Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Version 1. PLoS Curr. 2011 February 4; 3: RRN1212.
Published online 2011 February 4. doi: 10.1371/currents.RRN1212
PMCID: PMC3038382
PMID: 21327164

A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia)

Abstract

Despite their obvious utility, detailed species-level phylogenies are lacking for many groups, including several major mammalian lineages such as bats. Here we provide a cytochrome b genealogy of over 50% of bat species (648 terminal taxa). Based on prior analyzes of related mammal groups, cytb emerges as a particularly reliable phylogenetic marker, and given that our results are broadly congruent with prior knowledge, the phylogeny should be a useful tool for comparative analyzes. Nevertheless, we stress that a single-gene analysis of such a large and old group cannot be interpreted as more than a crude estimate of the bat species tree. Analysis of the full dataset supports the traditional division of bats into macro- and microchiroptera, but not the recently proposed division into Yinpterochiroptera and Yangochiroptera. However, our results only weakly reject the former and strongly support the latter group, and furthermore, a time calibrated analysis of a pruned dataset where most included taxa have the entire 1140bp cytb sequence finds monophyletic Yinpterochiroptera. Most bat families and many higher level groups are supported, however, relationships among families are in general weakly supported, as are many of the deeper nodes of the tree. The exceptions are in most cases apparently due to the misplacement of species with little available data, while in a few cases the results suggest putative problems with current classification, such as the non-monophyly of Mormoopidae. We provide this phylogenetic hypothesis, and an analysis of divergence times, as tools for evolutionary and ecological studies that will be useful until more inclusive studies using multiple loci become available.

Introduction

Phylogenies form the backbone of evolutionary biology and represent tools that underlie a broad spectrum of evolutionary and ecological studies [1] [2]. Phylogenetic work on any given group often first focuses on the ‘big picture’, that is the placement of, and relationship among, major groups, long before species level phylogenies become available. One simple reason for this focus is that general interest questions, such as where and how the major divisions of life fit together, can be answered through sampling relatively few taxa, in a relatively cost and time effective manner. Yet, more detailed species-level phylogenies, often lagging far behind, are the most useful tools for evolutionary and ecological analyses. The above is certainly true for mammalian phylogenetics, where higher level phylogenetics are intensely studied, with the few detailed species level studies for major groups lagging far behind (see e.g. [3] [4] [5] [6]).

The ultimate goal of phylogenetics must be detailed species level phylogenies of all of life, based on many data. However, achieving this goal will take much time and effort. In the meantime, species level phylogenies may be rapidly reconstructed with already available data using several approaches. One is the construction of phylogenetic supertrees where available trees and taxonomies are united into a summary cladogram [7]. Another is the creation of supermatrices based on available character data. Both approaches make available useful research tools, which may have different strengths.

The bats (Chiroptera) are one such group where many phylogenetic studies have focused either on understanding higher-level bat relationships (e.g. [8] [9]) or species-level relationships within specific groups (e.g. [10] [11] [12]). Available phylogenies have then been summarized in a supertree [13]. Here, we provide cytochrome b gene tree for over 50% of bat species (648 total taxa). Cytb not only is the most widely available marker for most mammals, but also has been shown to be a particularly reliable phylogenetic marker (e.g. [14]). Thus according with prior analyses of other mammal groups [3] [4] [5] [6], the cytb gene tree can be expected to at least roughly approximate the species-level phylogeny of Chiroptera.  We provide this phylogeny simply as an alternative tool to super-tree phylogenies, until more detailed studies become available.

 Methods

            Cytochrome b sequences were downloaded from GenBank for 648 bats, including nearly 550 named species, and the remaining terminal taxa being subspecies or unidentified/undescribed species. As outgroups we selected 10 species representing other Pegasoferae [15]: Cetartidoactyla, Perissodactyla, Carnivora, Pholidota (pangolins), and Erinaceomorpha as the primary outgroup. Because many of the taxa have incomplete Cytb sequences, and missing data can cause problems in phylogenetic reconstruction (e.g. [16]), we also created a ‘pruned’ dataset where taxa with less than 30% of the full sequence were removed (‘pruned’ matrix), and another set where only 2 representatives of each family were retained (‘time’ matrix). The latter was used for analysis of divergence times. The sequences were aligned in Mesquite [17], a trivial task given that it is a protein-coding gene with no implied gaps. The appropriate model for the Bayesian analysis was selected with jModeltest [18] using the AIC criterion [19]. The best model was GTR+Γ+I [20] [21]. Bayesian analysis was performed using MrBayes V3.1.2 [22] with settings as in [3] [4] with separate model estimation for first, second, and third codon positions. The MCMC was run with one cold and three heated chains for 30,000,000 generations, sampling trees every 1,000 generations. The first 15,000,000 were then discarded as burnin, after which stationarity was reached. The data matrix and trees are available from the first author and data and trees will be submitted to Treebase (http://www.treebase.org). Genbank accession numbers are listed in Table 1 (see Appendices).

            The ‘time’ matrix was used to estimate divergence times using relaxed clock methods in BEAST 1.6.1. [23] [24]. For Emballonuridae we additionally retained two Taphozous species as these did not group with the other Emballonuridae in the full analysis. The analysis was calibrated using normally distributed priors reflecting: (1) the minimal age of 37 my for the split between Rhinolophidae and Hipposiderids based on the estimated age of the oldest rhinolophid and hipposiderid fossils [25] [26]; (2) the estimated age of Carnivora (split of cat plus dog) of 54 my (the age of Carnivora as estimated by [27]); the estimated age of Chiroptera as a normally distributed prior with mean of 54 my, also based on [27]; and (4) the minimal age of Emballonuridae of 48 my based on the oldest fossils that are with some certainty placed within that family [28]. Prior to the divergence time analysis Erinaceus (Erinaceomorpha) and Talpa (Eulipotyphla) were set as primary outgroups by enforcing the monophyly of the remaining taxa, and the monophyly of Rhinolopidae plus Hipposideridae was furthermore enforced. The resulting age estimates were then compared to the above mentioned fossil data in addition to the age of other known fossil bats [28].

Results and Discussion

Phylogenetics

The analysis of the full dataset supports the monophyly of bats, and the major division of Chiroptera into Megachiroptera (Pteropodidae) and Microchiroptera with Yangochiroptera contained within the latter group (Figures 1-2).

An external file that holds a picture, illustration, etc.
Object name is figure1final.jpg

Figure 1. Relationships among bat families according with the analysis of all data. Numbers are posterior probabilities, above branches from the full analysis, below branches support from the pruned analysis.

An external file that holds a picture, illustration, etc.
Object name is figure2final.jpg

Figure 2. Relationship among bat species with major clade names. Numbers are posterior probabilities. The results are detailed in Figure 4, see Appendices.

The analysis of the ‘time’ matrix, however, supports the now rather generally accepted split into Yinpterochiroptera and Yangochiroptera (see below) (e.g. [29] [30] [31] [32] [33] [34]).

    The Macrochiroptera, or fruitbats (Pteropodidae), are in the main analysis sister to the remaining bats (Figures 2, 4a). Within Pteropodidae most genera are monophyletic, with the exception of Rousettus angolensis (synonym Lissonycteris angolensis) nests with Myonycteris. Overall, these results are similar to results of previous studies on macrochiroptera phylogenetics (e.g. [10]).

The Microchiroptera is divided in two major clades, one is the Yangochiroptera including the families Emballonuridae, Furipteridae, Miniopteridae, Molossidae, Mormoopidae, Mystacinidae, Myzopodidae, Natalidae Noctilionidae, Phyllostomidae, Thyropteridae, and Vespertilionidae. The other major group, which we refer to as a modified “Rhinolophoidea” (Figures 1-2, 4), contains the remaining microbat families Craseonycteridae, Hipposideridae, Megadermatidae, Rhinolophidae, and Rhinopomatidae. Hipposideridae and Rhinolophidae are sister families as supported by previous studies (e.g., [13] [31] [34]).  Only Hipposideridae here contains more than a single genus, and within that family Hipposiderus is paraphyletic, containing several small genera.

 Overall most microchiropteran superfamilies are not supported as monophyletic, except Rhinopomatoidea (Figure 2). A modified Rhinolophoidea that contains Rhinopomatoidea is also supported, and the superfamily Vespertilionioidea is monophyletic except for containing a couple of apparently misplaced species (Figures 2, 4b). The relationships among the families, however, in general are poorly supported and differ among analyses (see Figures 1, 3-4). Taxonomic families are generally recovered either as strictly monophyletic, or approximately, as paraphyletic groups due to one or a couple of ‘misplaced’ taxa.  In the full analysis, families that are strictly supported (i.e. monophyletic, or in the case of families represented by single species, not nesting within another family) are: Craseonycteridae, Furipteridae, Hipposideridae, Megadermatidae, Miniopteridae, Molossidae, Mystacinidae, Myzopodidae, Natalidae, Noctilionidae, Rhinolophidae, Rhinopomatidae, and Thyropteridae. Not monophyletic families are  Phyllostomidae due to the placement of one Platalina species nesting within Vestpertilionidae,  Emballonuridae is rendered polyphyletic by the placement of the genus Taphozous (2 species) and one species of Emballonura outside it. Vespertilionidae is paraphyletic in that within it are placed the above mentioned Platalina and Emballonura. Finally Mormoopidae forms two clades that are not sister, one including the genus Mormoops, the other the genus Pteronotus.  These ‘minor’ deviations from family monophyly in most cases probably do not represent refutation of family clades; rather this seems to be mostly an issue of missing data. For example, when species with less than 30% of the sequence are removed, all families are recovered monophyletic, with two exceptions that may be taxonomically informative :(1) The genus Taphozous still groups outside Emballonuridae which contradicts previous studies (e.g., [32] [34] [35]) and (2) the Mormoopidae family still forms two separate clades, which agrees with Kennedy et al [36] (for contrasting topologies see e.g., [13] [31]).

Finally, several genera of the family Phyllostomidae are not monophyletic, including Mimon, Mycronycteris, Rousettus, Vampyressa, and Artibeus. Within Molossidae Tadarida, Mops, Chaerephon are not monophyletic. Within Natalidae, Chilonatalus is non-monophyletic, and within Vespertilionidae, the large genera Pipistrellus and Myotis are not monophyletic.

Many taxa in the full analysis only have available a partial Cytb sequence, and notably clade support is low for many of the deeper clades of the phylogeny. Low support is unsurprising given missing data, and the use of only a single locus for both very many taxa and old divergences. Further, any given gene tree can be expected to differ from the species tree due to various processes including incomplete lineage sorting, introgression, and others. Thus, future effort should focus on resolving the species-level phylogeny of bats with a multi-locus approach. Nevertheless, the phylogeny, especially when the taxa with the highest % missing data are removed, is broadly congruent with prior knowledge, and should thus be a useful tool. 

Divergence times

The analysis of divergence times (Figure 3) generally agrees with prior studies [27] [35] [37], though the estimated ages are rather lower in general than those estimated by Jones et al. [38].

An external file that holds a picture, illustration, etc.
Object name is figure3.jpg

Figure 3. A calibrated phylogeny of bat families. Numbers are in million years, and gray bars are 95% confidence intervals

In part this may relate to the different suggested relationships among bat families across these studies, though the error margins of many nodes estimated are rather wide and nearly always include age estimates found by prior studies. The results also in most cases are consistent with the available bat fossil record [28]. The age of crown bats, i.e. the split between Yinpterochiroptera and Yangochiroptera is estimated at 58.9 my, a value lying in between the estimates of Cao et al. [27], and Jones et al. [38] and Arnason et al. [37]. Other dates that were included as priors, as expected, also are consistent with the fossil record. The split between Hipposideridae and Rhinolophidae is estimated at 36.9 my, consistent with the oldest known Hipposideridae fossil dated at close to 40 my. Similarly the age of Molossidae estimated at 36.1 my is close to the oldest Molossidae fossil at near 40 my [28]. The split between Emballonuridae and its sister lineage is estimated at 49 my, right around the age of the oldest emballonurid fossil. Most other dates are also consistent with the fossil record. The genus Taphozoushas a fossil record going up to 20.4 my, a date in between the estimated split between crown Taphozous (18.1 my) and the split between Taphozous and other Emballonuridae (44.2 my). The oldest Mystacinidae fossil dates from around 20 my [28] and the estimated split here between Mystacinidae and its sister lineage is 24.3 my. The oldest Phyllostomidae fossil dates from around 16 my [28], a date in between the split between crown Phyllostoma (14.4 my) and the split between Phyllostomidae and its sister lineage (28.5 my). In a few cases the estimates are younger than possible given current understanding the fossil record, e.g. the age of Megadermatidae at 23.6 my while the oldest fossil is at least 37 my. However, 95% confidence interval of this node estimate reaches over 40 my. The age of Natalidae, estimated at around 43 my, is younger than the oldest fossil thought to belong to that family, at over 50 my. Similarly one putative Vespertilionidae genus, Stehlinia, has a fossil record older (up to 48 my) than the estimated age of the family at 36.1 my. These mismatches may reflect simply erroneous age estimates, or could possibly indicate that some fossil bats are taxonomically misplaced. In most other cases the estimated ages are older than the oldest available fossils, which may reflect the incompleteness of the fossil record.

In sum, we provide a cytochrome b genealogy for Chiroptera, which we expect to crudely approximate the bat species tree. Until more detailed species-level phylogenies become available, this offers an alternative phylogenetic tool to super-tree phylogenies, for comparative evolutionary, ecological analyzes, and phylogenetic conservation assessment.

Acknowledgments

Thanks to PLoS Currents: Tree of Life board of reviewers, the editor, and two anonymous reviewers for comments that improved this manuscript.

Funding information

This research was funded, in part, by the University of Puerto Rico.

Competing interests
The authors have declared that no competing interests exist.

Appendices

Figure 4. Results from Fig. 2 in standard tree format.

An external file that holds a picture, illustration, etc.
Object name is figure4a1.jpg

Figure 4a. Results from Figure 2, Pteropodidae. Numbers are posterior probabilities

An external file that holds a picture, illustration, etc.
Object name is figure4b1.jpg

Figure 4b. Results from Figure 2, Megadermatidae, Craseonycteridae, Rhinopomatidae, Hipposideridae, and Rhinolophidae. Numbers are posterior probabilities.

An external file that holds a picture, illustration, etc.
Object name is figure4c1.jpg

Figure 4c. Results from Figure 2, Miniopteridae, Noctilionidae, Mormoopidae, Mystacinidae, Thyropteridae, Furipteridae, and Phyllostomidae in part. Numbers are posterior probabilities

An external file that holds a picture, illustration, etc.
Object name is figure4d.jpg

Figure 4d. Results from Figure 2, Phyllostomidae, in part. Numbers are posterior probabilities

An external file that holds a picture, illustration, etc.
Object name is figure4e.jpg

Figure 4e. Results from Figure 2, Molossidae,Emballonuridae, Myzopodidae, Natalidae, and Vespertilionidae in part. Numbers are posterior probabilities

An external file that holds a picture, illustration, etc.
Object name is figure4f1.jpg

Figure 4f. Results from Figure 2, Vespertilionidae in part. Numbers are posterior probabilities

An external file that holds a picture, illustration, etc.
Object name is figure4g1.jpg

Figure 4g. Results from Figure 2, Vespertilionidae in part. Numbers are posterior probabilities


Table 1.

Species included and Genbank accession numbers

GenusSpeciessub sp or voucherAccession Number
Acerodon jubatus
EU330962
Aethalops alecto
AY629006
Ametrida centurio
 AY604446
Anoura caudifer
L19506
Anoura geoffroyi
FJ155495
Antrozousdubiaquercus
EF222381
Antrozouspallidus
EF222382
Ardops nichollsi
AY572337
Ariteus flavescens
AY604436
Artibeusamplus
EU160947
Artibeusanderseni
U66509
Artibeusaztecus
U66510
Artibeuscf.jamaicensis
DQ985486
Artibeuscf.obscurus
DQ903818 
Artibeuscinereus
EU805599
Artibeusconcolor
U66519
Artibeusfimbriatus
U66498
Artibeusfraterculus
U66499
Artibeusfuliginosus
L19505 
ArtibeusglaucuswatsoniFJ179259
Artibeusglaucus
U66512
ArtibeusglaucusbogotensisEU805596
ArtibeusglaucusgnomusEU805594
Artibeushartii
EU160972
Artibeushirsutus
U66500
Artibeusinopinatus
U66501
Artibeusintermedius
FJ179231
ArtibeusjamaicensisaequatorialisDQ869450
ArtibeusjamaicensisjamaicensisDQ869518
ArtibeusjamaicensisparvipesDQ869474
ArtibeusjamaicensispaulusDQ869456
ArtibeusjamaicensisrichardsoniDQ869454
ArtibeusjamaicensistrinitatisDQ003028
ArtibeusjamaicensistriomylusAY382782
ArtibeusjamaicensisyucatanicusDQ869484
Artibeuslituratus
EU160813
Artibeusobscurus
U66507
Artibeusphaeotis
FJ376727
ArtibeusplanirostrisfallaxDQ869426
ArtibeusplanirostrisgrenadensisDQ869439
ArtibeusplanirostrisherculesDQ869421
ArtibeusplanirostrisplanirostrisDQ869396
ArtibeusplanirostristrinitatisDQ869433
Artibeusschwartzi
DQ869531
Artibeussp.FURB
DQ985497 
Artibeustoltecus
U66515
Aselliatridens
FJ457617
Aselliscusstoliczkanus
EU434954
Aselliscustricuspidatus
DQ888679
Balantiopterysinfusca
EF584151
Balantiopterysio
EF584153
Balantiopterysplicata
EF584154
Balionycteris maculata 
AF044636
Barbastellabarbastellus
EU360700
Barbastellabeijingensis
EF534762
Barbastellaleucomelas
EF534766
Brachyphylla cavernarum
AY572383
Brachyphylla nana
EU521680
Brachyphylla pumila
EU521678
Carollia benkeithi
DQ177282
Carollia brevicauda
FJ154120
Carollia castanea
DQ888289
Carollia sowelli
AF511973
Carollia subrufa
AF187024
Centronycteris centralis
EF584155
Centronycteris maximiliani
EF584157
Centurio senexgreenhalliAY604445
Centurio  senex
AY604444
Chaerephonansorgei
AY377967
Chaerephonchapini
AY591329
Chaerephonjobensis
AY591331
Chaerephonleucogaster
EU716041
Chaerephonnigeriae
AY591330
Chaerephonpumila
AY614756
Chalinolobustuberculatus
NC_002626 
Chilonatalusmicropus
AY621026
Chilonatalustumidifrons
AY621028
Chiroderma improvisum
L28938
Chiroderma  doriae
AY169958
Chiroderma  salvini
L28939
Chiroderma  trinitatum
DQ312413
Chiroderma  villosum
FJ154121
Chironax melanocephalus
AY629005
Chrotopterus auritus
FJ155481
Cloeotispercivali
FJ457616
Coelopsfrithii
EU434955
Cormurabrevirostris
EF584159





Craseonycteristhonglongyai
EF035012
Cynomopsparanus
AY675219
Cynopterusbrachyotis 
EF201644
Cynopterushorsfieldii 
EF201643
Cynopterussphinx
DQ445703
Cyttaropsaleco
EF584162
Dermanura bogotensis
FJ376714
Dermanura rava
FJ179252
Dermanura rosenbergi
FJ179254
Dermanura  incomitata
FJ376718
Desmalopexleucopterus 
EU330965
Desmalopexmicroleucopterus
EU330976
Desmodus rotundus
FJ155477
Diaemus youngi
FJ155475
Diclidurus albus
EF584163
Diclidurus ingens
EF584164
Diclidurus isabellus
EF584166
Diclidurus scutatus
EF584167
Diphylla ecaudata
FJ155476
Dobsoniainermis
DQ445704
Dobsoniaminor
DQ445705
Dobsoniamoluccensis
AF144064
Dyacopterus spadiceus
EF105531
Ectophylla alba
DQ312404
Emballonura alecto
AY426101
Emballonura atrata
DQ178261
Emballonura beccarrii
EF584222
Emballonura monticola
EF584223
Emballonura raffrayana
EF584224
Emballonura semicaudata
EF635553
Emballonura serii
EF635544
Emballonura tiavato
DQ178285
Eonycteris spelaea 
AB062476
Epomophorus wahlbergi
DQ445706
Epomops franqueti 
DQ445707
EptesicusandersoniandersoniEU786850
EptesicusandersonipallescensEU786841
EptesicusbottaeanatolicusEU786812
EptesicusbottaehingstoniEU786819
EptesicusbottaeinnesiEU786815
EptesicusbottaeogveniEU786876
EptesicusbottaetaftanimontisEU786814
Eptesicusdiminutus
EU786864
Eptesicusfuscus
EU786866
Eptesicushottentotus
EU786823
EptesicusisabellinusboscaiEU786838
EptesicusisabellinusisabellinusEU786831
Eptesicusnasutus
EU786840
Eptesicusnilssoni
AF376836
Eptesicusregulus
AY007531
EptesicusserotinusmirzaEU786861
EptesicusserotinusturcomanusEU786875
Erophylla bombifrons
AY620438
Erophylla sezekorni
AY620439
EumopsglaucinusfloridanusEU350026
Eumopsperotis
EU349991
Eumopssp.MMM-2008EU349999
Eumopsunderwoodi
EU349989
Furipterushorrens
AY621004
Glossophaga commissarisi
AF382886
Glossophaga leachi
AF382878
Glossophaga longirostris
AF382875
Glossophaga morenoi
AF382882
Glossophaga soricina
FJ392516
Glyphonycteris  daviesi
AY380747
Glyphonycteris  sylvestris
AY380746
Haplonycteris fischeri
AY817881
Harpiocephalusmordax
AJ841971
Harpyionycteris whiteheadi
DQ445708
Hipposiderosabae
EU934448
Hipposiderosarmiger
EU434946
Hipposiderosater
DQ054807
Hipposiderosbeatus
FJ347976
Hipposiderosbicolor
DQ054808
Hipposideroscaffer
FJ347980
Hipposideroscalcaratus
DQ054806
Hipposideroscervinus
DQ054805
Hipposideroscineraceus
DQ054809
Hipposideroscoxi
EF108148
Hipposideroscyclops
EU934466
Hipposiderosdiadema
DQ219421
Hipposiderosdyacorum
EF108151
Hipposiderosfuliginosus
EU934468
Hipposiderosgigas
EU934470
Hipposiderosjonesi
EU934473
Hipposideroskhaokhouayensis
DQ054816
Hipposideroslarvatus
EU434949
Hipposiderospomona
EU434950
Hipposiderospratti
EU434952
Hipposiderosridleyi
DQ054812
Hipposiderosrotalis
DQ054814
Hipposiderosruber
FJ347996
Hipposiderossp.1KS-2008
EU434948
Hipposiderosspeoris
DQ680823
Hypsugocardonae
DQ318883
Hypsugosavii
DQ120866
Hypsugosp.C1
EU360677
Hypsugosp.C2
EU360678
Hypsugosp.C4
EU360679
Iaio
DQ302094
Idionycterisphyllotis
IINMTCYTB
Kerivoulacf.papillosa
AJ841970
Laephotiswintoni
AJ841964
Lasionycterisnoctivagans
LSNMTCYTBZ
Lasiuruscinereus
DQ421825
Lasiurusega
DQ421826
Lasiurusxanthinus
AF369549
Leptonycteris curasoae
AF382889
Lionycteris spurrelli
AF423100
Lonchophylla chocoana
AF423092
Lonchophylla handleyi
AF423094
Lonchophylla mordax
AF423095
Lonchophylla robusta
AF423091
Lonchophylla thomasi
AF423086
Lonchorhina  aurita
FJ155494
Lophostoma silvicola
FJ155493
Lophostoma  brasiliense
FJ155486
Lophostoma  evotis
FJ155491
Lophostoma  schulzi
FJ155485
Macroglossus minimus
AY926645
Macroglossus sobrinus
FJ226494
Macrophyllum macrophyllum
FJ155484
Macrotus  californicus
AY380744
Macrotus  waterhousii
AY380745
Megadermalyra
DQ888678
Megadermaspasma
AY057942
Megaerops ecaudatus
EF201645
Megaerops niphanae
AF044647
Megaerops wetmorei
EF105537
Megaloglossuswoermanni
DQ445710
Melonycteris fardoulisifardoulisiAY847251
Melonycteris fardoulisimaccoyi AY847254
Melonycteris fardoulisimengermani AY847241
Melonycteris fardoulisischouteni AY847236
Melonycteris melanops
AF044645
Melonycteris woodfordiwoodfordi AY847234
Mesophylla macconnelli
FJ154122
Micronycteris brachyotis
AY380748
Micronycteris brosseti
AY380771
Micronycteris cf.schmidtorum
DQ077407
Micronycteris giovanniae
AY380750
Micronycteris hirsuta
DQ077415
Micronycteris homezi
AY380754
Micronycteris matses
DQ077419
Micronycteris megalotis
DQ077429
Micronycteris microtis
AY380756
Micronycteris minuta
DQ077405
Micronycteris schmidtorum
DQ077442                 
Micronycteris sp.TK136752
DQ077420
Micronycteris  nicefori
AY380749
Micropteropus pusillus
AF044648
Mimon crenulatum
FJ155478
Mimon  bennettii
DQ903832 
Miniopterusafricanus
EF363524
Miniopterusaustralis
AY614735
Miniopterusfraterculus
AJ841975
Miniopterusfuliginosus
AB085735
Miniopterusgleni
FJ383146
Miniopterusgriveaudi
FJ232802
MiniopterusgriveaudigriveaudiFJ383143
Miniopterusinflatus
AY614737
Miniopterusmacrocneme
AY614734
Miniopterusmagnater
EF517308
Miniopterusmajori
DQ899776
Miniopterusmanavi
FJ383130
Miniopterusminor
FJ232805
Miniopterusnatalensis
AY614744
Miniopterusnewtonii
EF363521
Miniopteruspetersoni
EU091258
Miniopteruspusillus
DQ837650
Miniopterusschreibersii
EF530348
MiniopterusschreibersiibassaniiAY614733
MiniopterusschreibersiiblepotisAF217444
MiniopterusschreibersiioceanensisAF130123
MiniopterusschreibersiiorianaeAY614732
MiniopterusschreibersiipallidusAY614736
Miniopterussp.BBRA-2009bFJ383134
Miniopterussp.Comoros clade 2FJ232800
Miniopterussp.FMNH 167450FJ383132
Miniopterussp.FMNH 172602FJ383133
Miniopterussp.sororculusDQ899771
Molossusmolossus
L19724
Monophyllus plethodon
AF382887
Monophyllus redmani
AF382888
Mopscondylurus
EF474030
Mopsleucostigma
EF474029
Mopsmidas
EF474049
Mormoopsblainvillii
AY604462
Mormoopsmegalophylla
AF330808
Mormopteruskalinowskii
L19725
Mosianigrescens
EF635558
Murinacf.cyclotis
AJ841974
Murinaleucogaster
AB085733
Murinasp.GGJ-2006DQ435071
Murinasp.hn1151EF570883
Myonycteris brachycephala
AF044644
Myonycteris relicta
AF044649
Myonycteris torquata
AF044650
Myotisadversus
AB106587
Myotisalbescens
AF376839
Myotisalcathoe
AJ841955
Myotisaltarium
FJ215677
Myotisannectans
AJ841956
Myotisatacamensis
AM261882
Myotisaurascens
AY665161
Myotisauriculus
AM261884
Myotisaustroripari
AM261885
Myotisbechsteinii
AF376843
Myotisblythii
DQ120906
MyotisblythiiancillaAM284170
MyotisblythiiblythiiAF376840
MyotisblythiiomariDQ288853
MyotisblythiioxygnathusAF376841
MyotisblythiipunicusAF376842
Myotisbocagei
AJ504408
Myotisbombinus
EF555240
MyotisbombinusamurensisAM284169
Myotisbrandtii
AM261886
Myotiscalifornicus
AM261887
Myotiscapaccinii
AF376845
Myotiscf.nipalensiskukunorensisAY699845
Myotiscf.pequinius
AM284173
Myotiscf.punicus
AF246252
Myotischiloensis
AM261888
Myotischinensis
AB106588
Myotisciliolabrum
AM261889
Myotisdasycneme
AF376846
Myotisdaubentoni
AY665137
MyotisdaubentoninathalinaeAF376862
MyotisdaubentonidaubentoniiEU153105
Myotisdavidii
AB106591
Myotisdominicensis
AF376848
Myotiselegans
AM261891
Myotisemarginatus
AF376849
Myotisescalerai
FJ460363
Myotisevotis
AJ841949
Myotisfimbriatus
EF555226
Myotisformosus
AJ841950
MyotisformosusflavusEU434932
MyotisformosuswataseiEU434933
Myotisfrater
AB106593
Myotisgoudoti
AJ504451
Myotisgracilis
AB243029
Myotisgrisescens
AM261892
Myotishajastanicus
AY665138
Myotishasseltii
AF376850
Myotishorsfieldii
AF376851
Myotisikonnikovi
AB106602
Myotiskeaysi
AF376852
Myotiskeenii
AM262329
Myotislaniger
EF555229
Myotislatirostris
AM262330
Myotisleibii
AM262331
Myotislesueuri
AY485687
Myotislevis
AF376853
Myotislongipes
FJ215678
Myotislucifugus
AF376854
MyotislucifugusalascensisDQ503483
MyotislucifuguscarissimaAF294512
MyotislucifuguslucifugusDQ503488
MyotislucifugusrelictusDQ503558
Myotismacrodactylus
EF555238
Myotismacropus
AJ841959
Myotismacrotarsus
AJ841960
Myotismartiniquensis
AM262332
Myotismontivagus
AM262333
Myotismuricola
AY665144
MyotismuricolabrowniAF376859
Myotismyotis
AM261883
MyotismyotismyotisAF246246
Myotismystacinus
AY665167
Myotisnattereri
AB106606
MyotisnattereriescaleraeEU360649
MyotisnattereritschuliensisAM284171
Myotisnigricans
AF376864
Myotisnipalensis
AY699844
Myotisoxyotus
AF376865
Myotispequinius
AM284172
Myotispetax
EF555236
Myotispruinosus
AB106607
Myotispunicus
EU360640
Myotisricketti
AJ504452
Myotisriparius
AF376866
Myotisruber
AF376867
Myotisschaubi
AF376868
Myotisscotti
AJ841958
Myotisseabrai
AJ841962
Myotisseptentrionalis
AM262335
Myotissicarius
AJ841951
Myotissiligorensis
FJ215679
Myotissimus
AM262336
Myotissodalis
AM262337
Myotissp.1 ZZ-2009FJ215680
Myotissp.2 ZZ-2009FJ215681
Myotissp.AM_M15111AY007527
Myotissp.C1EU360644
Myotissp.C2EU360645
Myotissp.C3EU360646
Myotissp.C4EU360647
Myotissp.C5EU360648
Myotissp.KK0005AB106609
Myotissp.PH-2006DQ337479
Myotissp.XT-2007EF555233
Myotisthysanodes
AF376869
Myotistricolor
AJ841952
Myotisvelifer
AF376870
Myotisvivesi
AJ504406
Myotisvolans
AF376871
Myotiswelwitschii
AF376874
Myotisyanbarensis
AB106610
Myotisyumanensis
AF376875
Mystacinatuberculata
AY960981
Myzopodaaurita
EF432190
Myzopodaschliemanni
EF432213
Natalusjamaicensis
AY621023
Natalusmajor
AY621021
Natalussaturatus
AY621014
Natalusstramineus
AY621019
Natalustumidirostris
AY621008
Neoromiciabrunneus
EU786868
Neoromiciacapensis
AJ841966
Neoromiciasomalicus
EU786869
Noctilioalbiventris
AF330806
Nyctalusazoreum
DQ887590
Nyctaluslasiopterus
DQ120871
Nyctalusleisleri
AF376832
Nyctalusnoctula
AJ841967
Nyctalusplancyi
DQ435073
Nycterisleporinus
AF330802
Nycticeiushumeralis
L19727
Nyctielluslepidus
AY621007
Nyctimene albiventer
DQ314264
Nyctimene cephalotes
DQ314268
Nyctimene major
AF044652
Nyctimene robinsoni 
AF144066
Nyctimene vizcaccia 
DQ445711
Nyctinomopsaurispinosus
L19728
Nyctinomopslaticaudatus
L19729
Otomopscf.formosus
EF504252
Otomopsmadagascariensis
EF216381
Otomopsmartiensseni
EF216441
Otomopswroughtoni
EF504251
Otopteropus cartilagonodus
AY974770
Penthetor lucasi
EF105542
Peropteryxkappleri
EF584169
Peropteryxleucoptera 
EF584175
Peropteryxmacrotis
EF584180
PeropteryxspvoucherROM104396
EF584170
PeropteryxspvoucherRSV2330
EF584171
Peropteryxtrinitatis
EF584182
Phylloderma stenops
FJ155480
Phyllonycteris aphylla
AF187033
Phyllops  falcatus
DQ211651
Phyllostomus  hastatus
FJ155479
Pipistrellusabramus
AJ504448
Pipistrelluscf.javanicus
AJ504447
Pipistrellushesperidus
AJ841968
Pipistrellushesperus
DQ421823
Pipistrelluskuhli
AJ504444
Pipistrellusmaderensis
AJ426632
Pipistrellusnathusii
AJ504446
Pipistrelluspipistrellus
AJ504443
Pipistrelluspygmaeus
DQ120856
PipistrelluspygmaeusxmediterraneusAJ504442
Pipistrellussp.Be_2136_8AY426091
Pipistrellussp.Be_2137_9AY426092
Pipistrellussp.Be_2142_10AY426089
Pipistrellussp.Be_2145AY316334
Pipistrellussp.Be_2151_13AY426090
Pipistrellussp.Be_2152AY316332
Pipistrellussp.CO1EU420890
Pipistrellussp.CO2EU420891
Pipistrellussp.CO3EU420892
Pipistrellussp.PH-2007EF370417
Pipistrellussp.Be_2129AY316333
Pipistrellussubflavus
AJ504449
Platalina genovensium
AF423101
Platyrrhinus albericoi
FJ154124
Platyrrhinus helleri
FJ154141
Platyrrhinus helleriincarumFJ154146
Platyrrhinus masu
FJ154164
Platyrrhinus matapalensis
FJ154168
Platyrrhinus  aurarius
FJ154127
Platyrrhinus  brachycephalus
FJ154132
Platyrrhinus  dorsalis
FJ154139
Platyrrhinus  lineatus
FJ154160
Platyrrhinus  recifinus
FJ154176
Platyrrhinus  vittatus
FJ154178
Plecotusauritus
EF570882
Plecotusaustriacus
EU360707
Plecotusbalensis
AF513798
Plecotuscf.kolombatovici
AF513783
Plecotuschristii
EU743801
Plecotuskolombatovici
AF513785
Plecotusmacrobullaris
AF513805
Plecotusmexicanus
AY776038
Plecotusrafinesquii
AY776084
Plecotussp.JJJ-2003AF513791
Plecotusteneriffae
EU360704
Promopscentralis
L19732
Ptenochirus jagori
AB046325
Ptenochirus minor
AY974702
Pteralopex acrodonta
FJ561376
Pteronotusdavyi
AF338672
Pteronotusgymnonotus
AF338675
Pteronotusmacleayii
AY604461
Pteronotusparnellii
AY604456
Pteronotuspersonatus
AF338680
Pteronotuspusillus
AY604455
Pteronotusquadridens
AY604460
Pteronotusrubiginosus
AY604457
Pteropusrufus
AB085732
Pteropus aldabrensis
FJ561394
Pteropus alecto
AF144065                 
Pteropus conspicillatus
FJ561380
Pteropus giganteus
FJ561381
Pteropus hypomelanus 
FJ561383
Pteropus livingstonii 
FJ561384
Pteropus lylei 
EF584229
Pteropus niger
FJ561385
Pteropus poliocephalus
FJ561387
Pteropus pumilus
FJ561390
Pteropus rodricensis
FJ561392
Pteropus scapulatus
FJ561377
Pteropus seychellensisseychellensisFJ561399
Pteropus seychellensiscomoroensisFJ561398
Pteropus speciosus
AB062474
Pteropus tonganus
AF044656
Pteropus vampyrus
FJ561401
Pteropus voeltzkowi
FJ561405
Pygoderma bilabiatum
AY604438
Rhinolophusacumiatus
EF108155
Rhinolophusaffinis
EU434934
Rhinolophusblasii
EU436669
Rhinolophusblythi
DQ865344
Rhinolophusborneensis
EF108162
Rhinolophusclivosus
EU436674
Rhinolophuscornutus
DQ297594
Rhinolophuscreaghi
EF108164
Rhinolophusdarlingi
EU436675
Rhinolophuseloquens
EU436677
Rhinolophuseurvale
EU436671
Rhinolophusferrumequinum
EU436673
Rhinolophusformosae
NC_011304  
Rhinolophusfumigatus
EU436678
Rhinolophushildebrandti
EU436676
Rhinolophushipposideros
EU360631
Rhinolophuslanderi
FJ457612
Rhinolophuslepidus
AF451338
Rhinolophusluctus
EF544422
Rhinolophusmacrotis
EU434957
Rhinolophusmarshalli
EU434938
Rhinolophusmehelyi
EU436672
Rhinolophusmonocerus
EF555788
Rhinolophuspearsonii
EU434940
Rhinolophusperditus
AY141039
Rhinolophusphilippinensis
EF108169
Rhinolophuspumilus
NC_005434
Rhinolophuspusillus
EF217392
Rhinolophusrex
EU075216
Rhinolophussedulus
EF108174
Rhinolophussimulator
EU436670
Rhinolophussinicus
EU434941
Rhinolophussp.1KS-2008
EU434937
Rhinolophussp.2KS-2008
EU434942
Rhinolophusstheno
EF108175
Rhinolophusthomasi
EU434943
Rhinolophustrifoliatus
EF108177
Rhinolophusxinanzhongguoensis
EU750753
Rhinophylla alethina
AF187028
Rhinophylla fischerae
AF187032
Rhinophylla pumilio
AF187031
Rhinopomahardwickei
AY056462
Rhinopomamicrophyllum
AM931063
Rhinopomamuscatellum
DQ337500
Rhogeessaaeneus
EF222359
Rhogeessagenowaysi
EF222326
Rhogeessagracilis
EF222412
Rhogeessaio
EF222392
Rhogeessamira
EF222336
Rhogeessaparvula
EF222355
Rhogeessatumida
EF222367
Rhogeessavelilla
EF222341
Rhynchonycterisnaso
EF584192
Rousettusaegyptiacus
EU624124
RousettusaegyptiacusaegyptiacusAF044658
RousettusaegyptiacusprincepsAF044659
Rousettusamplexicaudatus
AB046329
Rousettusangolensis
AF044643
Rousettuslanosus
AF044661
Rousettusleschenaultii
FJ549331
Rousettusmadagascariensis
AF044663
Rousettusspinalatus
EF105523
Saccopterixbilineata
EF584202
Saccopterixcanescens
EF584206
Saccopterixgymnura
EF584208
Saccopterixleptura
EF584216
Scotomanesornatus
DQ435069
Scotophilusborbonicus
DQ459067
Scotophilusdinganii
EU750999
Scotophilusheathii
EU750946
Scotophiluskuhlii
EU750931
Scotophilusleucogaster
EU750940
Scotophilusmarovaza
EU750943
Scotophilusnigrita
EU750955
Scotophilusnux
EU750939
Scotophilusrobustus
EU750948
Scotophilustandrefana
EU750941
Scotophilusviridis 
EU750991
Scotophilusviridis nigritellusEU750976
Sphaeronycteris toxophyllum
AY604452 
Stenoderma rufum
AY604431
SturniraluisiserotinusAF435170 
SturniraluisithomasiAF435250 
SturniraluisivulcanensisAF435251 
Sturnira aratathomasi
AF435252 
Sturnira bidens
AF435201 
Sturnira bogotensis
AF435248 
Sturnira erythromos
FJ154179
Sturnira ludovici
AF435235
Sturnira luisiangeliAF435158 
Sturnira luisipaulsoniAF435162 
Sturnira luisizygomaticusAF435159 
Sturnira magna
AF435180 
Sturnira mordax
AF435212 
Sturnira nana
AF435253 
Sturnira oporaphilum
AF435210 
Sturnira sp.CAI-2003A
AF435203 
Sturnira sp.CAI-2003B
AF435204 
Sturnira  lilium
AF187035
Sturnira  tildae
AF435185 
Syconycteris sp.
AF044665
Tadaridabrasiliensis
L19734
Tadaridafulminans
EU760911
Tadaridateniotis
EU360721
Taphozouslongimanes
EF584219
Taphozousmelanopogon
EF584221
Thyropteratricolor
AY621005
Tomopeasravus
L19735
Tonatia  bidens
FJ155490
Tonatia  saurophila
FJ155488
Trachops cirrhosus
FJ155483
Triaenopsafer
EU798750
Triaenopsauritus
DQ005794
Triaenopsfurculus
DQ005845
Triaenopspersicus
EU798758
Triaenopsrufus
DQ005771
Triaenopssp.PPV-2008
EU798756
Tylonycterispachypus
EF517315
Uroderma  bilobatum
AY169955
Uroderma  magnirostrum
FJ154180
Vampyressa bidens
AY157055
Vampyressa melissa
FJ154185
Vampyressa pusilla
DQ312428
Vampyressa thyone
DQ312431
Vampyressa  brocki
DQ312421
Vampyressa  nymphaea
DQ312418
Vampyrodes caraccioli
FJ154184
Vampyrum spectrum
FJ155482
Vespertiliomurinus
AB287359
Vespertiliosinensis
AB287362


References

  • Felsenstein J. 1985. Phylogneies and the comparative method. American Naturalist 125: 1-15.
  • Harvey PH, Pagel MD. 1991. The comparative method in evolutionary biology. New York: Oxford University Press.
  • May-Collado L, Agnarsson I. 2006. Cytochrome b and bayesian inference of whale phylogeny. Molecular Phylogenetics and Evolution 38: 344-354. [PubMed]
  • Agnarsson I, May-Collado LJ. 2008. The phylogeny of Cetartiodactyla: The importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Molecular Phylogenetics and Evolution 48: 964-985. [PubMed]
  • Agnarsson I, Kuntner M, May-Collado LJ. 2010. Dogs, cats, and kin: A molecular species-level phylogeny of Carnivora. Molecular Phylogenetics and Evolution 54: 726-745. [PubMed]
  • Kuntner M, May-Collado L, Agnarsson I. 2011. Phylogeny and conservation priorities of afrotherian mammals (Afrotheria, Mammalia). Zoologica Scripta 40: 1-15.
  • Bininda-Emonds ORP. 2005. Supertree construction in the genomic age. In E. A. Zimmer & E. H. Roalson (Eds) Molecular evolution: Producing the biochemical data, part b, methods in enzymology pp. 745-757. Elsevier.
  • Lapointe FJ, Kirsch JA, Hutcheon JM. 1999. Total evidence, concensus, and bat phylogeny: a distance-based approach. Molecular Phylogenetics and Evolution 11: 55-66. [PubMed]
  • Simmons NB, Geisler JH. 2002. Sensitivity analysis of different methods of coding taxonomic polymorphism: an example from higher-level bat phylogeny. Cladistic 18: 571-584.
  • Giannini NP, Simmons NB. 2003. A phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes. Cladistics 19: 496-511.
  • Piaggio AJ, Perkins SL. 2005. Molecular phylogeny of North American long-eared bats (Vespertillionidae: Corynorhinus); inter and intraspecific relationships inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 37: 762-775. [PubMed]
  • Hoffmann FG, Hoofer SR, Baker RJ. 2008. Molecular dating of the diversification of Phyllostominae bats based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 49: 653-658. [PubMed]
  • Jones KE, Purvis A, MacLarnon A, Bininda-Emonds ORP, Simmons NB. (2002). A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 77, 223-259. [PubMed]
  • Tobe SS, Kitchener AC, Linacre AMT. 2010. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS ONE 5(11): e14156. [PMC free article] [PubMed]
  • Nishihara H, Hasegawa M, Okada N. 2006. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proceedings of the National Academy of Sciences of the United States of America 103: 9929-9934. [PMC free article] [PubMed]
  • Maddison WP. 1993. Missing data versus missing characters in phylogenetic analysis. Systematic Biology 42: 576-581.
  • Maddison WP, Maddison DR. 2010. Mesquite: A modular system for evolutionary analysis. Ver. 2.74 build 550. Available at: http://mesquiteproject.org.
  • Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008 Jul;25(7):1253-6. Epub 2008 Apr 8. [PubMed]
  • Posada D, Buckley TR. 2004. Model selection and model averaging in phylogenetics: Advantages of the aic and bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793-808. [PubMed]
  • Rodríguez F, Oliver JF, Marín A, Medina JR. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485-501. [PubMed]
  • Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39: 306-314. [PubMed]
  • Huelsenbeck J P, Ronquist F. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. [PubMed]
  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88. [PMC free article] [PubMed]
  • Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. [PMC free article] [PubMed]
  • Revilliod P. 1920. Contribution a L’étude des Chiroptères des terrains tertiaires. Mémoires de la Société Paléontologique Suisse part II 44.
  • Stoffberg S, Jacobs DS, Mackie IJ, Matthee CA. 2010. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Molecular Phylogenetics and Evolution 54: 1-9. [PubMed]
  • Cao Y, Fujiwara M, Nikaido M, Okada N, Hasegawa M. 2000. Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene 259: 149-158. [PubMed]
  • Eiting TP, Gunnell GF. 2009. Global completeness of the bat fossil record. Journal of Mammalian Evolution 16:151–173
  • Springer MS, DeBry RW, Douady C, Amrine HM, Madsen O, de Jong WW, Stanhope MJ. 2001. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Molecular Biology and Evolution 18: 132-143. [PubMed]
  • Hoofer SR, Reeder SA, Hansen EW, Van den Bussche RA. 2003. Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). Journal of Mammalogy 84: 809-821.
  • Van den Bussche RA, Hoofer SR, Simmons NB. 2002. Phylogenetic relationships of mormoopid bats using mitochondrial gene sequence and morphology. Journal of Mammalogy 83: 40-48.
  • Teeling EC, Madsen O, Stanhope MJ, de Jong WW, Van Den Bussche R, Springer MS. 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats, Proceedings of the National Academy of Sciences USA 99: 1432-1436. [PMC free article] [PubMed]
  • Teeling EC, Madsen O, Murphy WJ, Springer MS, O’Brien JO. 2003. Nuclear gene sequences confirm an ancient link between New Zealand’s short tailed bat and South American noctilionoid bats. Molecular Phylogenetics and Evolution 28: 308-319. [PubMed]
  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ. 2005. A molecular phylogeny of bats illuminates biogeography and fossil record. Science 307: 580-584. [PubMed]
  • Lim BK. 2007. Divergence times and origin of neotropical sheath-tailed bats (Tribe Diclidurini) in Southe America. Molecular Phylogenetics and Evolution 45: 777-791. [PubMed]
  • Kennedy M, Paterson AM, Morals JC, Parsons S, Winnington AP, Spencer HG. 1999. The long and short of it: branch lengths and the problem of placing the New Zealand short-tailed bat, Mystacina. Molecular Phylogenetics and Evolution 13: 405-416. [PubMed]
  • Arnason U, Adegoke JA, Gullberg A, Harley EH, Janke A, Kullberg M. 2008. Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 421: 37-51. [PubMed]
  • Jones KE, Bininda-Emonds ORP, Gittleman JL. 2005. Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59: 2243-2255 [PubMed]

Articles from PLOS Currents are provided here courtesy of PLOS