportional to the correlation
between the phenotype y and the jth PC. We emphasize that the correlation is a sample
quantity, observable from the data. Similarly, each term  in the equality is proportional
to the correlation between the genotype at SNP i and the phenotype. The importance of the
result lies in the explicit connection between these M genotype-phenotype correlations to the
N PC-phenotype correlations.

2.1 Relationship between Genomic Control and Principal Components
Here we obtain explicit results for the relevant test statistics applied in association mapping.
Theorem 1 technically applies to score test statistics. However, we later demonstrate that the
results apply to other common choices of test statistic.

Quantitative Traits—For continuous quantitative phenotype Y, we assume a simple linear
regression model at each SNP i:yj = β0i + β1ixij + ∊j, ∊j ~ N(0, σ2). To test an association of
the SNP i with the phenotype, we can use the following score test statistic:

(2)

By Theorem 1,

(3)

The observed mean of all score test statistics across the M SNPs is thus proportional to the
sum of the squared PC-phenotype correlations multiplied by their respective eigenvalues.

In a justification of genomic control, it has been argued that under certain models of
population stratification, the inflation of test statistics should be similar across all “null”
SNPs (Devlin et al., 2001). This and related work (Devlin and Roeder, 1999) compared the
sample median of test statistics to the chi-square median value, for an estimated inflation
factor  = median(S)/0.456, in order to be robust to outlying test statistics which presumably
correspond to “alternative” SNPs. Other work (Reich and Goldstein, 2001; Devlin et al.,

2004) has used the sample mean  directly. In practice, the median and
mean typically give similar results, as the proportion of alternative SNPs is typically small.
Using either approach, for each i a new statistic  is then compared to .

To summarize, the results above provide a direct relationship between the mean version of
the genomic control quantity  (left-hand side of (3)) and the PC-phenotype correlations and
eigenvalues. This relationship is more than a simple curiosity. While it is known that distinct
subpopulations can be represented using PCs (Price et al., 2008), we are not aware that a
natural relationship has been previously established between the PCs and the testing
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procedures. Moreover, (3) is exact (not based on expectations), holding for any X and y,
regardless of the underyling population substructure and the proportion of alternative SNPs.
Thus the right-hand side of (3) is subject to the same sampling variation as . We also note
that, to the extent that increases in  above 1 determine type I error inflation, the equation
specifically highlights the terms corr2(p.j, y) λj as contributors to this inflation. Principal
components contributing meaningfully to this inflation must have appreciable values for
both λj and corr2 (p.j, y). Due to sampling variation, PCs will exhibit sample corr2(p.j, y) > 0
for each j, even if the PCs are truly uncorrelated with the population from which y is drawn.
The eigenvalues λ1, …, λN − 1 are also non-zero. Thus we must consider the magnitude of
the terms, as well as sampling variation. Our general approach in the later sections will be to
(i) re-rank the PCs by the terms corr2(p.j, y) λj, (ii) test for the statistical significance of each
of the terms, and (iii) control for stratification using only those PCs with significant terms.

Case-Control Traits—We now establish that the relationships described above apply to
case-control studies, with Y = 0 and Y = 1 corresponding to controls and cases, respectively.
We use the logistic regression model for SNP i: log [P(Y = 1)/ {1 − P(Y = 1)}] = β0i + β1ixij,
which is conditional on the sampling scheme. With N1 cases and N0 controls, the score test

statistic is . It is simple to show that ,
and so by comparison with (2), we see that (3) directly applies.

We have now demonstrated a direct connection between the genomic control inflation factor
and the PCs, but the two correction approaches are fundamentally different. In genomic
control, the inflation of test statistics is effectively assumed to be constant across all null
SNPs. However, it can be shown that regression analyses with the top PCs used as
covariates is equivalent to adjusting the inflation effect of each SNP separately (see Web
Appendix B for details).

2.2 EigenCorr : An Eigenvalue and Correlation-Based PC Selection Procedure

Using the result that the effect of p.j on  is proportional to , we propose to select PCs

based on the , which we call the EigenCorr scores. To determine the impact of a given
PC, we describe two procedures, which differ in their underlying assumptions.

1) EigenCorr1—We adopt the null hypothesis that the population correlation of the PCs
and phenotypes is zero and that there is no population substructure. We are able to directly
estimate the null distribution of EigenCorr scores using the Tracy-Widom approximation
(Johnstone, 2001; Patterson et al., 2006) and the Fisher z-transformation applied to sample
correlations (Fisher, 1921). That is, corr(p.j, y) approximately follows the distribution of (e2Z

− 1)/(e2Z + 1), where Z ~ N(0, 1/(N − 3)). Using these approximations to the distributions of

(independent)  and λj, we obtain null distributions for  by simulation, resulting in p-
values for each EigenCorr score. The process proceeds sequentially. We simulate a random

 from the distribution of , where T is a Tracy-Widom random
variable, and ξ and μ are as described in Web Appendix C. We then simulate  using the
Fisher z-transformation to obtain p-values for . After excluding the first eigenvalue, we
set N = N − 1, recompute μ and ξ, and follow the same procedure sequentially to obtain p-
values for the remaining EigenCorr scores. Significant PCs are selected by the p-values,
acknowledging multiple comparisons using the Benjamini-Hochberg false discovery rate
(FDR) procedure (Benjamini and Hochberg, 1995).
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2) EigenCorr2—In EigenCorr1, we assumed no population substructure. Although this
assumption underlies Tracy-Widom testing (Patterson et al., 2006), we can relax the
assumption, recognizing that significant eigenvalues alone are not sufficient to produce
inflation of type I error. For EigenCorr2, we assume only that the PCs are uncorrelated with
the population phenotype distribution. Here we treat the λj values as fixed, and use the

Fisher z approximation to compute p-values for high values of . Although EigenCorr2 is
simpler than EigenCorr1, and is shown to perform well in later simulations, both approaches
may have value in different situations. In particular, EigenCorr1 may have an advantage in
situations where few eigenvalues are truly significant. For either approach, our experience
indicates that a relatively small number of PCs will be chosen for stratification control,
which is desirable for both computational and statistical simplicity.

In the current practice of PC-based stratification control, investigators are often concerned
that the inclusion of SNPs in high linkage disequilibrium can produce misleading results.
Thus many investigators “thin” out SNPs so that only a subset with lower correlations is
used to generate PCs (e.g. Fellay et al., 2007), which is a special case of the shrinkage PC
approach (Zou et al., 2010). We have shown (Web Appendix F) that EigenCorr procedures
can be applied, but to the EigenCorr scores based on the weighted PCs. Further, simulations
show that even when genomic control is performed using all SNPs, but PCs are calculated
using a thinned set of SNPs, the approximate relationship still holds (Web Appendix G).

3. Simulations and Real Data Analysis
We investigated the performance of the proposed EigenCorr approach in applications to
simulated data and two real GWAS datasets.

3.1 Simulation Studies
Simulation 1—We simulated 1000 samples from 5 subpopulations with 20,000
uncorrelated SNPs, with 210 samples from each of the first four subpopulations, and the
remaining 160 samples from subpopulation 5. For each SNP, the overall minor allele
frequency (MAF) was uniform from 0.05 to 0.5, and Fst uniform from 0.01 to 0.04. From
these values, the MAF for each subpopulation was generated according to the Balding-
Nichols model (Balding and Nichols, 1995). PC analysis showed that the top 4 PCs were
significant according to the TW test, with p.4 specifically distinguishing subpopulation 5
from the others. To simulate population stratification, we generated a disease phenotype
from a logistic model with log(odds ratio)=1.6 between subpopulation 5 and the remaining
samples. Therefore, increases in type I error resulting from population stratification arise
entirely from the differing disease prevalence in the subpopulations. Figure 1 shows
eigenvalues and EigenCorr scores of the first 10 PCs. The TW test selected the top 4 PCs as
significant at p < 0.01, since its selection is entirely eigenvalue based, while only p.4 was
identified, correctly, by EigenCorr. This simulation is illustrative of the intended advantage
of EigenCorr scores.

Simulation 2 simulations based on a real dataset—To investigate type I error and
power for PC-based methods, we simulated phenotypes based on a real schizophrenia
GWAS from the GAIN consortium [Version 2, Accession number: phs000021.v2.p1]
(Sanders et al., 2008). In this manner we intended to reflect the genetic complexity
encountered in real studies. The General Research Use (GRU) African American data
consists of 1904 samples with 845,814 SNPs, and was downloaded from dbGap at NCBI
(ncbi.nlm.nih.gov). After several data filtering steps (See Web Appendix D), we obtained a
final data set with 1835 samples and 96, 346 SNPs. TW testing identified 91 significant PCs
with p < 0.01, which also corresponded to FDR control at 0.1. In contrast, the informal (but
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widely used) “scree plot” method of simply inspecting eigenvalues would result in choosing
two PCs (See Web Figure 1). A different version of the TW test is implemented in the GEM
software (Luca et al., 2008), referred to hereafter as TW-GEM. TW-GEM selected 12 PCs at
FDR level 0.1. In contrast to the TW test implemented in EigenSoft, TW-GEM estimates the
effective number of markers only once and uses it for all PCs when computing TW
statistics.

We used p.1, p.2, p.5, and p.10 to generate association of strata with a simulated phenotype.
For quantitative traits, under the null hypothesis for SNP association, we simulated
phenotypes according to yj = η1pj1 + η2pj2 + η5pj5 + η10pj10 + ∊j. Here the ∊j were generated
from N(0, 1), and η1, η2, η5, η10 generated as independent and identically normally
distributed so as to contribute the half of the variability of y. Note that for all simulations,
the genotypes were fixed, but the phenotypes were simulated prospectively, producing
variation in the PCs selected by EigenCorr. On average, EigenCorr1 and EigenCorr2
selected 3.52 and 3.51 PCs respectively out of the first 200 PCs at FDR level 0.1. These PCs
mostly overlapped and reflected the true PC stratification. Similarly, for a dichotomous trait,
we simulated case-control status from the model

where the coefficients η1, η2, η5, η10 were randomly generated from a normal distribution
such that the variance of the log odds ratio equaled 4.0.

For the alternative hypothesis, given the genotype x at a causal SNP, quantitative traits were
generated from yj = βx + η1pj1 + η2pj2 + η5pj5 + η10pj10 + ∊j, where β = 0.15, and
dichotomous traits were generated from

with β = log(1.6) = 0.47. The same η distributions used in the null models were applied.

To investigate the type I error and power, we ran 10,000 simulations for each model. In each
null simulation a single SNP was chosen at random for investigation and p-value
computation. Table 1 provides the empirical type I errors. We compared seven different
approaches for PC selection: 1) no PCs for adjustment; 2) the four PCs that reflected the true
population stratification; 3) the first two PCs, selected by scree plot examination; 4) the 91
PCs selected by the TW test; 5) the 12 PCs selected by TW-GEM; 6) the PCs selected by
EigenCorr1, and 7) the PCs selected by EigenCorr2. The “true PC” approach can be viewed
as a gold standard. P-values were computed from the score statistics for the additive
genotype effect. The results from likelihood ratio testing were similar (See Web Table 1).

From the table we can see that the “no-adjustment” and “scree plot” methods result in
improper control of type I error. As expected, use of the four known confounding PCs
properly controlled type I error. The 91 top PCs from the TW test controlled the type I error
well for the quantitative trait, although the model was highly over-parameterized. However,
these 91 PCs results in somewhat inflated type I error for the dichotomous trait. In practice,
investigators might be reluctant to fit so many covariates, but the absence of a principled
alternate procedure based solely on eigenvalues makes it difficult to prescribe an alternative,
when so many eigenvalues are clearly significant. The fewer PCs selected by the TW-GEM
test controlled type I error in these data, as did the PCs from both EigenCorr methods. The
statistical power of the models chosen by TW-GEM and both EigenCorr procedures were
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comparable to the gold standard of known PCs, while the TW procedure resulted in
somewhat reduced power.

The average estimates of the genetic effect β are shown in Web Table 2. For the quantitative
traits, all seven methods gave essentially unbiased estimates. The estimates from the logistic
regression, however, were biased downward with adjustment by zero PCs or by the two
scree-based PCs. Estimates were upwardly biased when using the 91 TW PCs. The presence
of bias and poorly-controlled type I error are well-known features of logistic regression if a
large number of unnecessary (null) covariates are included in the analysis (Lubin, 1981).

To investigate the family-wise error rate (FWER) under more stringent testing thresholds,
we used the same setup to run 1000 null whole-genome scans using all 810, 264 SNPs. Here
the minimum GWAS p-value in each simulation was compared to prespecified thresholds
(Table 2). The threshold of 6.15×10−8, corresponds to Bonferroni adjustment for
FWER=0.05. The precise FWER-controlling threshold is diffcult to predetermine, due to the
effects of SNP correlation and the use of asymptotic p-values at extreme thresholds.
Nonetheless, for each threshold, the ”known PC” situation can serve as a gold-standard for
comparison. Table 2 shows that the large number of PCs from the TW test inflates the
FWER for dichotomous traits, doubling or tripling the error compared to using known PCs.
The “no adjustment” and scree inspection methods failed to control FWER for both
continuous and dichotomous traits, but because too few PCs are used. For the simulation
setup, we find that EigenCorr1, EigenCorr2 and TW-GEM offer reasonable FWER control.
However, the real-data example below shows that for some datasets TW-GEM can fail to
detect PCs which have a substantial impact on type I error.

3.2 Real Data Analysis
We next applied the EigenCorr methods to two schizophrenia GWAS studies: (i) the CATIE
dataset of Sullivan et al. (2008); (ii) the GAIN consortium dataset described earlier, using
the actual study phenotypes. The CATIE analysis is described in detail here, with the GAIN
analysis described in Web Appendix E.

3.3 The CATIE Schizophrenia Data
CATIE Schizophrenia GWAS data was obtained from the NIMH Genetic Repository
(nimhgenetics.org), with 1, 492 samples (741 cases and 751 controls) and 495, 172 SNPs.
After applying the same data filtering steps described in Web Appendix D, 1, 439 samples
remained, with 71, 985 thinned SNPs for PC analysis. Web Figure 5 presents sample
eigenvalues, their correlations with disease status, and the corresponding EigenCorr scores.
Inspection of the scree plot suggested use of the top two PCs. At FDR = 0.1, the TW test
selected 45 PCs. In contrast, TW-GEM selected only the first PC. Of the top 200 PCs, both
EigenCorr1 and EigenCorr2 selected three PCs, with two of them overlapping.

We applied all the PC-selection approaches in Simulation 2, except the “true PC” approach,
as the true confounding PCs are of course unknown. Figure 2 shows the −log10 (p-values)
(observed vs. expected) from the various approaches. The TW-GEM shows a large deviation
from the diagonal, indicating that adjustment by only the first PC was not suffcient to
control for stratification. In contrast, the plots for EigenCorr1 and EigenCorr2 suggest
proper type I error control. PC 2 has the largest EigenCorr score, with a large eigenvalue and
high correlation with the case-control phenotype. In addition, the EigenCorr methods
successfully find a short list of SNPs that meet genome-wide significance.
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4. Discussion
We have shown that the average inflation of test statistics caused by population stratification
can be expressed in terms of genotype PCs, according to their eigenvalues and their
correlations with the phenotype. PCs that are uncorrelated with the phenotype have a
negligible effect on the inflation of test statistics. The explicit connection of the PCs to
genomic control provides insight into the advantages of PC-based methods. Importantly, this
natural motivation for PC-based control does not require any assumptions about the nature
of population structure. In addition, the results show that PCs computed from genotypes are
“natural” variables to consider, even though discrete genotypes are far removed from the
normality assumptions that underlie classical multivariate analysis. In addition to the
statistical advantages of EigenCorr PC selection, the small number of PCs typically selected
has a distinct computational advantage when applied at large scales, for example with eQTL
analysis.

For simulations and real data, we have shown that the TW test selects too many PCs. In
practice, investigators typically choose few PCs, but informal methods such as scree plot
inspection can select too few. Similarly, the TW-GEM test clearly selected too few PCs for
CATIE, because it does not approach PC testing sequentially, and can be less powerful for
detecting important but lower-ranked PCs. We believe the EigenCorr approaches offer a
principled alternative, and tend to correctly select the few most important PCs.

In our analyses, EigenCorr1 and EigenCorr2 produced similar results. EigenCorr1 offers a
potential conceptual advantage, in that the EigenCorr score is used directly as a statistic, and
lower-ranked PCs are given less emphasis. However, when it is clear that many eigenvalues
are highly significant, the null PC assumption may not be realistic, and EigenCorr2 may be
preferred.

Other investigators have used the phenotype to identify or construct genotype-based
covariates. Epstein et al. (2007) described a general stratification score approach, using
partial least squares (PLS) of phenotype on a number of markers. Lee et al. (2008) pointed
out that PLS can result in overfitting to the phenotype and reduce power. However, Epstein
et al. (2007) and the rejoinder (Epstein et al., 2008) provide important clarification that
desirable stratification control should explain some phenotype variability. This fact was also
recognized by Kimmel et al. (2007), who described initial correction of phenotype by a
small number of PC clusters before association testing. Zhao et al. (2009) described a
propensity score using (genetic) covariates to predict genotype at a test locus before
inclusion in a phenotype-genotype model. This approach, although implemented with
relatively few genetic covariates (serving a role analogous to our PCs), potentially avoids
overfitting in selecting covariates. However, it is potentially susceptible to inclusion of an
excessive number of genetic covariates, which can present a problem for logistic regression.

We view the EigenCorr approach as generally similar to that advocated by Epstein et al.
(2007), using PC-based phenotype adjustment in the form of regression covariates.
However, the EigenCorr procedure, with a fixed number of PCs to choose from, is
intentionally less flexible than procedures such as PLS, and FDR-based testing provides a
natural penalty against overfitting. Moreover, in contrast to other procedures, the EigenCorr
motivation and approach is explicitly connected to the source of test statistic inflation. The
fact that genotype must also be associated with population stratum in order to create
confounding is also implicit in EigenCorr, because each informative marker has an influence
on, and will be associated with, at least one eigenvector. We believe that EigenCorr offers
an effcient filter to identify the confounding variables of greatest influence.
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Figure 1.
Illustration of the EigenCorr scores for simulation1. The left panel presents the first 10
eigenvalues and the right panel presents the first 10 EigenCorr scores. The importance of
PC4 is clearly indicated by the EigenCorr score.
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Figure 2.
Plots of observed vs. expected p-values (−log10 scale) for the CATIE data. The dashed lines
indicate 95% prediction bands.
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