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Abstract
This review summarizes some of the recent developments and identifies critical challenges
associated with in vitro and in silico representations of the liver and assesses the translational
potential of these models in the quest of rationalizing the process of evaluating drug efficacy and
toxicity. It discusses a wide range of research efforts that have produced, during recent years,
quantitative descriptions and conceptual as well as computational models of hepatic processes
such as biotransport and biotransformation, intra- and intercellular signal transduction,
detoxification, etc. The abovementioned research efforts cover multiple scales of biological
organization, from molecule–molecule interactions to reaction network and cellular and
histological dynamics, and have resulted in a rapidly evolving knowledge base for a “systems
biology of the liver.” Virtual organ/organism formulations represent integrative implementations
of particular elements of this knowledge base, usually oriented toward the study of specific
biological endpoints, and provide frameworks for translating the systems biology concepts into
computational tools for quantitative prediction of responses to stressors and hypothesis generation
for experimental design.
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Introduction
As the major site of xenobiotic metabolism, the liver plays a central role in preventing
accumulation of a wide range of compounds by converting them into a form suitable for
elimination. As the process of xenobiotic metabolism requires multiple biochemical
transformations, and the fact that some intermediates mediate toxic responses, the liver is
potentially susceptible to injury1 during the act of performing its function. An improved
quantitative understanding of the balance between functional xenobiotic metabolism and
hepatic damage would be of great utility in forming guidelines for safe exposure levels in
both the pharmaceutical and the toxicological contexts. In particular, the ability to predict
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the toxicity profile of lead candidates2 is critical to streamlining pharmaceutical drug
development, and a better understanding of the onset of liver toxicity is an avenue to
realizing the “personalized medicine” concept, wherein drugs are selected and dosed in
accordance with the genetics, active biomarkers, and environment of the individual patient.3
Furthermore, improved descriptions of the cellular-level pharmacokinetics of xenobiotics
are needed for integration into whole-body physiologically based pharmacokinetic (PBPK)
models to improve their accuracy and translation potential.

Advances in genomics and molecular and cell biology are providing a much improved view
of the molecular players and pathways involved in xenobiotic metabolism, yet this
information alone is limited in its translational potential. To fully exploit this wealth of
information, one needs a framework for integrating various forms of data and utilizing them
for predictive pharmacology.4 These include data on drugs and toxicants, including
biodistribution profiles in various species or individuals, and patient data, including medical
and drug history, gene amplifications and deletions, liver enzyme levels, etc. It is of high
clinical priority to use these data to make predictions regarding human dosing in phase I
clinical trials based on preclinical data, to refine dosing regimens based on human
biodistribution data, and, ultimately, to stratify and individualize dosing. Furthermore, a
better understanding of xenobiotic interactions in the liver will aid in diagnosing chronic
liver disease at an earlier stage, when more treatment options are available.

PBPK models provide a framework to integrate, interpret, and make predictions regarding
the overall host response to xenobiotics.5 PBPK modeling is a special approach to
pharmacokinetics analysis where the physiology and anatomy of the human body and the
biochemistry of the chemical or chemicals of interest are incorporated into a conceptual
model for computer simulation (Figure 1). In PBPK models, the body is treated as a set of
compartments with the concentrations of species related among them by formal material
balance, thus establishing internal consistency. The rates of metabolism or other processes
within compartments can be modeled with whatever level of detail available, providing
flexibility and the means to incorporate multiple types of data. Thus, unlike classical
pharmacokinetics, PBPK modeling is a powerful tool for many types of extrapolations,
including species-to-species, route-to-route, and dose-to-dose extrapolations. In the context
of drug development and toxicity predictions, PBPK models offer a promising approach
toward a mechanistic understanding of undesired drug effects and present a promising
avenue for rational drug design and screening with significant translational potential.6–8

Therefore, in these integrated host models, the accuracy of the representation of the biology
as well as the anatomy of the liver is a critical issue for their translational success.

Because of the increasing sophistication of PBPK models and, in particular, the
incorporation of molecular-level information, the importance of in vitro experiments is
being emphasized more heavily.6,7 Such systems allow direct measurement of metabolism
in hepatocytes, separated from the effects of transport, distribution, and metabolism by other
tissues. Thus, they provide important data for the parameterization and validation of PBPK
models. This review summarizes some of the recent developments and identifies critical
challenges associated with in vitro and in silico representations of the liver and assesses the
translational potential of these models in the quest of rationalizing the process of evaluating
drug efficacy and toxicity.

Development of “virtual” (or “in silico”) tissues and organs represents a critical step in the
continuing advancement of the state of the science in physiologically based pharmacokinetic
and pharmacodynamic (PBPK/PD) modeling. Particular attention in such developmental
efforts, undertaken by various research groups, has been given to the liver, due to its critical
role in central metabolism and detoxification and in the synthesis and metabolism of
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hormones and other compounds necessary for maintaining critical body functions and its
ability to regenerate. As the key metabolic organ for degrading xenobiotics (entering the
body through oral ingestion, inhalation, dermal absorption, or injection), the liver often
shows the earliest signs of injury due to pharmaceuticals and environmental chemicals.
Understanding and quantifying the mechanisms of such injury would allow rational
assessments of safe dosage levels for humans and characterization of interindividual
response variability and susceptibility with respect to these levels.8,9 The ability to simulate
hepatic processes through comprehensive mechanistic in silico representations of the liver—
incorporated, as necessary, in relevant whole-body model formulations—will substantially
affect rational tissue engineering and personalized medicine and risk assessment and can
lead to improved strategies for targeted intervention, for reduction of animal testing in drug
development and environmental chemical toxicity assessment, and for more efficient clinical
testing.

Liver Models
The granularity of any model is what controls the accuracy of its representation and, to a
great extent, its predictions. When modeling physiological systems, an often invoked
assumption is that of apparent homogeneity. In other words, all cells comprising a tissue are
the same; they all experience the same conditions, and metabolic processes are
indistinguishable across the tissue. In fairness, the main reason for this is that the complexity
of the representation increases dramatically when spatial and functional heterogeneities are
considered, as has been shown previously.10 Liver is known to be metabolically zonated,11–
17 and so is often characterized for simplicity in terms of two tissue regions (the periportal
zone and the perivenous zone) that differ in enzyme activity levels and content (Figure 2).
Functions related to central metabolism and xenobiotic transformations are affected by the
gradients of oxygen18 and hormones19,20 expressed across the liver tissue. Although static
cultures of hepatocytes under periportal versus perivenous conditions can be used to identify
a number of changes in gene expression and enzyme activity, the use of hepatocyte cell
culture analogs to estimate pharmacodynamic parameters requires a bioreactor configuration
more akin to the in vivo environment. Another assumption is that of “lumped” kinetics. The
metabolic rates are represented through overall Michaelis–Menten-type kinetics, with the
rate parameters (Vmax, Km) usually fitted from experimental data.

Therefore, most widely applicable models make two critical assumptions, i.e. (i) spatial
homogeneity and (ii) apparent metabolic rates. However, advances in our ability to visualize
tissues and successfully model liver physiology,21 recent advances in physicochemical
modeling that allow the descriptions of pathways involving “signals” rather than involving
metabolites,22 as well as recent advances in high-throughput genomic and metabolic
engineering23 can potentially enable a more detailed representation of the liver as well as of
the kinetics of the metabolic reactions involved in drug metabolism.

In vitro hepatocyte models
Without a doubt, inherent difficulties exist in translating biological information from animal
studies, and significant effort has been invested in analyzing the causes of this disparity.24

Among others, animal-to-animal variability has been associated with the limitations of such
models. As such, researchers have also focused on in vitro studies that, while defining a far
less general model, allow for a much tighter control of extraneous conditions and limit their
potential implications.

Given the critical role of the liver, it comes as no surprise that numerous in vitro models
have been proposed and have all played a critical role in advancing the understanding of
hepatic metabolism.25 The cell models, slices, and mainly primary hepatocyte cultures
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appear to be the most powerful in vitro systems, as liver-specific functions and the
responsiveness to inducers are retained for a few days or several weeks depending on culture
conditions. Maintenance of phase I and phase II xenobiotic-metabolizing enzyme activities
allows various chemical investigations to be performed, including determination of kinetic
parameters, metabolic profiling, interspecies comparison, inhibition and induction effects,
and drug–drug interactions. In vitro liver cell models also have various applications in
toxicology: screening of cytotoxic and genotoxic compounds, evaluation of chemoprotective
agents, and determination of characteristic liver lesions and associated biochemical
mechanisms induced by toxic compounds.26 Extrapolation of the results to the in vivo
situation remains a matter of debate;25 however, several studies have shown that hepatocye
cultures are good models to qualitatively predict in vivo metabolic profiles. Such models
significantly helped in assessing the impact of P450s in xenobiotic metabolism as well as in
establishing the critical contribution of receptors such as aryl hydrocarbon receptor (AhR),
pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in controlling the
expression of specific Cytochrome P450s (CYPs), such as CYP1A (Ahr) and CYP2 and
CYP3A (PXR and CAR families).27 In addition to transcriptional regulation, transport-
mediated uptake and efflux are also known to impact the transport of relevant regulators and
hence drive regulation of gene expression. Given the importance of such transporters in the
pharmacokinetics of xenobiotics, the study of such transport processes becomes of critical
importance.25 Given the close relationship between the metabolizing enzymes and the
transporters regulating their trafficking, it is no surprise that both share common nuclear
factors.28

Physiological hepatocyte bioreactors
One limitation of traditional in vitro cultures for studying the biology of liver function is that
they do not capture the physiology of liver and instead present an environment of
homogeneity in the culture. Zonation, the variability in morphology and function of
hepatocytes with position along the liver sinusoids, is a critical concept. Metabolic
functions, such as oxidative energy metabolism, carbohydrate, lipid, and nitrogen
metabolism, conjugation, and xenobiotic metabolism, are all known to be localized to
specialized zones throughout the organ.16,29,30 Often, complete chemical conversions
require successive transformations across zones, leading to a net reaction that would not be
possible in either zone individually, as in ammonia detoxification.12,13,30

The intimate relationship between gene expression, enzymatic activity, and metabolic
function also manifests itself in the impact of zonation on the expression of hepatic genes.
17,18 This spatial variability has been shown to play an important role in all of the functions
of the liver.31 Using in vitro bioreactors that mimic the microenvironment of these zones,
allowing for subspecialization within each zone, offers a more powerful tool for the
investigation of hepatic function in the context of xenobiotic metabolism.32 Quantification
of the spatial distribution of gene expression, induction of relevant CYPs, activation of
transcriptional regulators as a function of oxygen availability,33 and xenobiotic
concentration will substantially improve our fundamental understanding of the cellular
processes underlying xenobiotic metabolism.

Researchers have explored the possibility of developing biomimetic reactors that induce
localization through appropriate oxygen transport. Most notably, Allen et al.32 coupled an
intricate experimental design with the solution of the associated reaction–diffusion equation
in order to evaluate oxygen gradients across a bioreactor. The system was used to evaluate
acetaminophen toxicity to enable toxicological evaluations. One can envision the system
being explored to characterize the toxicity effects of a host of xenobiotic compounds.
Despite simplifications, this was a powerful demonstration of the possibilities of an in vitro
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system that begins to reproduce spatial and temporal inhomogeneities. Extension of this
concept via miniaturization to make a “liver chip” has been receiving ever-increasing
recognition from the medical community34–38

Particularly fascinating is the “cell culture analog” (CCA) introduced by Shuler and
coworkers39–42 in order to bridge the gap between multicompartment computer models and
single-compartment in vitro cell cultures. PBPKs offer an alternative that mimics the
potential interactions between tissues and chemicals resulting from various dynamic (time-
dependent) exposure scenarios and provide a potentially rational basis to extrapolate across
species, particularly to humans. However, the large number of parameters, particularly for
metabolic processes, poses a significant problem because the quality and quantity of
available data do not readily permit independent estimates of parameters. Consequently,
most PBPK models either employ an empirical description of metabolic functions or a more
mechanistic description but with a large number of adjustable parameters. ACCA system
combines the advantages of in vitro and PBPK approaches and circumvents many of the
limitations associated with either in vitro or PBPK systems. For example, the CCA system
dosing can be done on the same milligram per kilogram basis as used in whole animals and
PBPKs. Tissues will potentially experience the same dynamic (time-dependent) exposure
that would occur within whole animals. The goal in creating a CCA is to make the
compartments exact analogs of those in a PBPK model so that any discrepancy between
PBPK prediction and CCA response would result from incomplete or incorrect assumptions
about biological mechanisms or, possibly, from poor estimates of parameters. In reality, the
accuracy of the CCA will relate to the fidelity with which a tissue is captured by the cell
culture. Advances in tissue engineering are resulting in improved cell cultures; however,
CCA tissues should be validated for their individual accuracy in replicating tissue functions
of interest before incorporation into a CCA. Nonetheless, an advantage of a CCA over a
whole animal is the ability to alter the system arbitrarily (e.g., increase the size of a
compartment or remove a compartment) to test mechanistic hypotheses directly.

In silico liver models
Even though in vitro liver models are a promising surrogate for the actual organ, they are
still cumbersome to work with in the sense that lead hypothesis generation needs to be rapid
and needs to enable the development, testing, and screening of multiple “what-if” types of
scenarios, rationalize experimental observations, generate a dynamic view of a response,
and, in general, make quantitative predictions aiming at the development of testable
hypotheses. As such, there has been significant interest in developing in silico
representations, that is, computer models, of the liver in order to evaluate the implications of
the presence of xenobiotics in the human body. Major challenges lie in modeling both the
physiology and the metabolism of liver and, in particular, in integrating these two levels.
The recent paper of Ohno et al.43 presents an excellent example of how such a model can be
constructed. Blood enters through branches of the portal vein and hepatic artery and then
flows through small channels called sinusoids, which are lined, predominantly, with
parenchymal liver cells (hepatocytes) (Figure 3). The hepatocytes remove toxic substances
from the blood, which subsequently exits the lobule through the central vein. Because the
concentration of nutrients and metabolites along the sinusoid as the blood moves from the
upper reach (periportal zone) area to the lower reach (perivenous zone) area are graded
(zonation), it is also expected that the metabolic responses along the sinusoid would differ.

For a particular metabolic process of interest, one can construct appropriate networks of
metabolic reactions using available databases of metabolic pathways44,45 and identify for
each reaction relevant metabolic enzymes.46–48 Ohno et al. propose to simulate the zonation
across the liver sinusoid by “stacking” a number of compartments, each of which
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experiences a stratified level of concentration of enzymes and thus of metabolic activities
(Figure 4). Yan et al.49 explore the concept of agent-based models (ABMs) to treat all
elements of the hepatic components as interacting entities. Complementary to these
activities, researchers consider alternative descriptions of liver physiology in order to
improve the computational aspects of the simulation.21 Successive iterations of model
building and testing are employed.50

The various modeling options encompass a wide range of levels of detail with regard to liver
physiology. The simplest formulation involves a single well-mixed compartment, denoted as
a continuous stirred tank reactor (CSTR), in which the chemical in the liver blood is
assumed to be in equilibrium with the chemical in the tissue, and the concentration of the
chemical is assumed to be uniform throughout the liver. The hepatic microcirculatory
network provides a high degree of mixing,51 which, in conjunction with relatively low
concentrations of environmental toxins and a slow rate of uptake and metabolism in the
liver, justifies the well-mixed assumption. Usually, kinetic parameters of such a model are
estimated in vitro through liver microsomes or in vivo through biomarker data and parameter
estimation techniques. The spatial variations (zonation) within a single compartment can
also be modeled as a plug flow reactor, effectively approximated as a number of CSTRs in
series, in parallel, or in combinations of both,52 whereas dispersion models can be used to
represent an intermediate degree of mixing.53 Although the well-stirred model is successful
in describing the “apparent” (phenomenological) kinetics of many xenobiotics (drugs as well
as environmental chemicals), it often “lumps together” various physiological and
biochemical processes, thus resulting in the “filtering” of the mechanistic information
regarding chemical–tissue interactions. This may not be critical in pharmacokinetic
calculations (i.e., calculations of “what the body does to the chemical”), but it is often very
important in the mechanistic interpretation of toxicodynamic processes (i.e., “what the
chemical does to the body”). The more complex formulations of the liver compartments
include zonal or segmental models, where different zones of the liver are denoted as
subcompartments to include heterogeneity of transporters and enzymes;54,55 circulatory
models, which account for concentration differences within the vascular space;56 fractal
models, which represent the heterogeneity of the flow within the organ in terms of fractal
concepts;21,55,57 and, finally, ABMs,49 which involve a large number of parameters that are,
however, difficult to estimate from biomarkers or in vitro data. The advantage of ABMs
compared with traditional modeling approaches, based on ordinary or partial differential
equation formalisms, is that more intricate detail can be more easily incorporated; however,
the dynamics of the response may be harder to rationalize. The model of Hunt et al.49 was
used to evaluate hepatic disposition and metabolism of antipyrine, atenolol, labetalol, and
diltiazem as typical examples of cationic drugs.

An additional complexity deals with hepatic clearance, which also depends on binding
proteins, transporters, and metabolic enzymes, which may not be homogeneously distributed
through the liver. This is another reason why it is necessary to revisit the well-mixed
assumption. For example, it has been demonstrated that cytochrome P450 is induced
heterogeneously in the liver and is present at higher concentration in the centrolobular and
midzone regions than in the periportal region,58 and that the metabolism of enalapril (an
angiotensin-converting enzyme [ACE] inhibitor used in the treatment of hypertension and
some types of chronic heart failure) is greater in the perivenous region rather than in the
periportal region.59 Finally, from a modeling point of view, two general types of approaches
have been developed to model spatial heterogeneities. The first employs multicompartment
models that divide the liver into separate homogeneous zones, each with its own parameters
to describe local events, such as protein expression.54 The second approach uses distributed
parameter models that describe the observed heterogeneities with spatially dependent
functions, governed by partial differential equations.60 Table 1 presents an overview of
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different mathematical descriptions of the liver in simulating toxicokinetics and
toxicodynamics of xenobiotics.

Translational Opportunities and Challenges
This review has attempted only to scratch the surface of the exciting opportunities and the
outstanding difficulties that need to be overcome in order to develop appropriate in vitro and
in silico liver models. The idea of engineering a construct or mathematically simulating a
proxy that reliably mimics the function of an organ is quite extraordinary, and one can only
imagine the implications that the success of such an endeavor may have. Although an
enormous amount of information has been accumulated over the years in cellular and
molecular biology, the translational potential of the accumulation of this knowledge has
been hampered by the fact that this information needs to be put in the context of a higher-
level organization, either tissue or whole-body. Therefore, the potential avenues to be
explored are not related, necessarily, to the use of liver surrogates for further deciphering the
biology of hepatic functions but rather to the evaluation of the possibility of integrating
diverse pieces of information and either assessing hepatic response or treating the liver as a
critical component of a host (whole-body) response.

Traditional applications of physiologically based toxicokinetic/toxicodynamics models
simulate the absorption, distribution, metabolism elimination, and toxicity of chemicals,
with compartments representing major organs of interest, including all sites of metabolism.
61 By developing explicitly mechanistic models and with the advances in computational
processing power, it will be possible to model important organs in significantly more detail.
62 In that respect, virtual organs, either in vitro or in silico, can greatly increase the
quantitative insight into the response of organisms following toxic insults. Virtual organs
can be used not only in assessing the impact of toxicant exposures on biological responses
but also in assessing past exposures based on different exposure to biological response
biomarkers. In addition, they can also be used to study toxicokinetic and toxicodynamic
interactions among chemicals within major sites of metabolism. Because the liver is a
complex organ and a major target for metabolism and chronic toxicity, it is an appropriate
starting point for detailed modeling analysis. A virtual liver can enable much faster testing
of environmental and xenobiotic species for toxicity. An in silico liver can be utilized in
conjunction with measured pharmacokinetic data and hepatic disposition events in order to
refine and optimize the parameters associated with drug clearance phenomena50 (Figure 5),
which are critical for evaluating regulation and signaling of phase I and II metabolizing
enzymes (Figure 6).

One can envision opportunities at two levels of complexity: the organ and the host. At the
organ level, toxicity screening and population studies can significantly benefit from the
ability to simulate, and estimate, toxic side effects of xenobiotic metabolism by
characterizing the appropriate activation of metabolic pathways, which act as precursors to
detrimental events, and/or by assessing the potential for the synthesis of toxic by-products.
Either in vitro or in silico models coupled with the emerging compendia of liver responses63

can serve as a template for characterizing expected liver toxicities. In silico models with
realistic descriptions of the physiology can evaluate the impact of local inhomogeneities on
cellular and molecular events and describe the heterogeneity of xenobiotics metabolism
(Figure 7).

However, one can argue that possibly more exciting are the prospects of integrating in silico
liver models with whole-body physicochemical models. The idea of a human reconstruction
in silico may still seem an unattainable goal. However, the first attempts have already
materialized, as exemplified by the physiome.jp project whose ultimate goal is “…to provide
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building blocks useful to develop in silico human. The blocks will include mathematical
models and experimental data representing physiological functions.” Physiome.jp is a part
of the Worldwide Integrative Biomedical Research Cooperation to promote physiome and
systems biology (http://www.physiome.jp/index.html). The initial attempts were recently
discussed.64,65 Whole-body PBPK models have already been demonstrated in the context of
assessing individual variability in drug effects to assist in the planning and design of clinical
trials.66–68

Arguably, however, a leading challenge is in quantifying the metabolic effects, manifested
through changes in fluxes across key reactions and pathways. For many compounds, the
primary biotransformation pathways can be reconstructed and integrated into pathway
models of metabolism, allowing a direct connection between xenobiotic and central
metabolism, such as the relationships between sulfur/glucose metabolism and sulfation/
glucuronidation conjugations, respectively. Toxic intermediates and adducts can be
incorporated also and their interrelationships within the larger metabolic network can be
modeled and quantified. The current practice is to evaluate variants of Michaelis–Menten
kinetics,43 with apparent rates fitted from experimental data. However, constraint-based
modeling approaches are emerging, which allow for stoichiometric and thermodynamic
consistency across a metabolic network.69,70 The geometry and physiology of the organ can
be ascertained and modeled based on currently available imaging- and data-processing
techniques.71 Furthermore, the flow problems associated with blood circulation along the
sinusoids of the hepatic lobule, albeit not solved, are well studied, and computational fluid
dynamics questions are already well posed.72

Greater challenges and opportunities lie in the connections among signaling, regulation of
gene expression,73–77 protein synthesis, and metabolic fluxes.78,79 A major milestone will
be reached, without a doubt, when gene regulation models will be coupled with rate
expression in order to assess the true impact of the emergence of local conditions and their
implication in the spatial and temporal function variability throughout the liver. Although
efforts in that respect are ongoing, at this point, the current state of the art is mostly driven
by either sensitivity analyses or correlation-type modeling.80 Such capabilities would be of
considerable utility in advancing in silico models to estimate the longer-term effects of
xenobiotic exposure. These include, for example, inflammatory sequelae resulting from the
prolonged activation of stress signaling pathways downstream of aromatic receptor binding
and generation of reactive oxygen species81 as well as mutation rates and carcinogenesis.82

Concluding Remarks
The idea of using the virtual liver to assess toxicity effects and screen compounds is slowly
making its appearance. Entelos (http://entelos.com) was recently awarded the first patent for
applying predictive technologies and “virtual humans” to find better drugs and more tailored
health-related products. This enabling technology, entitled “Cholestasis Signature,” helps
researchers to screen novel compounds more rapidly and efficiently during preclinical
studies for cholestasis, a specific type of drug-induced liver damage.83 The search for better
models to predict drug-induced human liver damage has led the US Food and Drug
Administration (FDA) to adopt similar approaches toward the design of a “virtual liver” to
guide biomarker and assay development as part of their critical path activities to better
understand the causes of drug-induced liver injury; similar efforts are underway at the
Environmental Protection Agency (EPA) (http://www.epa.gov/ncct/virtual_liver). Finally, a
major international activity is currently emerging in the European Union under the general
framework of Hepatosys
(http://www.systembiologie.de/doc/070416MilestonesHepatoSysII_Text.pdf). HepatoSys
focuses on the dynamical processes of detoxification, endocytosis, iron regulation, and
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regeneration in primary hepatocytes. The final long-term goal of HepatoSys is to translate
the insights into the systems behavior of hepatocytes obtained from mechanism-based
mathematical models in clinical and pharmaceutical practice. Understanding patient-specific
drug metabolism paves the way for predictive and personalized medicine. Understanding the
regulation of liver regeneration will have a major impact on the prediction of clinical
outcomes of liver injury and developing strategies for the targeted regeneration of
hepatocytes, thus reducing the need for animal testing in drug development. Comprehensive
mathematical models will be applied to in silico drug screening, resulting in a significant
reduction in the time to market and costs in drug development, especially in identifying
toxic side effects, which present the main reason for dropout in late clinical phases.

Advances in basic biological understanding, biological databases, and computer simulation
tools, all integrated in the form of an overall computational framework, appear to be gaining
acceptance as a rational approach for evaluating hypotheses related to hepatic toxicity and,
eventually, for exploring the clinical translational potential of in vitro or in silico liver
models.
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Figure 1. Typical structure of a generalized PBPK model94 (figure adapted and used with kind
permission of Springer Science and Business Media)
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Figure 2. Zonation effects
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Figure 3. Structure of the liver's lobules (taken from
http://www.niaaa.nih.gov/Resources/GraphicsGallery/Liver/lobulep295.htm and Ref. 95)
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Figure 4. Multicompartment liver model incorporating the effects of zonation on metabolic
reactions (figure adapted from Ref. 43)
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Figure 5. Framework illustrating interactions between in silico and in vitro liver model (figure
adapted from Yan et al.50)
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Figure 6. Pharmacogenomic/toxicogenomic regulation and signaling of phase I and phase II
metabolizing enzymes participating in hepatic metabolic and detoxification processes for
xenobiotics (figure adapted from Rushmore and Kong81)
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Figure 7. Schematic representation of various factors contributing to heterogeneity in
toxicokinetics and toxicodynamics of xenobiotics in the liver85
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Table 1

An overview of different mathematical descriptions of the liver in simulating toxicokinetics and
toxicodynamics.85

Model type Schematic depiction Assumptions/applicability References

One-compartment models

Well-stirred (CSTR)

Well-mixed (both macro-
and micromixing). Uniform
metabolic and biochemical
properties through-out the
liver.

59,86

Plug flow reactor (PFR)
Flow is uniform with no
mixing, and metabolism is
fast.

86,87

Dispersion flow
Highly nonuniform flow
patterns; incomplete
mixing. Uniform chemical
and biochemical properties.

86,87

Distribution-based models

Residence time distribution (RTD)-
based circulatory models

Nonmechanistic study of
distribution of toxicants
through residence time
analysis.

55,56,88

Statistical distribution-based model

Representation of
heterogeneity through a
statistical distribution.
Useful when heterogeneity
is due to limited set of
factors.

85

Stochastic/fractal models
Heterogeneity in the liver
modeled through stochastic
terms or fractal descriptions.

55,89,90

Multicompartment models

CSTRs in series
Multiple regions of the
liver, with each region well
mixed. Flow is uniform and
from one region to the next.

52,59,86

Multizonal (multicompartmental) model

Multiple regions of the liver
with different uptake and
metabolic properties;
metabolism occurring in
deep tissue.

54,59

Back-mixing plus fixed lag times and
slow perfused sinusoids

Zonal model with
significant back mixing.

52
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Model type Schematic depiction Assumptions/applicability References

Compartmental model with cellular
compartments

Zonal model with
significant back mixing,
with variation across bulk
tissue, deep tissue, and
cellular space.

52,91

Discrete, agent-based models

Agent-based

Bottom-up synthetic,
nonmechanistic* description
of multilevel processes
within the liver;
computationally and data-
intensive.

5,49,65

“Higher-dimensional” models

Continuous, interconnected tubes

Variation in uptake and
metabolic properties across
the cross-section and along
the direction of uniform
flow.

87,92,93

Distributed zones

Variation in uptake and
metabolic properties across
the cross-section and along
the direction of nonuniform
flow.

87

Discrete, interconnected tubes
Same as distributed zones
but with intermittent
mixing.

87

Fluid mechanics modeling of liver
lobules

Computational fluid
dynamics-based, detailed
realistic modeling of
individual liver lobules;
computationally and data-
intensive.

72

*
Mechanistic is defined here as derived from the first principles of thermodynamics and kinetics (i.e. conservation laws and constitutive equations).
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