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population substructure. Our shrinkage PCA applies to all 
available markers, regardless of the LD patterns. The pro-
posed method is easier to implement than most existing LD 
adjusted PCA methods.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Over the past two decades, considerable effort has 
been expended to detect and map the genetic loci contrib-
uting to complex diseases. Association and linkage stud-
ies are the two main strategies for this purpose. Associa-
tion studies using unrelated individuals have become
the dominant study design for genome-wide association 
scans (GWAS), partly because accrual of patients and 
controls is easier than for family-based designs. It has 
been argued that direct association mapping is more 
powerful than linkage analysis for identifying loci with 
small effects [Risch and Merikangas, 1996]. Association 
mapping is typically also more precise, because the asso-
ciation of genotypes with disease drops rapidly in the vi-
cinity of a risk locus, due to a large number of historical 
recombinations for an ancient variant [Cardon and Bell, 
2001; Cardon and Palmer, 2003; Daly and Day, 2001; 
Elston, 1998; Schulze et al., 2002]. Several successful 

 Key Words 
 PCA  �  Loadings  �  GWAS 

 Abstract 
  Background/Aims:  Association studies using unrelated in-
dividuals have become the most popular design for map-
ping complex traits. One of the major challenges of associa-
tion mapping is avoiding spurious association due to popu-
lation stratification. Principal component analysis (PCA) on 
genome-wide marker genotypes is one of the most popular 
population stratification control methods. It implicitly as-
sumes that the markers are in linkage equilibrium, a condi-
tion that is rarely satisfied and that we plan to relax.  Meth-
ods:  We carefully examined the impact of linkage disequilib-
rium (LD) on PCA, and proposed a simple modification of the 
standard PCA to automatically adjust for the correlations 
among markers.  Results:  We demonstrated that LD patterns 
in genome-wide association datasets can distort the tech-
niques for stratification control, showing ‘subpopulations’ 
reflecting localized LD phenomena rather than plausible 
population structure. We showed that the proposed method 
effectively removes the artifactual effect of LD patterns, and 
successfully recovers underlying population structure that is 
not apparent from standard PCA.  Conclusion:  PCA is highly 
influenced by sets of SNPs with high LD, obscuring the true 
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GWA studies have been reported recently, identifying ge-
netic variants contributing to, for example, type 2 diabe-
tes [Saxena et al., 2007; Scott et al., 2007; Sladek et al., 
2007; Zeggini et al., 2007], breast cancer [Easton et al., 
2007], and numerous other diseases. However, it has long 
been discussed that association studies are susceptible to 
underlying population stratification, which can produce 
spurious association [Cardon and Palmer, 2003]. A num-
ber of techniques have been proposed to account for pop-
ulation substructure in designs using unrelated individu-
als. These techniques include using aggregate summaries 
of association statistics to estimate the inflation produced 
by stratification ( genomic control  of Devlin and Roeder 
[1999]; Schork [2001]). Other approaches use marker gen-
otypes to model the population structure directly, per-
forming association tests conditional on the inferred 
structure ( structured assessment  of Pritchard et al. [2000a; 
2000b]). Satten et al. [2001] and Zhu et al. [2002] devel-
oped similar approaches which account for uncertainty 
in stratum classification. Similarly, Zhang et al. [2003] 
have proposed to use principal component analysis (PCA) 
to estimate genetic background covariates, which then 
are used in adjusting tests of association. One limitation 
of the classical PCA methods is that the number of mark-
ers cannot exceed the number of subjects. Price et al. 
[2006] exploited the structure of rescaled genotype ma-
trices to extend the PCA method to modern genome 
scans, in which hundreds of thousands of SNPs are geno-
typed. Due to the popularity of this approach (imple-
mented in the software EigenSoft), we will refer to it as 
the ‘standard’ PCA approach.

  A number of investigators have considered the num-
ber of markers required to identify and control for popu-
lation stratification. Earlier efforts primarily envisioned 
stratification at the level of continental populations [Ba-
canu et al., 2000; Devlin and Roeder, 1999; Pritchard et 
al., 2000a], requiring as few as 20–500 markers [Pritchard 
and Rosenberg, 1999]. However, with so few markers, 
sensitivity can be poor under moderate stratification 
[Freedman et al., 2004; Hao et al., 2004]. For this reason, 
modern PCA-based methods are appealing, because they 
can in principle use the entire dataset for stratification 
control, ranging from moderate-scale candidate gene 
studies to whole genome scans.

  Unfortunately, the use of all available data presents a 
problem as well. Except for genomic control, all of the 
methods described above assume that the markers used 
for stratification control are unlinked. Falush et al. [2003] 
proposed a procedure to identify population structure 
using correlated markers, but their method is limited and 

not applicable to situations with tightly linked markers. 
Price et al. [2006] initially suggested that markers in link-
age disequilibrium (LD) have little effect on PC-based 
stratification analysis, but subsequently proposed reduc-
ing marker LD via regression [Patterson et al., 2006]. Fel-
lay et al. [2007] utilized a ‘thinning’ approach in which 
only a subset of markers with low pairwise correlation 
was retained for stratification control. The use of thin-
ning involves discarding large and potentially informa-
tive portions of the data, and identification of the low-
correlation subset can require considerable computation, 
and perhaps iteration. Although the potential problems 
posed by dependent markers are increasingly recognized, 
to our knowledge the consequences of using dependent 
markers has not been carefully investigated.

  In this paper, we demonstrate that LD patterns in ge-
nome-wide association datasets can distort the tech-
niques for stratification control, showing ‘subpopula-
tions’ that reflect localized LD phenomena rather than 
plausible population structure. Further analysis based on 
such spurious stratification may provide inadequate pro-
tection from genuine stratification, and may reduce map-
ping power in key regions of the genome. To account for 
the LD structure, we propose a simple modification of the 
standard PCA approach to automatically adjust for the 
correlations among markers and accurately infer popula-
tion stratification. The usefulness of our approach is 
demonstrated by simulations and application to candi-
date gene and genome-wide association studies.

  Material and Methods 

 When principal components are used to identify subpopula-
tions, it is implicitly assumed that all variables are of similar im-
portance [Chatfield and Collins, 1981; Morrison, 1976]. In asso-
ciation mapping, some groups of SNPs may be highly correlated 
(both positively and negatively) due to localized LD, while other 
sets of SNPs may have low correlation. Principal component (PC) 
analysis finds projections of the data with high variability. Cor-
related SNPs will therefore have high loadings, because correlated 
random variables can generate linear combinations with high 
variability. As we demonstrate, the net effect is to give higher 
weight to groups of correlated SNPs, although there is little reason 
to believe that such SNPs will perform well in differentiating 
among subpopulations. An intermediate goal, therefore, is to 
eliminate the distorting effect of the redundant information pro-
vided by groups of highly correlated SNP genotypes. The weight-
ed PCA method of Greenacre [1984] was proposed for similar 
problems by using weights or new PCA metrics. In time series ap-
plications, Diamantaras and Kung [1996] have used weighted co-
variance matrices, with weights decreasing geometrically with 
the distance in time between observations. In atmospheric sci-
ence, weights have been used to account for uneven spacing be-
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tween sampling locations [Cheng, 2002]. Similar weighting ideas 
might be used in GWAS analysis, as pronounced LD is largely a 
localized phenomenon on the genome. However, the extent of LD 
between loci is not a fixed function of physical distance [Maniatis 
et al., 2002] and varies across subpopulations [Service et al., 2006]. 
The use of data-driven weighting would be preferred, to directly 
address the problematic effects of correlation in the data at hand. 
In addition, any weighting scheme must be scalable up to the com-
mon GWAS situation in which the number of variables (SNPs) is 
far larger than the number of observations. Accordingly, we pro-
pose a unified shrinkage method that deals with all markers si-
multaneously, effectively down-weighting SNPs that belong to 
highly correlated groups, while leaving independent SNPs un-
changed.

  Our proposed shrinkage method is a modification of the PCA 
method of Price et al. [2006]. Let  g  ij  represent the ( i , j )-th element 
of the genotype matrix  g , corresponding to SNP  i  and individual 
 j ,  i  = 1,..., M  and  j  = 1,..., N . By convention,  g  ij  is coded numerically 
as the number of copies of a referent allele (the minor allele, say) 
for the SNP. Each row  i  of  g  is first mean-centered around  �  i  = 
 �  j  g  ij / N  (missing entries are excluded from the computation of  �  i  
and subsequently set to 0). Row  i  is then scaled by dividing each 
entry by the standard deviation �   p  i (1 –  p  i ), where  p  i  = (1 +  �  j  g  ij )/
(2 + 2 N ) is the estimated allele frequency at SNP  i . Denoting the 
resulting matrix  X , Price et al. [2006] define the  k -th axis of vari-
ation to be the  k -th eigenvector of  C , where  C  =  X  T  X . The coordi-
nate  j  of the  k -th eigenvector represents the ancestry of individu-
al  j  along the  k -th axis of variation. Unlike the classical application 
of principal components [Jolliffe, 2002] which is based on the  M  
 !   M  matrix  D  =  XX  T , standard PCA for genome-wide studies 
[Price et al., 2006] uses the  N   !   N  matrix  C , which is typically of 
much smaller dimension in GWAS studies. The justification for 
this approach arises from the close relationship between singular 
value decomposition and PCA when the latter is performed on 
mean centered data (see, for example, Wall et al. [2003]). Eigen-
Soft employs the singular value decomposition  X  =  USV  T , where 
 U  is an  M   !   N  matrix whose  k -th column contains coordinates 
 u  ik  of each SNP  i  along the  k -th principal component,  S  is a diago-
nal matrix of singular values, and  V  is an  N   !   N  matrix whose 
 k -th column contains ancestries  �  jk  of each individual  j  along the 
 k -th principal component. It follows that  X  T  X  =  VS  2  V  T . Thus, the 
columns of  V  are the eigenvectors of the matrix  X  T  X . After PC 
analysis, pairwise scatter plots of the top few PC axes are often 
used to investigate potential population stratification. In addition 
to the PCs, the loading coefficients associated with each PC can 
be calculated, but are often overlooked. Loadings calculate the 
contribution of each SNP for a given PC. When  M   ̂    N , the load-
ings can be uniquely determined; otherwise, they are not. For a 
given PC  k , at SNP  i ,  u  ik  is the loading coefficient for the SVD 
analysis at the SNP. The loadings can be calculated as 

/jk ij k
j

v x e

   where  e  k  is the corresponding eigenvalue of the PC  k . These load-
ings are closely related to the gamma coefficients 
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    If some genotypes are missing at SNP  i,  the above equality remains 
approximately correct, unless the rate of missing genotypes is high. 

 EigenSoft treats each SNP in an equal manner. However, as we 
demonstrate below, the direct use of  C  in fact results in loadings 
that can be dominated by small groups of correlated SNPs. To cor-
rect for this phenomenon, we propose a new approach to weight-
ed PC analysis. First, we define an  M -vector  w  of SNP weights, and 
accompanying diagonal matrix  W  with weights  w  on the main 
diagonal. Then we create a new  M   !   N  matrix X̃ =  WX , which is 
directly substituted for  X  in the PC analysis as described in Price 
et al. [2006]. Therefore the shrinkage PCA is essentially standard 
PCA for shrunken genotype data.

  Our choice of weights follows the logic that linear combina-
tions of genotypes (which comprise the eigenvectors) should exert 
influence determined by the amount of independent information. 
We heuristically choose weights  w  i  = 1/�  1 +  �  i �     0    i  r  2  ii �    for SNP  i , 
where  r   2  ii �    is the observed squared Pearson correlation between  i -
th and  i �  -th SNPs. In practice, our summation over SNPs  i �   in 
calculating the weights is performed only in the vicinity of  i , in 
order to filter out the cumulative effect of random apparent cor-
relation across the genome. We will refer to the set of such SNPs 
as  window [ i ], and these SNPs may range up to several hundred kb 
from SNP  i , as chosen by the researcher and appropriate to the 
platform. In addition, the effects of noise in the use of  r  2  (which 
must always be positive) is reduced by requiring that  r  2  exceed a 
threshold  c . Thus the precise weighting scheme is 

2 2

,

1 .
1

i

ii ii
i ' i i window[ i ]

w
r I r c� �

   In this manner SNPs that are highly correlated with each oth-
er are down-weighted, de-emphasizing their importance. Our 
choice of weights has the following desirable characteristics. If all 
markers are independent and there exists no population stratifi-
cation,  r   2  ii �   �     0 for all  i �   and therefore X̃ �  X . If all pairs of  m  0  
markers have  r  2  = 1 with each other and zero correlation with 
other markers, then the weighting factor is 1/ �  m  0 , effectively pro-
viding variance contributions of the  m  0  markers equivalent to that 
of a single marker. Finally, if correlation among all pairs of mark-
ers is non-zero but approximately equal, as would be produced in 
idealized models of population stratification, then the weights 
will also be constant. Therefore X̃ � X for some  c , and the net ef-
fect is that markers are treated equally, as in standard PCA.

  Plots of loading coefficients display the contribution of each 
SNP to a given PC, but also present a global picture of the influ-
ence of SNPs in regions of high LD. Our experience suggests that 
routinely checking plots of loading coefficients is very useful in 
identifying regions with high influence on a PC.

  Simulation Set Ups and Real Data Descriptions 
 We simulate both candidate gene and GWAS association stud-

ies to thoroughly investigate the effects of LD on PC analysis. We 
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then investigate the power and type I error issues from the down-
stream analysis after the PCA analysis by simulated GWAS data. 
We finally apply our proposed method to a real candidate gene 
association study and to a GWAS study. The following four dif-
ferent methods were applied and compared: (1) standard PCA 
with no LD correction; (2) shrinkage PCA; (3) regression PCA 
[Patterson et al., 2006] in EigenSoft, and (4) thinning PCA imple-
mented in Plink [Purcell et al., 2007]. For the regression PCA, we 
followed the recommendation of EigenSoft, where previously 2 
SNPs were used in the regression analysis. For the thinning PCA, 
we thinned out SNPs based on pairwise correlation, such that no 
pair of SNPs had  r  2   1  0.2 [Fellay et al., 2007]. For the weight  w  i  of 
SNP  i,  the shrinkage PC method used 300 SNPs in its vicinity as 
the window, and  c  = 0.2, unless otherwise specified.

  Simulation 1 (Candidate SNP Analysis) 
 First, a stratified population with two subpopulations was 

simulated. A total of 400 individuals were sampled, with 200 from 
each subpopulation. 200 markers were simulated, each with 3 
possible genotypes and minor allele frequency ranging uniform-
ly from 0 to 0.5. All markers were unlinked and in linkage equi-
librium within each subpopulation. Next, a stratified population 
was simulated, with the same number of individuals and markers 
as described above. However, here two subsets of markers were 
chosen to be in high LD with each other within each subpopula-
tion.

  Simulation 2 (GWAS Data for Type I Error and Power 
Investigation) 
 In this simulation, a stratified population with three subpopu-

lations was simulated, with 650 samples from population one, 300 
samples from population two, and 50 samples from population 
three. ‘Seed SNPs’ were first generated using the Balding-Nichols 
model [Balding and Nichols, 1995] according to  F  st  values sam-
pled from 0.06 2  �  2  1 . For each seed SNP, we created an LD block, 
within which the number of correlated SNPs follows the distribu-
tion of 0.7  poisson (10) + 0.3  poisson (100), and the SNPs correlate 
with the seed SNP (with correlations ranging from 0.4 to 0.8). In 
addition, one large LD block with 400 SNPs and high correlation 
(0.8) between the seed SNP and the other SNPs was simulated to 
the challenges posed by such a dominating block, which is similar 
to the difficulties posed by the presence of the large HLA region 
on chromosome 6. Previous studies have shown that even within 
European populations, SNPs with  F  st  values ranging from 0.1 to 
0.3 between northern and southeastern subpopulations can be 
observed [Bauchet et al., 2007]. Accordingly, we augmented the 
original  F  st  values with an additional set of 20 independent SNPs 
with high  F  st  values between 0.1 and 0.3. We performed 10,000 
simulations and within each simulation, the final number of SNPs 
was 100,000.

  To investigate if the four PCA methods properly control false 
positive rates, we simulated a case-control outcome variable 
which was related to the subpopulations. Using  z  1  and  z  2  to denote 
the population ( z  1  = 1 or 0 for population two or otherwise;  z  2  = 1 
or 0 for population three or otherwise), we simulated the data ac-
cording to the following model: 

1 2,
log

P Case|z z
P Control| 1 2

1 2

2 2 .
,

z z
z z

   The case/control status was independent of any SNP genotypes 
within each subpopulation. The top 3 PCs were included in the 
subsequent analyses. As a measure of false positive rate control, we 
compared the frequency with which the various approaches re-
jected at least one of the 20 SNPs with the highest  F  st . This ap-
proach was computationally efficient, and we reasoned that infla-
tion of type I error would be largely due to these SNPs. In this 
manner, by applying genome-wide appropriate thresholds to these 
SNPs for each of 10,000 simulations, we obtained a lower bound 
for the overall type I error. Further, the model with known strata 
was used as a gold standard to compare the PCA-based methods. 
We emphasize that the actual  F  st  values cannot be known to the 
researcher without knowledge of the subpopulation indices, and 
so stratification control is an essential part of the analytic process. 

 To compare the power, we next simulated the data from
model 

1 2
1 2

1 2

, ,
log log 2 2 2 ,

, ,
P Case|g z z

g z z
P Control|g z z

   where  g  is the number of minor alleles in the causal SNP. The 
causal SNP was randomly chosen among the 100,000 SNPs in 
each simulation. To further investigate how the four PCA meth-
ods perform in mapping SNPs located in large LD blocks, we also 
restrict causal SNPs within the big LD block simulated as above. 
We included the top three PCs in the four PCA methods and com-
pared them to the gold standard in which stratum membership 
was known and included as a class variable. 

 Real Data Analysis 1 (Candidate Gene Modifier Study of 
Cystic Fibrosis) 
 This real example is from a candidate gene modifier study of 

cystic fibrosis (CF) underway at the University of North Carolina 
and Case-Western Reserve University. Over 1,000 SNPs have been 
genotyped in 263 severe CF patients and 545 mild CF patients, 
using the Illumina 1,536 platform. Among these SNPs, 81 were 
autosomal ancestry-informative markers (AIMs), chosen as the 
most informative SNPs (in terms of allele frequencies) from a list 
of 200+ potential AIMs provided by Illumina, Inc. in 2006. These 
AIMs were genotyped for the express purpose of controlling pop-
ulation stratification for the remaining candidate SNPs. Among 
the 808 patients, 782 were self-reported Caucasians, 14 were His-
panic, 5 were African-American and the remaining 7 reported as 
belonging to ‘other’ ethnicity groups. The genotyped AIMs were 
carefully selected, with known high  F  st  values between the Cau-
casians and West African populations. At the time, the effect of 
LD on population stratification control was not explicitly consid-
ered, and several sets of SNPs exhibited appreciable correlation (2 
SNPs on chromosome 1, 2 SNPs on chromosome 7, and 3 SNPs on 
chromosome 3, respectively).

  Real Data Analysis 2 (Hapmap CEU and TSI Data) 
 In practice, substantial population stratification may be easily 

detected with any of the existing PCA methods. An important ques-
tion is how those methods perform for subtle population stratifica-
tion. Below, we address this issue by the phase 3 CEU and TSI Hap-
map unrelated samples. The Plink formatted data was downloaded 
from the Hapmap website (http://ftp.hapmap.org/phase_3/?N = D). 
We removed all children whose parents are also Hapmap samples. 
Additionally, we excluded one CEU subject who has a very high es-
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timated identical-by-descent (IBD) value ( 1 0.8) with another CEU 
sample. The final dataset after the filtering contains a total of 185 
samples (108 CEU and 77 TSI samples, respectively). The CEU sam-
ples are known to have the northern and western European ances-
try, while the TSI samples are Toscans from Italy. Therefore, the two 
groups represent the northwestern and southern Europeans, re-
spectively. We restrict our analysis to SNPs from one chromosome 
(which is chromosome 15 for this example) as performed in Miclaus 
et al. [2009] for further comparison between our shrinkage PCA 
and other three existing LD correction methods on their abilities in 
detecting subtle population stratifications.

  Real Data Analysis 3 (GWAS Study of Schizophrenia) 
 A third real dataset is from a GWAS study of schizophrenia, 

obtained from the GAIN consortium. The filtered version of the 
corresponding General Research Use (GRU) dataset consisted of 
2,601 individuals of European ancestry with 729,454 SNPs and 
was downloaded from the dbGaP database (version 2, accession 
number: phs000021.v2.p1). We filtered out highly related or du-
plicated samples, and markers with a high missingness rate ( 1 5%) 
or a low minor allele frequency ( ! 0.01). For simplicity, sex chro-
mosome markers were excluded, and the final data set used for 
stratification analysis had 2,559 samples (1,152 cases, 1,368 con-
trols, and 39 with missing case-control status) and 701,859 SNPs.

  Results 

 Simulation 1 (Candidate SNP Analysis) 
 We applied both the standard PCA approach and our 

shrinkage PCA to the datasets. For the data with inde-

pendent markers, scatter plots of the top two PCs are pre-
sented in  figure 1 . Clearly, when markers are in linkage 
equilibrium, both PCA methods give similar results.

  However, the results ( fig.  2 ) of the data with some 
markers in LD tell a different story. Under standard PCA 
( fig. 2 , left panels), the data points form groups that are 
mainly influenced by the SNPs in high LD. In this man-
ner, subjects may be misclassified, or unnecessary extra 
stratification performed. Examination of the loadings for 
the first two PCs shows that they are dominated by the 
blocks of markers in high LD. The shrinkage approach 
( fig.  2 , right panels), in contrast, retrieves the original 
subpopulations successfully. Examination of the loadings 
for the shrinkage PCA shows that the SNPs in the LD 
blocks have been downweighted considerably.

  Simulation 2 (GWAS Data for Type I Error and
Power Investigation) 
 Scatter plots of the top two PCs from the four PCA 

methods are presented in  figure 3 . Clearly, standard PCA 
lacks the ability to correctly identify the three subpopula-
tions, while the other three methods differentiate the 
three subpopulations with varying degrees of efficiency. 
Clearly, shrinkage PCA performs best.

  The false-positive frequencies for the null genetic mod-
el under population stratification are given in  table 1 . For 
the high  F  st  SNPs, standard PCA does not control false 
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  Fig. 1.  Simulation 1 (independent markers). A stratified population with all SNPs independent within each sub-
population. 200 markers for 400 individuals were simulated as described in the text. The different subpopula-
tions are indicated in gray and black. Both standard PCA ( A ) and shrinkage PCA ( B ) effectively separate indi-
viduals according to subpopulation. 
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  Fig. 2.  Simulation 1 (markers in LD). Standard PCA (left panels) vs. shrinkage PCA (right panels) in analysis of 
a stratified population with independent SNPs and two groups of highly dependent SNPs. The different sub-
populations are indicated in gray and black. Distinct clumps appear in standard PCA ( A ), which might be false-
ly interpreted as subpopulations.  A ,  B  Scatter plots of PC1 versus PC2 for the two approaches.  C–F  Loadings of 
PC1 and PC2, respectively. 
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positives properly. For 100,000 markers, even if conserva-
tive Bonferroni family-wise error (FWER) thresholds are 
intended, the true FWER is much higher. For example, a 
p value threshold of 1  !  10 –6  provides intended FWER 
values of no greater than 0.10. However,  table 1  shows that 
the true type I error is nearly 1 for this setup. In contrast, 
our shrinkage method controls the rejection frequency for 
the null high  F  st  SNPs quite adequately (compared to the 
gold standard of known strata), as the top 20 SNPs with 
the highest  F  st  have a negligible effect on the type I error. 
Both thinning and regression methods perform substan-
tially better than standard PCA. The regression PCA per-
forms similarly to shrinkage PCA, and both perform 
slightly better than thinning PCA.

   Table 2  summarizes the power for the simulation in 
which causal SNPs are randomly distributed genome-
wide. Clearly, all methods have similar power. When re-
stricting power calculations to the causal SNPs located in 
the large LD block, we find from  table 3  that standard 
PCA has substantially lower power than the other meth-
ods, which have comparable power to each other.

  Real Data Analysis 1 (Candidate Gene Modifier
Study of Cystic Fibrosis) 
 Standard PC analysis ( fig.  4 , left panels) shows that 

PCA analysis is highly influenced by the high LD
SNPs, and similar results were observed for STRUC-
TURE analysis (see left panel of online supplementary 
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  Fig. 3.  Simulation 2 (GWAS data). Scatter plots of the top two PCs of the four PCA methods. The three different 
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fig. 1; for all online supplementary material, see www.
karger.com/doi/10.1159/000288706). The right panels of 
 figure 4  show the PC results from shrinkage PCA, which 
is much less sensitive to the LD among SNPs. The SNPs 
with high LD have loadings of large magnitude for PC1 
in standard PCA analysis, while the shrinkage PC analy-
sis eliminates this artificial effect. The results of our pro-
posed method are clearly superior – the African-Ameri-

can and Hispanic subjects are more clearly distinguished 
from Caucasians on PC1 ( fig. 4 ). Interestingly, one of the 
subjects labeled as Caucasian (indicated by an arrow in 
panel B), was flagged as an outlier by our shrinkage PC 
analysis, but not by standard PCA. A subsequent check of 
the recruitment database revealed a data entry error, and 
the subject was in fact a self-reported African-American. 
This example shows the utility of the shrinkage PCA ap-

Table 1. R ejection frequency in 10,000 simulations for 20 high Fst SNPs, under null genetic association

p value
threshold

Expected
rejections, n

No
adjustment

Known
strata

Standard
PCA

Shrinkage
PCA

Thinning
PCA

Regression
PCA

10–5 2 10,000 2 618 24 303 111
10–6 0.2 10,000 0 142 5 62 21
5!10–7 0.1 10,000 0 95 1 34 11
10–7 0.02 10,000 0 29 0 12 0

C olumn 1: The pointwise p value threshold for declaring statistical significance.
Column 2: The expected number of rejections out of 10,000 simulations in which at least one of 20 high Fst 

SNPs is rejected at a given p value threshold when population stratification is controlled.
Columns 3–8: The observed number of simulations out of 10,000 simulations in which at least one of the 20 

high Fst SNPs was rejected at the given p value threshold.

Table 2. P ower (casual SNP randomly distributed throughout whole genome)

p value
threshold

No
adjustment

Known
strata

Standard
PCA

Shrinkage
PCA

Thinning
PCA

Regression
PCA

10–5 0.827 0.844 0.839 0.842 0.842 0.841
10–6 0.738 0.763 0.754 0.759 0.759 0.757
5!10–7 0.707 0.734 0.721 0.728 0.726 0.725
10–7 0.636 0.662 0.650 0.657 0.653 0.654

C olumns 2–7: Each table entry represents the proportion of 10,000 simulations in which the causal SNP was 
rejected at the given p value threshold.

Table 3. P ower (casual SNP randomly distributed in the large LD block)

p value
threshold

No
adjustment

Known
strata

Standard
PCA

Shrinkage
PCA

Thinning
PCA

Regression
PCA

10–5 0.973 0.970 0.296 0.967 0.969 0.967
10–6 0.923 0.917 0.155 0.909 0.914 0.909
5!10–7 0.902 0.894 0.125 0.884 0.892 0.885
10–7 0.835 0.827 0.074 0.814 0.824 0.816

C olumns 2–7: Each table entry represents the proportion of 10,000 simulations in which the causal SNP was 
rejected at the given p value threshold.
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proach in candidate gene studies, in which perhaps sev-
eral hundred SNPs are genotyped. Despite the consider-
able attention generated by GWAS in recent years, we an-
ticipate that smaller scale candidate gene studies will 
remain popular, due to cost considerations, or as follow-
up studies to confirm results from genome scans. Simi-
larly, after removing the SNPs in high LD (keeping one 
SNP from each LD block), STRUCTURE shows an im-
proved separation of the ethnicity groups (right panel of 
online suppl. fig. 1).

  Real Data Analysis 2 (Hapmap CEU and TSI Data) 
 After removing SNPs with missing rates greater than 

0.1 or minor allele frequency (MAF) less than 0.01, 

38,711 SNPs remained. After performing the thinning 
procedure of Fellay et al. [2007], only 3,218 SNPs re-
mained for thinning PCA.  Figure 5  shows the scatter 
plots of the top 2 PCs of all four methods. Shrinkage 
PCA outperforms the other three methods in differen-
tiating the two groups, also shown in  figure 6 , which 
compares the receiver operating characteristic (ROC) 
curves of the first PC in classifying the two subpopula-
tions. The AUC (area under the curve) for the standard 
PCA is 0.945, which is significantly smaller than the 
AUC values from the shrinkage, regression and thin-
ning PCA methods, which are 0.992, 0.964, and 0.973 
(with corresponding p values of 0.001, 0.23, and 0.005 
calculated by the method of DeLong et al. [1988]), re-
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  Fig. 4.  Real data analysis 1. Scatter plots of the top two PCs of ancestry-informative markers from the CF can-
didate gene modifier study. The left panels are based on standard PCA, while the right panels are from shrink-
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spectively. In addition, we tested the Hardy-Weinberg 
disequilibrium SNP selection method in Miclaus et al. 
[2009], where SNPs were selected if their p value for 
Hardy-Weinberg equilibrium is  ! 0.01. Only 254 SNPs 
were selected, which failed to detect the subtle popula-
tion stratification in the data.

  Real Data Analysis 3 (GWAS Study of Schizophrenia) 
 Scatter plots of the top 2 PCs from the standard and 

shrinkage PCA methods are presented in  figure 7 . Stan-
dard PCA analysis using the original data provides re-
sults with major groups that are almost certainly spuri-
ous. After the shrinkage PCA approach is applied, the 
result appears similar to previous analyses of popula-
tions with mixed European ancestry (e.g., fig. 2 in Price 
et al. [2006]). Plots of loading coefficients for these anal-
yses are given in  figure 8 . The top 4 PCs from standard 

PCA are highly influenced by a few genomic regions. The 
lactase gene region on 2q21–2q22 is highly influential for 
PC1, which is consistent with a northern-southern cline 
in haplotype frequencies [Hollox et al., 2001]. Interest-
ingly, our shrinkage PCA preserves this feature, and the 
correlation of PC1 from standard PCA and that of 
shrinkage PCA is 0.98. However, regions with high load-
ings on PC2 (8p23), PC3 (2q21, 6p21–22, 17q21) and PC4 
(6p21–22) from standard PCA have all disappeared after 
the shrinkage PCA, suggesting that the high impact of 
those regions (except for lactase, captured in PC1) is sim-
ply due to high regional LD. The regions 8p23 and 17q21 
coincide with two previously reported common inver-
sions in European populations [Broman et al., 2003; Ste-
fansson et al., 2005]. The chromosome 8 inversion region 
has been similarly reported by Fellay et al. [2007] in their 
GWAS study of HIV-1. These inversions have only been 
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gion, for which extensive LD has been described [de Bak-
ker et al., 2006]. We conclude that the shrinkage PCA 
approach provides appropriate downweighting, so as not 
to be unduly influenced by such regions, while retaining 
the influence of SNPs and regions indicative of true 
stratification.

discovered in the last several years, and it is in many ways 
remarkable that they can be detected so readily using 
GWAS genotypes. Presumably, the LD is maintained by 
selection against crossovers in such regions, but not nec-
essarily indicative of ancestry if well-mixed within the 
population. The 6p21 region coincides with the HLA re-
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  Discussion 

 The PCA approach can capture both subtle and exten-
sive variation due to stratification, and potentially to ex-
perimental features and batch effects in genotyping. With 
the availability of  1 10 5  genetic markers, self-reported 
‘race’ may no longer be required as a proxy for ancestry. 
The principal components method is computationally ef-
ficient and uses the genotype matrix to infer continuous 
axes of genetic variation (eigenvectors), which then serve 
as covariates in the downstream analysis. This method is 
widely used in GWAS studies to robustly control for strat-
ification effects, while preserving statistical power. How-
ever, PCA is highly influenced by sets of SNPs with high 
LD. Including SNPs with high LD for PCA may provide 
a distorted view of population substructures, and the dis-
tortion may be even greater for data with subtle popula-
tion stratification. Our shrinkage PCA approach can ef-
fectively remove the artifactual effect of correlated SNPs 
and so successfully recover underlying population struc-
ture that is not apparent from standard PCA. Our pro-
posed method is essentially a standard PCA approach, 
but performed on shrunken genotype data, and thus is 
straightforward to implement.

  In addition to proposing shrinkage PCA, our paper 
also provides an overview of the effects of LD structure 
on PC analysis. For our simulated GWAS data where 
subtle population stratification exists, the shrinkage and 
regression methods have slightly lower false positive 
rates than the thinning method, and both performed 
very similarly. However, for data with substantial popu-
lation substructures, all four PCA methods perform 
similarly (see simulation 3 in online suppl. materials and 
online suppl. fig. 2). Further, another advantage of the 
shrinkage PCA is that its calculation is straightforward, 
and is easier to implement than, for example, regression 
PCA.

  Groups of SNPs in high LD may have an even greater 
effect on candidate gene studies than on GWAS studies. 
Although GWA studies are becoming a primary design 
for studying complex traits, candidate studies remain
important, and are often employed for replication and 
validation. In this setting, a set of ancestry-informative 
markers is typically used, and our approach applies 
equally well in this setting.

  Finally, we note that the shrinkage method intends to 
remove only the effects of local LD, as subtle long-range 
LD (for example, across chromosomes) reflects true pop-
ulation sub-structure, and our weighting scheme leaves 
the effects of long-range LD intact. However, other 
weighting schemes are possible. For the real data 2, we 
have varied the window size and correlation cut-off  c . We 
have found that neither the window size nor the correla-
tion threshold has large effects on the shrinkage PCA 
analysis, unless the window size is too small (online sup-
pl. fig. 3 and 4). We suggest to pick a window size between 
150 and 300 SNPs, depending on genotyping platforms 
and  c  equals 0.2, a number that the thinning PCA used 
in practice. Also, we point out that substructure inference 
is not simply a matter of an error control, as other types 
of procedures (such as genotype imputation at untyped 
SNPs) can depend on accurate ancestry inference.
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