Logo of narLink to Publisher's site
Nucleic Acids Res. 1987 Nov 11; 15(21): 8725–8737.
PMCID: PMC306401
PMID: 2825118

A novel human nonviral retroposon derived from an endogenous retrovirus.

Abstract

In a human genome, we found dispersed repetitive sequences homologous to part of a human endogenous retrovirus termed HERV-K which resembled mouse mammary tumor virus. For elucidation of their structure and organization, we cloned some of these sequences from a human gene library. The sequence common to the cloned DNA was ca. 630 base-pairs (bp) in length with an A-rich tail at the 3' end and was found to be a SINE (short interspersed repeated sequence) type nonviral retroposon. In this retroposon, the 5' end had multiple copies of a 40 bp direct repeat very rich in GC content and about the next 510 nucleotides were homologous to the 3' long terminal repeat and its upstream flanking region of the HERV-K genome. This retroposon was thus given the name, SINE-R element since most of it derived from a retrovirus. SINE-R elements were present at 4,000 to 5,000 copies per haploid human genome. The nucleotide sequence was ca. 90% homologous among the cloned elements.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Rogers J. Molecular biology. CACA sequences - the ends and the means? Nature. 1983 Sep 8;305(5930):101–102. [PubMed]
  • Rogers JH. The origin and evolution of retroposons. Int Rev Cytol. 1985;93:187–279. [PubMed]
  • Weiner AM, Deininger PL, Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. [PubMed]
  • Callahan R, Chiu IM, Wong JF, Tronick SR, Roe BA, Aaronson SA, Schlom J. A new class of endogenous human retroviral genomes. Science. 1985 Jun 7;228(4704):1208–1211. [PubMed]
  • Deen KC, Sweet RW. Murine mammary tumor virus pol-related sequences in human DNA: characterization and sequence comparison with the complete murine mammary tumor virus pol gene. J Virol. 1986 Feb;57(2):422–432. [PMC free article] [PubMed]
  • Ono M. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes. J Virol. 1986 Jun;58(3):937–944. [PMC free article] [PubMed]
  • Westley B, May FE. The human genome contains multiple sequences of varying homology to mouse mammary tumour virus DNA. Gene. 1984 May;28(2):221–227. [PubMed]
  • Noda M, Kurihara M, Takano T. Retrovirus-related sequences in human DNA: detection and cloning of sequences which hybridize with the long terminal repeat of baboon endogenous virus. Nucleic Acids Res. 1982 May 11;10(9):2865–2878. [PMC free article] [PubMed]
  • O'Connell C, O'Brien S, Nash WG, Cohen M. ERV3, a full-length human endogenous provirus: chromosomal localization and evolutionary relationships. Virology. 1984 Oct 30;138(2):225–235. [PubMed]
  • Repaske R, Steele PE, O'Neill RR, Rabson AB, Martin MA. Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol. 1985 Jun;54(3):764–772. [PMC free article] [PubMed]
  • Mager DL, Henthorn PS. Identification of a retrovirus-like repetitive element in human DNA. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7510–7514. [PMC free article] [PubMed]
  • Ono M, Yasunaga T, Miyata T, Ushikubo H. Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J Virol. 1986 Nov;60(2):589–598. [PMC free article] [PubMed]
  • Lawn RM, Fritsch EF, Parker RC, Blake G, Maniatis T. The isolation and characterization of linked delta- and beta-globin genes from a cloned library of human DNA. Cell. 1978 Dec;15(4):1157–1174. [PubMed]
  • Ono M, Cole MD, White AT, Huang RC. Sequence organization of cloned intracisternal A particle genes. Cell. 1980 Sep;21(2):465–473. [PubMed]
  • Thomas PS. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. [PMC free article] [PubMed]
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Ono M, Kawakami M, Ushikubo H. Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol. 1987 Jun;61(6):2059–2062. [PMC free article] [PubMed]
  • Mount SM. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. [PMC free article] [PubMed]
  • Ullu E, Tschudi C. Alu sequences are processed 7SL RNA genes. Nature. 1984 Nov 8;312(5990):171–172. [PubMed]
  • Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA., 3rd The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons. Mol Cell Biol. 1986 Jan;6(1):168–182. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press