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Abstract
A Bayesian hierarchical model was developed to estimate the parameters in a physiologically
based pharmacokinetic (PBPK) model for chloroform using prior information and biomarker data
from different exposure pathways. In particular, the model provides a quantitative description of
the changes in physiological parameters associated with hot-water bath and showering scenarios.
Through Bayesian inference, uncertainties in the PBPK parameters were reduced from the prior
distributions. Prediction of biomarker data with the calibrated PBPK model was improved by the
calibration. The posterior results indicate that blood flow rates varied under two different exposure
scenarios, with a two-fold increase of the skin's blood flow rate predicted in the hot-bath scenario.
This result highlights the importance of considering scenario-specific parameters in PBPK
modeling. To demonstrate the application of a probability approach in toxicological assessment,
results from the posterior distributions from this calibrated model were used to predict target tissue
dose based on the rate of chloroform metabolized in liver. This study demonstrates the use of the
Bayesian approach to optimize PBPK model parameters for typical household exposure scenarios.
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Introduction
Physiologically based pharmacokinetic (PBPK) modeling has been used in toxicology,
epidemiology, and in exposure and risk assessment as an adjunct to studies on the toxic
modes of action of xenobiotics (Gibb et al., 2002; Zeise et al., 2002; Andersen, 2003). The
power of PBPK modeling is achieved at the expense of using a large number of parameters,
some of which may vary significantly among individuals (e.g., tissue weights and blood
flows) and few of which are known with precision (e.g., bioavailability, metabolic/excretion
rates) (Zeise et al., 2002). Therefore, every PBPK model requires some level of calibration
or optimization of its parameters. Parameters in PBPK models are usually calibrated based
on biomarker data by regression or a maximum likelihood approach using available software
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package such as ACSL (AEgis Technologies, 2008) or Simusolv (Steiner et al., 1990).
However, it is not practical to simultaneously calibrate a large number of parameters using
these methods. Thus, optimizations are often conducted by changing the values of a few
parameters while fixing other parameters at point values. These optimization methods
provide point estimates of parameters with the best fit to the experimental data based on the
selected objective functions. The accuracy of point estimates in such a process is highly
susceptible to variability and uncertainty in the fixed parameters. Interpretation of the results
can be misleading when the estimates are uncertain or the values of the parameters that were
fixed are inaccurate (Louis, 1991).

The Bayesian pharmacokinetic population model has received much attention in the past 10
years, beginning with the work of Bois et al. (1996a,b). The Bayesian approach provides a
formal way to incorporate prior knowledge on model parameters together with observed
data in the modeling process. The analysis starts with the construction of prior probability
distributions of the model parameters of interest, usually based on studies available in the
literature. These distributions are then evaluated on the basis of their likelihood given
observed data to compute posterior distributions of the model parameters. Hierarchical
modeling with Bayesian MCMC simulation is suitable for population PBPK models because
the development of these models often involves non-linear processes, small datasets, high
uncertainty, and biological variability (Bernillon and Bois, 2000). This approach is flexible;
new information (such as additional experiment data, different PBPK models, and refined
prior distributions), can easily be incorporated into existing models to improve the parameter
estimation process. These methods have been used in many PBPK modeling applications to
assess population pharmacokinetics in chemicals including trichloroethylene (Bois, 2000a,b;
Hack et al., 2006), methylene chloride (Jonsson et al., 2001), toluene (Jonsson and
Johanson, 2001), and dichloromethane (Marino et al., 2006). Recently, a Bayesian
chloroform PBPK model for rats and mice was developed based on gas uptake and labeling
index data (Liao et al., 2007).

In this study, a Bayesian framework developed by Bois (2000a,b) was adapted to evaluate
the uncertainty and variability in PBPK parameters for multiple route exposures to
chloroform. The specific aims of this study were (1) to optimize PBPK modeling parameters
through Bayesian techniques, (2) to study the impact of interindividual variability on
pharmacokinetics of chloroform, and (3) to study the impact of hot-water immersion on
scenario-dependent PBPK modeling parameters.

Since the identification of chloroform and other trihalomethanes in chlorinated drinking
water, human exposure to these disinfectant by-products (DBPs) has become a public health
concern. The most significant routes for chloroform exposure are ingestion and inhalation
(ATSDR, 1997). However, using chlorinated water causes significant inhalation and dermal
exposure to chloroform as well (Wallace, 1997). Wilkes et al. (1996) estimated that
exposure from showering represents 40–50% of the total exposure from tap water used
domestically. Jo et al. (1990) estimated that the absorbed dose of chloroform from a 10-min
shower is equivalent to drinking 21 of chlorinated water. A recent modeling study showed
that dermal absorption of chloroform from 10-min showering contributed 30% of the total
internal dose (area under the concentration curve in the blood) for an average adult (Haddad
et al., 2006). The experiments conducted by Gordon et al. (1998) and Xu et al. (2002) used
real-time breath analysis techniques to examine the dermal-only intake of chloroform from
hot-water bathing. Their results showed that dermal absorption contributes significantly to
the total exposure to chloroform.

A chloroform PBPK model was first developed by Corley et al. (1990) to describe the
inhalation and ingestion exposure of mice, rats, and humans. Roy et al. (1996) developed a
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distributed parameter (DP) skin model to simulate the uptake of volatile organic compounds
(VOCs) through dermal exposure. The Roy DP model was then incorporated into the Corley
model to evaluate dermal and inhalation chloroform exposures for humans. Corley et al.
(2000) later used the 1990 model to examine the dermal uptake of chloroform through bath
water with a one-compartment skin model. Levesque et al. (2000) also developed a PBPK
model for dermal and inhalation uptake of chloroform for competition swimmers. In all
these modeling efforts, there were limited attempts to incorporate the effects of water
temperature on blood flow rates, but Corley et al. (2000) did consider the re-distribution of
blood flow between the skin and the rapidly perfused tissues in model parameter
optimization. In Levesque's model, the physiological properties of the swimming scenarios,
including cardiac output, inhalation rate, and blood flow rate, were significantly impacted by
the exercise level, as described by Johanson and Naslund (1988). However, changes due to
exercise could not be directly applied to the hot-bath scenario. The recommended metabolic
equivalent (MET) value for sit bath, 1.5, is similar to knitting or typing (Ainsworth, 2002).
Earlier studies show that hot-water bathing significantly changes the skin blood flow rate,
but does not significantly change heart rate or blood pressure (Miwa et al., 1994; Koda et al.,
1995; Allison and Reger, 1998; Allison et al., 1998; Boone et al., 1999). Gordon et al.
(1998) pointed out that temperature-dependent parameters should be used to calculate
dermal uptake during hot-water bathing.

In this study, a Bayesian hierarchical model was used to estimate the uncertainty and
variability in human PBPK parameters associated with multiple-route exposures to
chloroform. A chloroform PBPK model was modified from the earlier published PBPK
models to focus more specifically on inhalation-only exposures in a running shower stall,
and on dermal-only exposures from hot-water bathing. Scaling functions were used to
determine the anatomic parameters in this PBPK model. Physiological and biochemical
parameters with higher levels of uncertainty and variability were optimized using a Bayesian
MCMC method. This approach combined prior parameter distributions from published
literature with data from laboratory-controlled human exposures to refine or update posterior
distributions of the parameters. In particular, the influences of hot-water bath effects on
tissue blood flow rates (BFs) and on activity-based parameters (METs) were analyzed.
Although other Bayesian analyses of human PBPK models have been published (Gelman et
al., 1996; Bois et al., 1996a,b; Bois, 1999, 2000a,b; Jonsson et al., 2001; Sohn et al., 2004;
Hack et al., 2006, Liao et al., 2007), this study represents the first attempt to simultaneously
update parameters with biomarker data obtained from household exposure scenarios.

Materials and methods
Experimental Data

Xu and Weisel conducted a human exposure study to characterize the inhalation and dermal
uptake of chloroform and haloketones during showering and bathing (Xu and Weisel,
2005a,b). Six subjects (Table 1), three males and three females, participated in two series of
experiments: inhalation-only exposure in a shower chamber and dermal-only exposure in
bath water. In the inhalation-only experiments, individual subjects were exposed to
chloroform in air as they stood near the shower water stream for 30 min. To avoid dermal
contact with the water, the subjects wore water-proof clothing and shoes during the
experiment. The average concentration of chloroform in air during the inhalation exposure
was 180 μg/m3. In the dermal-only experiments, each subject was exposed to water
containing 40 μg/l of chloroform in a bathtub at 38±1°C. The subject was submerged in the
water, except for the head, for 30 min. Dermal exposure was isolated from potential
inhalation exposure by using a mouth breathing face mask that was equipped with two one-
way breathing valves, one that provided a purified air supply and the other that collected/
monitored exhaled breath samples. Before each exposure, two breath samples were collected
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to determine the level of chloroform in the exhaled breath. The air collected by this method
is approximately 95% alveolar, with the balance of air from the upper airway. After each
exposure, breath samples were collected at various time points for 2 h. Four samples of
exhaled breath during the inhalation-only exposure and six samples of exhaled breath during
the dermal-only exposure were collected. A detailed setting of the experimental design and
analysis methods can be found in Xu and Weisel (2005a,b).

PBPK Model
A multiroute chloroform PBPK model was developed for this study. The PBPK model was
adapted from an earlier model by Corley et al. (1990) with the DP skin model developed by
Roy et al. (1996) (see Figure 1). The model incorporated six tissue compartments: slowly
perfused tissues, rapidly perfused tissues, liver, kidney, fat, and skin. In this model, the body
is described as a set of well-mixed compartments, each of which represent a specific or
lumped body compartment, which are similar with respect to blood flow and partitioning of
chloroform between blood and tissues. Tissue compartments are assumed to be
homogeneous and the distribution is flow limited, except for the stratum corneum (described
in the skin model section, below). Pulmonary exchanges are simulated by assuming
instantaneous equilibrium between alveolar air, venous blood, and arterial blood. The
exhaled breath is assumed to be a mixture of alveolar air (95–99%) and ambient air (1–5%).
This model uses saturable Michaelis–Menten kinetics for chloroform metabolism that occurs
in the liver and the kidney, in which the metabolic constant of kidney metabolism is
expressed as a fraction of that in the liver (Corley et al., 1990).

Skin Model—Traditional one-compartment skin models usually assume a homogenous
distribution in the skin compartment and do not consider accumulation of the chemical in
the barrier layer (stratum corneum). Thus, the rate of transport through the skin depends on
permeability, which is only true when chloroform in the skin is in equilibrium with the
concentration of media. However, dermal mass flux does not reach steady-state diffusion for
many common dermal exposure scenarios (Xu et al., 2002). Therefore, traditional skin
models cannot predict the time lag of the exhaled breath sample after exposure. In the DP
skin model (Roy et al., 1996), the skin consisted of two compartments, the outer
compartment (representing the stratum corneum) and the inner compartment (representing
the viable skin) (see Figure 1). In the outer compartment, the stratum corneum was
considered as a barrier layer and epidermis as a reservoir. The chemical concentration in the
stratum corneum changes with distance from the stratum corneum-media interface. Once the
chemical reached the inner compartment, the viable skin was considered as a homogeneous,
well-mixed tissue. Dermal absorption was estimated through unsteady state dermal mass
flux, as described by the Fickian diffusion equation (Roy et al., 1996). The equations used to
describe the dermal absorption rate are presented in Appendix A. A detailed description of
the DP model can be found in Roy et al. (1996).

Biochemical Processes—Partition and metabolic coefficients were assumed to be the
same for the two exposure scenarios. Values of partition coefficients (PCs) were obtained
from ILSI (1997). The metabolism of chloroform was assumed to occur only in the liver and
the kidney through Michaelis–Menten kinetics. Metabolic parameters (Vmax and Km) in the
liver were determined in vitro using human tissues (Corley et al., 1990). Enzyme activities
in the kidney tissue were observed in hamsters, mice, and rats, but there was no enzyme
activity observed in the human kidney tissue. Therefore, Corley et al. assumed that the
metabolic activity for human kidney tissue was present but below the detection limit and
was incorporated into the model by relating kidney metabolism and liver metabolism
(Corley et al., 1990).
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PBPK Parameters
The uncertainty of PBPK model parameters is highly related to the characteristics and
quality of the original source of information. The information used for generated PBPK
model parameters is often characterized by a high degree of uncertainty regarding the
processes studied and significant variation in the values observed, measured, and registered
(Nestorov, 2001). Physiological parameters, such as tissue volumes and blood flow rates, are
relatively well characterized compared with the biochemical parameters for PBPK models,
as most of these parameters can be measured separately from the exposure experiments.
Therefore, the scaling functions were used to estimate the tissue volumes (discussed in
further detail in the Materials and methods section).

A preliminary sensitivity analysis (SA) for the PBPK model parameters was performed
based on the literature values. The purpose of the SA was to compare and select sensitive
biochemical and scenario-dependent PBPK parameter to be included in MCMC analysis,
starting with the likely sensitive parameters based on earlier sensitivity analysis on PBPK
model parameters for similar compounds (Clewell et al., 1994, 2000). If the selected model
parameter was a sensitive model parameter, then all the parameters in that category were
included in the MCMC analysis (i.e., blood:air PC for PC category). If the selected model
parameter showed a low sensitivity, then all of the parameters in that category were tested.
The equation used for the sensitivity analysis can be found in Appendix B.

It was found that the sensitivity of the parameters (Table 2) varied with the exposure
scenario (inhalation or dermal). For example, skin blood flow is more sensitive in the case of
dermal exposure than the inhalation exposure. The sensitivity of the parameters also varied
with time. For example, the metabolic parameters (liver clearance: CL and kidney clearance:
A) become more sensitive in the post-exposure period (after 30 min). This analysis only
provided a local sensitivity of the model parameters, as it only varied one parameter while
holding other parameters constant. The parameters included in the MCMC analysis were
those with multiple sensitivity coefficients >0.1 (which means varying the parameter value
by 1% has a 0.1% impact on the response). On the basis of the sensitivity analysis, blood
flow rates, PCs, and metabolic parameters were all included in the MCMC analysis.

Uncertainty/Variability Characterized through Scaled Functions—To account for
known physiological dependencies among some model parameters, tissue volumes,
ventilation rates, cardiac output, and blood flow rates were calculated through scaling
functions that were based on the demographic information for each subject (Gallegos and
Wenzel, 1984; Layton, 1993; ICRP, 2002). Tissue volumes were calculated to account for
age, gender, and body weight (BW). Total fractional tissue volumes were sum to 0.92; this
value represents the fraction of perfusable tissues in the body (Tan et al., 2006). The
inhalation rate is calculated based on the person's age, gender, and the metabolic equivalent
of tasks (MET) value associated with the activity pursued (see e.g., Georgopoulos et al.,
2005 and references therein). The cardiac outputs were correlated with alveolar ventilation
rate through a semi-empirical function, which accounts for MET, body weight, and oxygen
consumption values (Barash et al., 2000). Scaled functions used to describe the
interindividual variability among the tissue volumes, correlations between the ventilation
rates and cardiac outputs, can be found in Appendix C.

The blood flow rates to various tissue compartments were expressed as percentages of the
total cardiac output (as they were summed to unity). Although the correlations between
tissue volumes and the blood flow to the tissue has been reported (Price et al., 2003), in this
study, the tissue blood flows as percentages of the total cardiac output were assumed to be
independent from other physiological parameters, such as body size. (Note that the
estimation of cardiac output was still correlated with age, gender, BW, and MET). As blood
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flow rates for the dermal (hot-water bath) scenario should be different from those for the
inhalation scenario, two sets of blood flow rates were used in this study, one for inhalation-
only exposure, the other for dermal-only exposure.

Figure 2 compares simulation results (the dashed line) derived from the point literature
values (as the population means of the prior distributions) to simulation results (solid lines)
derived from the parameters calculated from the scaling functions (shown in Appendix C).
The scaled parameter values provide more interindividual variability than the unscaled
values, but not enough to account for the interindividual variability observed in the data.
Therefore, in addition to the scaling functions, the Bayesian approach was used to optimize/
calibrate the parameters of the PBPK model for chloroform.

Uncertainty/Variability Characterized Using a Bayesian Approach—A three-
level hierarchical Bayesian approach (Figure 3) used for our analyses assumed that the
general population varied with respect to the PBPK model parameters. Specific
distributional families were assumed to describe the variability, but the specific values of the
population-level parameters for those distributional families were considered uncertain. This
approach is hierarchical in the sense that the uncertain population-level parameters are at the
top level; they define the variability of the lower-level individual parameter values, which in
turn predict the exhaled concentrations in each individual as a function of chloroform
exposure level.

(I) Definition of Prior Distributions (Level 1): In our analyses, the interindividual
variability for any given model parameter was described by a log-normal distribution with

the population mean μ1 and the variance . The prior distribution of μ1 is modeled by
drawing μ1 from a log-normal distribution with mean M1 and variance . The values of M1

are usually obtained from the literature review or measurement, where the value of 
reflects the uncertainty of M1. For example, for an average adult, the reported values of
blood flow to tissue compartments are in agreement (ICRP, 2002; Price et al., 2003);
however, a wide range of values of permeability of chloroform are reported, from both in
vitro and in vivo studies (Nakai et al., 1999). Therefore, the prior uncertainty of the values of
blood flow to tissue (μBFs) is assumed smaller than the permeability of chloroform (μperm).
Thus, SBFi is smaller than Sperm to reflect the uncertainty of the population means. The

population variance  is modeled by an inverse gamma distribution with 1 degree of
freedom and centered at , which is assumed to reflect the variability of reported parameter
values.

It is somewhat difficult to gauge the likely uncertainty associated with a specific parameter,
as most data were reported as point values. For well-studied parameters in the literature, the
uncertainty was determined based on the values reported. For example, the smallest
uncertainty value, 1.3, which represents 30% coefficient of variation (CV), was assigned to
PCs and blood flow rates in the inhalation scenario. Larger values of uncertainty were
assigned to blood flow rates in the dermal (hot-water bathing) scenario than in the inhalation
scenario. For parameters that have been reported to vary widely, larger uncertainty values
were used. For example, an uncertainty factor of 5 was assigned to permeability and the
Vmax/Km (clearance) ratio, because the experimental data on the former varies over a wide
range, and there is high uncertainty involved in cross-species and in vitro/in vivo
extrapolation of the latter. The highest values were assigned to these parameters that are
considered the most uncertain (Bois, 2000b). Specifically, an uncertainty factor of 10 was
assigned to A (kidney/liver metabolism proportion) and to the thickness of the stratum
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corneum (the effective length of the diffusion path) to reflect the scarcity of relevant
information. The values of M1,  and  are summarized in Table 3. In general, the prior
uncertainty and variability are comparable or larger than the reported values in the literature.

(II) Interindividual variability (Level 2): At the individual level, the PBPK parameters
were updated for each subject, based on the subject-specific demographic information and
the exposure data. Tissue volume, ventilation rates, and cardiac output were calculated using
the scaling functions. The tissue blood flow rates, as the percentage of cardiac output, were
constrained to sum to 1. This was done by first simultaneously sampling the fractional blood
flow for all tissues from assigned distributions, and then dividing the fractional blood flow
for each tissue by the sum of all the fractional blood flows. To reduce the correlations
between Vmax and Km in the liver, the clearance (CL) was updated in the Bayesian model.
CL is calculated as oxidative capacity (VmaxC) divided by affinity (Km) (Marino et al.,
2006). The optimized CL was adjusted based on the subject's body weight and used in the
PBPK model. The prior population mean of CL was distributed log-normally with a
geometric mean equal to 0.584 [/min/l/Kg0.7] derived from Roy et al. (1996).

Other parameters, such as PCs, were random samples from the corresponding population
distributions listed in Table 3. To evaluate the intra-individual variability and population
variability under different exposure scenarios, two sets of BFs and METs were used. Prior
population means (M1) of both sets of BFs and METs were the same, whereas a larger
uncertainty  was assigned during the hot-bath scenario. The likelihood of obtaining the
observations (data) was calculated separately using either the inhalation-only or dermal-only
data. For other parameters, one set of prior distributions was assigned for the parameters and
data likelihood was updated using both inhalation-only and dermal-only data. Equal weight
was given to both experiments in the data likelihood calculation, as the number of data
points was similar in both exposure studies.

(III) Likelihood calculation (Level 3): Level 3 links the individual parameters to the
measured data through a residual error model. Differences between the observed and the
predicted exhaled breath concentrations are assumed to be log-normally distributed. The
individual parameter vector is used to simulate the time-series exhaled chloroform
concentrations using experimental conditions appropriate for each individual, and the value
of the data likelihood is then calculated. The measurements are assumed to be normally
distributed around the simulated data (in log-scale) (Bortot et al., 2002). Two separate

residue errors (  and ) are used as the inhalation and dermal exposure experiments

followed different protocols. Non-informative priors are used for  and  (Bois et al.,
1999). These two residual errors incorporate both experiment and modeling errors.

Markov chain Monte Carlo (MCMC) computation is used to sample from the distributions
of model parameters. For population parameters (the first level of the hierarchical model),
Gibbs sampling is used to randomly draw samples from the distributions. For individual
parameters, the Metropolis–Hasting algorithm is used to sample from the distributions, as
seen in the work of Bois (2000b) and Marino et al. (2006). Five MCMC chains are used. For
population mean and individual parameters, the initial values for the five chains were the
prior population mean, prior population mean ± one prior standard deviation, and prior
population mean ± two prior standard deviations, respectively. For population variance, the
initial values for the five chains were set to the prior population variance. The program was
written in Matlab (The Mathworks Inc, 2008).
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Results
Once the MCMC chains converge to a stationary distribution, the “converged” parts of the
chains provide a random sampling from the posterior distributions. The first 3000 iterations
of the five MCMC chains were taken as “burn-in,” and the results of these iterations were
discarded to ensure the chain was well mixed. The methods of Brooks and Gelman (1998)
were used to diagnose the convergence of MCMC chains. Corrected Scale Reduction
Factors (R) were calculated for the five chains, using every fifth sample from the last 15,000
iterations. The MCMC chains are considered converged when the estimates of CSRF are
close to 1; a value of 1.2 is a rule of thumb often used as a cut-point for determining
convergence. The values of R for most parameters are below 1.1, and the largest is 1.23.
After the chains converged, one chain was randomly chosen and continued for 50,000
iterations, which were used to define the population and individual posterior distributions.

Comparison of Model Simulation with Biomarker Data
The observed data were compared with the corresponding model predictions for the
inhalation and dermal exposure scenarios with three sets of PBPK model parameters (Figure
4). The three sets of model input parameters (see subsection entitled “Uncertainty/variability
characterized through scaled functions”) were (1) literature values (as prior mean values
listed in Table 3, (2) geometric means of posterior population parameters (as the posterior
mean values in Table 3), and (3) parameter vectors drawn from individual posterior
distributions. On the basis of the data likelihood calculation, the individual input vectors
provide the best estimation, and the means of posterior population parameters are usually
better at representing the data than the default-scaled parameters for individuals.

In general, the predictions for both the inhalation-only and the dermal-only scenarios agreed
reasonably well with the experimental data. For the inhalation scenario, the predicted
exhaled concentrations for subject F1 were consistently higher than the observed data. In the
dermal scenario, the predictions for subject F2 were consistently lower than the observed
data. Another area of disagreement resulted from random experimental measurement errors.
For example, in the inhalation-only scenario, the highest observed exhaled concentrations
appeared at 10 min (subject M3) or 20 min (subject F2) after exposure began, whereas the
peaks should appear at the end of the 30-min exposure duration. Assuming that the
population distribution of exhaled concentrations can be estimated from the results of the six
subjects, all the data fall within the range that is defined by the mean ± three standard
deviations. Therefore, no data points were eliminated during the simulation in this study. By
using the Bayesian statistical approach, both prior information and data likelihood were
considered, and the deviation from the questionable data points is quantitatively captured in
the posterior distributions of the error terms.

Posterior Parameter Distributions
The posterior distributions of population geometric mean (M), geometric standard deviation
(S), and population variance (Σ) are shown in Table 3. The geometric mean represents the
parameter value for an average person (Bois, 2000b), and the geometric standard deviation
(S) represents the uncertainty of M. The population variance (Σ) represents the population
variability, which is captured by the assumption that parameter values are not the same in
every individual in the population of interest. During the MCMC analysis, the uncertainty of
population mean (S), and the variability of the population mean (Σ) were updated separately.
Therefore, a distinction can be made between uncertainty and variability. Uncertainty is
reflected in the fact that perfect information exists about what those distributions are. In this
study, the uncertainty and variability of the population PBPK model parameters were all
reduced from their prior distributions (Figure 5). This result indicates the reduction in
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uncertainty associated with the values of those population-level parameters, accomplished
with the Bayesian updating.

The geometric means (posterior point estimates) of several population PCs are close to their
prior estimates; this is not true for fat. The PCs for fat shifts from 37.7 to 27.8; this 30%
decrease may be due to the joint uncertainty of the scaled fat volume (compared with default
23.1% of body mass) and the fat/blood PC. However, for some parameters, the posterior
point estimates differ 50% or more from their prior estimates. For example, the permeability
shifts from 0.00833 to 0.013 cm/min, and the clearance (CL) shifts from 0.58 to 2.16, an
almost four-fold increase. For the average stratum corneum thickness (the effective length of
the diffusion path), a factor of 10 for prior population uncertainty is used, which allows the
“data to speak” (Bois, 2000a,b). The posterior point estimate is 20 μm, whereas the below-
neck range of thickness is 10 to 40 μm (Roy et al., 1996). The kidney/liver metabolism
proportional constant A has a posterior point estimate of 0.015, approximately half of the
value derived from Corley's experiments (Corley et al., 1990).

Tissue blood flow rates as the percentage of cardiac output were updated separately for
inhalation and dermal exposures. For the inhalation and dermal scenario, the posterior
means of the tissue blood flow rates at the population level are close to their prior estimates
(defined by ±20% from the prior data), except for fat and skin (Table 3). The posterior
means of the tissue blood flow rates for inhalation exposure are close to those for dermal
exposure, except for the skin, which is half of the value for the dermal scenario. The
posterior means of the tissue blood flow rates at the individual level are usually similar
under the two exposure scenarios (defined by ± 20% from the inhalation results), except for
kidney and skin (Table 4).

For the MET value, the posterior point estimates are within 10% of the prior estimates for
both scenarios, with the posterior MET for the dermal scenario being slightly higher than the
inhalation scenario. Pairwise linear correlations between estimated parameters of the PBPK
model for chloroform were calculated from the population posterior distributions. The
highest correlation is 0.53 (between percentages of cardiac output to liver and fat). During
model development, many of the known possible correlations among the PBPK parameters
have been considered. These include those between inhalation rate and cardiac output,
percentages of cardiac output, and Vmax/Km ratio. Tissue blood flow rates were adjusted
proportionally to ensure that the total flows were summed to cardiac output. Cardiac output
and inhalation rate were estimated using MET-correlated scaling functions. The clearance
was directly optimized instead of optimizing Vmax and Km separately. The correlation found
will be considered for future applications, such as developing a regression equation between
parameters that are correlated. Without properly delineating these correlations; however,
model simulation will produce incorrect predictions as these parameters should not be
sampled independently.

Discussion
In this study, a Bayesian method was applied to optimize certain population PBPK
parameters as the use of scaled physiological parameter alone is not enough to account for
the interindividual variability observed in the data (see subsection “Uncertainty/variability
characterized through scaled functions”). Scaling functions were used to describe the
population variability of physiological parameters, to account for the known correlations in
the estimation of physiological parameters, and to reduce the number of parameters that
needed to be optimized. For parameters independent of the exposure scenario, biomarker
data from both inhalation and dermal experiments were joined to expand the data size for
optimization. For parameters dependent on the exposure scenario, the optimization process
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was performed within the same framework (hierarchical Bayesian model and PBPK model)
for mechanistic consistency.

The results of the influence of hot-water bath effects on physiological parameters on both
population and individual levels are shown in Tables 3 and 4. Increases in the geometric
means of the percentage of cardiac output (%CO) to the skin compartments at both the
population and individual levels were estimated. It is known that human skin blood flow
rates increase under elevated environmental temperatures (Song et al., 1990;Charkoudian,
2003). Although animal studies show reduced renal blood flow rates because of heat stress
(Kanter, 1960;Kenney and Musch, 2004), the results of this study show a slight increase of
renal blood rates flow in humans at a moderately higher water temperature (38°C). In
addition to the blood flow rates, MET is the only other model parameter that provides
information on physiological changes due to hot-water bathing for the same individuals. At
the population level (Table 3), it is observed that the dermal MET is slightly higher than the
inhalation MET. At the individual level (Table 4), the same pattern is observed with the
exception of subject M3, who had the lowest dermal MET. One possible reason for this is
the interindividual variability on the baseline values of VO2 and AVOdiff. In addition, as the
two experiments were conducted on two different days, the baseline value of each subject
may vary from the showering occasion to the bathing occasion. Therefore, at the individual
level, the comparison is highly baseline dependent. As there is no repeated biomarker
measurement at specific time points and all the data points were included in the optimization
process, it should be noted that the posterior distribution will likely be impacted by the data
uncertainty. Furthermore, owing to the limitations of the sample size, the observation of the
population parameters may not prove conclusive, and further investigation may be needed to
reduce the data uncertainty. Table 5 summarizes the change of cardiovascular responses
resulting from the whole-body bathing in different water temperatures for human subjects.
However, these studies provide limited information on the effects of hot-water bathing on
the blood flow rates in the whole body scale.

Earlier studies show that dermal absorption during bathing is strongly influenced by water
temperature. Breath measurements from Gordon et al. (1998) showed that subjects bathing
in hot water (38–41°C) exhaled approximately 30 times more chloroform than they did
when bathing in cold water (28–32°C). Corley et al. (2000) used PBPK modeling to study
the temperature effect on dermal-only absorption of chloroform based on data from Gordon
et al. (1998). This study found that blood flow to the skin and the effective skin permeability
coefficient (Kp) both had temperature dependence. Kp was determined to be 0.001 cm/min
for exposure at 40°C, when CO to the skin was held at 18% (Corley et al., 2000). The results
of this study show that there is 9% CO to the skin in the dermal-only exposure scenario,
which is twice than that of the inhalation-only scenario, but that the CO is below the 18%
used by Corley et al. These results are estimates that were averaged over the entire time
course: 150 min total time (30 min exposure/immersion time, plus 120 min post-exposure
time). Therefore, the current results reflect the “trends” of physiological changes in hot-
water bathing, specially the larger increase of the blood flow rate to the skin. Future studies
using time-dependent and temperature-dependent PBPK modeling parameters could provide
more detailed information regarding physiological changes.

A wide range of values of permeability (Kp) of chloroform has been used in PBPK modeling
to evaluate dermal absorption of chloroform during showing (Roy et al., 1996; Corley et al.,
2000; Levesque et al., 2000; Xu et al., 2002; Haddad et al., 2006). Thus, the uncertainty of
the population mean is set at 5, whereas the mean is set as 0.0008 cm/min. The posterior
mean for Kp in this study was 0.0011 cm/min. This value is less than half of the values
reported in Levesque et al. (2000) and Xu et al. (2002), but it is in agreement with the
0.0005–0.001 cm/min estimated by Corley et al. (2000) and 0.0002–0.0015 cm/min by Xu
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and Weisel (2005a). The posterior variability and uncertainty are both significantly reduced
from the priors.

The regional stratum corneum thickness has been reported to range from 10.5 μm on the
back to 600 μm on the sole, and the thickness of the stratum corneum recommended for the
whole body is 10–40 μm (USEPA, 1992, 1997). The population variability of stratum
corneum thickness was set at 2, and the uncertainty of population mean was set at 10. These
values reflect the varying layers of thickness of stratum corneum over the whole body. The
posterior point estimate of the population mean of Lsc is 20.5 μm, which is at the low end of
USEPA recommended values. The posterior variability and uncertainty are both 1.15, which
is significantly reduced by the priors from the Bayesian optimization.

In this study, scaling functions were used for describing the interindividual difference in
physiological parameters. A similar approach has been applied to earlier MCMC analysis
such as Jonsson and Johanson (2001). This approach can reduce the number of MCMC
parameters while reflecting the average tissue values for different sub-population based on
age, gender, and BW. Alternatively, other body size measurement such as body mass index
(BMI) or body surface area (BSA) could be used. However, BW is commonly used in
allometric scaling and more readily available in various datasets than BMI and BSA. The
utility of the model with BW as covariate may be greater in the future. BW, BSA, and BMI
are usually highly correlated with each other. For VOCs (such as chloroform), the
concentration equilibrium between blood and tissues is assumed to be reached
instantaneously, and the product of the tissue volume and the corresponding PC can be
thought of as the effective distribution volume for the tissue compartment. As the tissue PCs
were included as MCMC parameters, the uncertainty related to the scaling functions on the
estimation of tissue volumes can impact the estimation of the PC. Most posterior mean
estimates of the PCs are very close to the priors with the exception of the estimate for the
fat, which is considerably lower than the corresponding prior. The difference may be
because the size of the fat compartment in the original model is smaller than those predicted
by the scaling function in this study, or because the fat tissue is heterogeneously perfused, or
because the fat compartment in the model may correspond to the well-perfused portion of
the fat tissues (Jonsson et al., 2001).

A three-fold difference of posterior point estimates between the highest and the lowest
individual CL ratios for liver has been observed. This variation may be a result of population
variation in hepatic concentrations of CYP2E1 (Raucy, 1995), or may reflect the fact that
P450 CYP2E1 is polymorphic in humans, and the different genotypes may cause
interindividual differences in enzyme expression (Bogaards et al., 1993) and in the toxicity
of its substrates (Bolt et al., 2003). Population variations in CYP2E1 enzyme expression also
vary due to physical/hormonal status, alcohol consumption, drug interferences, and ethnic
differences (Bolt et al., 2003). Ethnic differences were found in CYP2E1 enzyme expression
because of genetic factors between European and Japanese populations (Kim et al., 1996).

Metabolic activity of chloroform in kidney microsomes was not detectable in humans
(Corley et al., 1990). However, enzyme activities in the kidney were observed in hamsters,
mice, and rats. For each of these species, Corley et al. calculated a proportional parameter A
that relates the metabolic activity in the kidney to the activity in the liver. For humans, the
value of A was estimated to be 0.033 by assuming that the metabolic activity was at the
detection limit. As kidney metabolism was included in the original chloroform PBPK model
for the human (Corley et al., 1990), and the sensitivity analysis showed that model outputs
were sensitive to the kidney metabolism (see the Materials and methods section), kidney
metabolism was included in the MCMC analysis. The value of A, 0.033, was used as the
prior population mean in the hierarchical model. The corresponding population variability
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was set at 5 and the uncertainty of population mean was set at 10. These values reflect the
lack of precise prior information of chloroform metabolism in the human kidney. With a
large prior variability and uncertainty, the optimization is primarily driven by data
likelihood. The posterior point estimate of the population mean of A is 0.015, about half of
the value derived from the experiments by Corley et al. (1990). The posterior variability and
the uncertainty are significantly reduced from the priors in the Bayesian optimization. This
result suggests that there is some information from the exhalation data to update the prior
assumptions of the chloroform metabolism in the human kidney. It should be noted that it is
difficult to discriminate between both types of clearance (liver and kidney) when using
exhaled air alone. Therefore, it would be ideal to validate the model, in addition to exhaled
breath, with urine (if validated urinary biomarker available for chloroform exposure) and
plasma data to have full confidence in the prediction of kidney clearance. For other VOCs
such as PERC (Clewell et al., 2005), it was possible to identify the kidney clearance because
there were data on the time-course data of a metabolite (TCA) in the urine. But for
chloroform, there is no metabolite excretion and it is not possible to distinguish between the
kidney and the liver contributions to metabolism using only blood and exhaled breath data
on the parent compound. Nevertheless, this result demonstrates that PBPK modeling in
combination with Bayesian optimization can be used to test toxicological assumptions when
data are available.

To demonstrate the application of a probability approach in toxicological assessment, results
from the posterior distributions from this calibrated model were used to predict the averaged
rate of amount of chloroform metabolized per liver (ng/g/h). The distributions of the rate of
metabolism were computed with 500 vectors drawn from every 10th vector of the final 5000
MCMC runs. The overlapped distributions among the individuals indicate that the
interindividual variability of the metabolism rate is not overly large. The median individual
rate of metabolism was compared with those calculated by the default-scaled literature
parameters (see Figure 6). These figures provide a comparative measure of the rate of
metabolism in the liver from different model inputs. The differences between median
individual rate of metabolism and those calculated from literature parameters were similar
for inhalation-only scenario and larger for dermal-only scenario. This indicates the
importance of considering scenario-specific parameters to derive the target tissue dose with
PBPK modeling. For inhalation and dermal exposure, the alveolar exhaled breath and blood
concentration are good surrogates for target tissue dose (R2 over 0.9). However, it is
important to realize that relationship of the chemical blood concentration to rate of
metabolism is very different for ingestion pathway, in which all of the portal blood flow
from GI tract is subject to pre-systemic liver clearance (Clewell et al., 2008). Clewell et al.
(2008) show that the pairwise correlation between the blood concentration and the rate of
metabolism was only 0.48 when the ingestion pathway were considered for a multiroute
household chloroform exposure scenario.

Conclusions
In this study, a Bayesian method was applied to estimate scenario-dependent (i.e. cardiac
output) and scenario-independent (i.e., tissue PCs) parameters using biomarker data from
different exposure studies. Twenty-five model parameters were optimized using a Bayesian
hierarchical modeling approach. The uncertainty in the parameters was significantly reduced
in the posterior distributions for most model parameters. The agreement between model
prediction and observed data were improved significantly when the parameters from the
Bayesian MCMC results were used, compared with the simulation that used the default
literature values and the default-scaled literature values that included additional scaling
parameters based on age, gender, and body mass. The results from the MCMC analysis
showed that tissue blood flow rates varied in the two exposure scenarios. Two-fold increases
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in skin blood flow rates during the hot-water bath exposure were observed at both
population and individual levels. Thus, the Bayesian approach provides a good model
“calibration” tool, when it considers information from different studies and experiments.
The results of the MCMC analysis yield information about the variability of model
parameters under the hot-water scenario, and can improve further PBPK modeling
applications to assess risk associate with the human exposure to DBPs because of showering
and bathing behavior.
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Appendix A
The rate of change of the amount of chemical uptake in viable skin compartment in the DP
skin model is described as:

The mass flux at interface between stratum corneum and viable skin is calculated as:

The rate of change of the concentration in Nth layer of stratum corneum is calculated using
the central difference formula:

And, the stratum corneum diffusivity can be calculated as:

Dsc = effective stratum corneum diffusivity [cm2/min]

Perm = stratum corneum permeability [cm/min]

Lsc = stratum corneum thickness [cm]
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Psc,water = partition coefficient between stratum corneum and water [unitless]

Csc,n = chemical concentration in the nth layer of stratum corneum

N = number of layer defined in the stratum corneum

Jsc = dermal mass flux

Appendix B
The sensitivity coefficient were calculated as follows: Sensitivity coefficient (Clewell et al.,
2003):

where

A is the exhaled conc with 1% increased parameter value,

B is the exhaled conc at the starting parameter value,

C is the parameter value after 1% increase, and

D is the original parameter value.

Appendix C
Age, gender, and bodyweight-dependent scaling functions for selected PBPK model
parameters.

Equations used to calculate the cardiac output (Qcardiac) and inhalation rate (QPulmonary)

where

VO2 = oxygen consumption (ml/kg/min)

AVOdiff = difference in volume of oxygen between arterial and venous blood (40–60 ml/l for
adult, a uniform distribution between 40 and 60 was used in the model)

MET = metabolic equivalent of tasks (unitless)

BM = body mass, assumed to be same as body weight (BW)

F = conversion factor (3.5) from oxygen consumption to MET (ml/kg/min/MET)
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where BMR = basal metabolic rate (e.g., 1.16 MJ/day for 30 year old, 70 kg male)

H = oxygen update factor, the volume of oxygen consumed in the production of 1 MJ energy
expended (e.g., 0.21 m3/MJ for 30 year old, 70 kg male)

VQ = ventilatory equivalent (unitless), the ratio of minute volume to oxygen uptake (i.e.,
27.5 for 30 year old, 70 kg male)

Scaling functions used to calculate tissue volumes

Body surface area (SA) [cm2]

Male, age .ge. 18: SA = 252 × BW

Female, age .ge. 14: SA = 288 × (1−0.00201 × (age–14) × BW

Fat tissue mass (assume the fat density = 0.93)

Male, age .ge. 18: Volumefat = (0.21 + 0.000307 × (age–18)) × BW2/100/0.93

Female, age .ge. 14: Volumefat = 0.003732 × (1 + 0.0055 × (age–14) × BW2)/0.93

Other tissues (assume the density = 1)

Skin tissue mass

Male, age .ge. 15: Volumeskin = 0.0367 × BW

Female, age .ge. 15: Volumeskin = 0.044 × BW

Kidney: Volumekidney = 8.38 × BW0.85 × 0.001

Liver: Volumeliver = 92 × BW0.7 × 0.001

Rapidly perfused: 

Slowly perfused: 
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Figure 1.
PBPK model structure (left panel) for prediction chloroform exposure through inhalation or
dermal route; and the distributed parameter model for skin compartment (right panel)
(adapted from Roy et al., 1996).
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Figure 2.
Comparison of model simulations of chloroform time series data in exhaled breath for (a)
inhalation-only (top panel) and (b) dermal-only (bottom panel) exposure using two input
parameter vectors; default literature point estimates (dash line) and default values with age-
gender scaling functions as inputs (solid line).
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Figure 3.
Three-level hierarchical population model for MCMC analysis.
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Figure 4.
Comparison of PBPK model for chloroform simulations to time series profiles of
chloroform in exhaled breath during 30-min (a) inhalation-only (top panel) and (b) dermal-
only (bottom panel) exposures for six subjects. Three sets of input parameters are used (1)
default-scaled literature values (default scaled), (2) mean of posterior population parameters
from MCMC results (posterior population), and (3) individual input vector drawn from
individual MCMC results (individual MCMC).
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Figure 5.
Demonstration of the reduction in uncertainty associated with the population-level
permeability distribution. The posterior distribution of the permeability is much tighter than
the corresponding prior.
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Figure 6.
Right column present the predictions of the hepatic rate of metabolism for inhalation
scenario; and results for dermal scenario are on the left column. For each scenario, the upper
figure presents the boxplots of average rate of chloroform metabolized in liver (ng/g/h) for
24 h. The box has lines at the lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to show the extent of the rest of the
data. Lower figure compares the location of the 50th percentile (50%) (as shown in the
upper figure) to those calculated using default literature reference values.
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Table 1

Basic demographic information and physical measurements of human subjects.

Subject Gender Age (year) Bodyweight (kg) Height (cm)

M1 M 29 59.0 167

M2 M 28 63.5 170

M3 M 39 70.0 181

F1 F 27 55.0 155

F2 F 25 62.0 165

F3 F 27 55.0 162
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Table 5

Literature review of cardiovascular responses to hot-water bathing.

Parameters Literature review Mean of posterior distributions

BF fat NA ↑

BF slowly perfused NA ↓

BF rapidly perfused NA Similar

BF liver ↓ (4) ↓

BF kidney NA ↑

BF skin ↑ (4)(5) ↑

MET NA ↑

Hear rate ↑ (1)(5) NA

Blood pressure ↓ (2)(4) NA

Oxygen consumption ↑ NA

Ventilation rate Same (3)(5) NA

Cardiac output ↑ (2)(3) Ventilation rate and cardiac outputs were calculated with scaling functions Increased METs
value will result in the increase of both ventilation rates and cardiac outputs

Abbreviations: BF tissue, blood flow rate as the percentage of cardiac output; NA, data not available.

References: (1) Allison and Reger, 1998; (2) Allison et al., 1998; (3) Boone et al., 1999; (4) Koda et al., 1995; (5) Miwa et al., 1994.
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