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Abstract
The complexity and enormous size of the conformational space that must be explored for the protein
tertiary structure prediction problem has led to the development of a wide assortment of algorithmic
approaches. In this study, we apply state-of-the-art tertiary structure prediction algorithms and instead
focus on the development of bounding techniques to reduce the conformational search space.
Dihedral angle bounds on the ϕ and ψ angles are established based on the predicted secondary
structure and studies of the allowed regions of ϕ/ψ space. Distance bounds are developed based on
predicted secondary structure information (including β-sheet topology predictions) to further reduce
the search space. This bounding strategy is entirely independent of the degree of homology between
the target protein and the database of proteins with experimentally-determined structures. The
proposed approach is applied to the structure prediction of protein G as an illustrative example,
yielding a significantly higher number of near-native protein tertiary structure predictions.

1 Introduction
A multitude of approaches yielding significant advances have defined the field of protein
structure prediction in recent years. The first major class uses comparative modeling techniques
to predict structures by making comparisons with experimentally-determined homologs. A
second category applies fold recognition methods that rely upon evolutionary distant homologs
and the knowledge that protein folds are more conserved than sequence. The final class of
protein structure prediction is made up of first principles approaches. Knowledge-based first
principles methods incorporate information or constraints from known structures into statistical
models. These approaches can be contrasted with physics-based first principles approaches,
which try to predict protein structure based solely upon the primary sequence and the
application of detailed force fields and energy models. The recent development of a novel
physics-based first principles approach, ASTRO-FOLD, has shown tremendous promise in
this area [1]. Three recent reviews provide a thorough overview of the methods for each class
of protein structure prediction [2,3,4].

An interesting question that arises prior to the tertiary structure prediction of a protein is “How
can known information about a protein be included to narrow the conformational search
space?” Typically, the source of this information is due to homologous proteins that have
already been experimentally determined. This homology can be exploited to determine likely
ϕ and ψ angles, likely interatomic distance bounds, and other information using techniques as
varied as fold recognition and fragment assembly. The goal of this paper is to introduce as
much relevant information as possible for the tertiary structure prediction of a protein that is
independent of the similarity to known protein structures.
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The backbone conformation of a protein is typically represented by the ϕ and ψ dihedral angles.
The allowed conformations of these angles have been consistently studied for decades. The
classical treatment of allowed backbone dihedral angle space defines boundaries using hard
sphere atomic overlaps [5]. The approximate location of favorable, low-energy conformations,
such as right and left-turning α-helices, β-strands, and 310 helices were identified in a similar
fashion [6]. A study of the free energies of an alanine dipeptide in water using molecular
dynamics showed agreement with these defined regions, but the boundaries between allowed
and disallowed conformations were much less distinct [7]. As the number of available protein
structures has increased and the protein structures have been determined to a higher resolution,
the definition of these boundaries have become more refined. The structure validation program
ProCheck used 463 protein structures to define 10°×10° degree regions of the Ramachandran
plot as either favored, allowed, generously allowed, or outside for non-Glycine and non-Proline
residues [8,9]. Kleywegt and Jones [10] showed that 98% of the non-Glycine residues exist
within less than 20% of the area of a Ramachandran plot by using a set of 403 high resolution
protein models. Lovell et al. [11] used a database of 500 high quality protein structures and
established a set of allowed and favorable contours for four types of residues (a) Glycine, (b)
Proline, (c) Pre-Proline and (d) other.

The definition of allowed and favorable regions of the ϕ and ψ space in these applications has
been intended for structure validation applications. When using X-ray crystallography or NMR
techniques to experimentally determine the structure of a protein, a model of the protein
structure must be built that fits the data. The use of defined ϕ and ψ dihedral angle regions
ensures a protein model not only fits the experimental data but also satisfies generally observed
rules for these dihedral angles within an acceptable tolerance. The goal of the dihedral angle
information in this paper, however, is not to validate a structure determined with the aid of
experimental data. Instead, this defined region of the ϕ/ψ space will be used to establish strict
bounds on the allowable backbone conformations for protein structure prediction applications.
This idea of restricting or using the ϕ and ψ dihedral angle information is not new. A number
of methods, including the Rosetta structure prediction approach [12,13], rely on the
conformational statistics of known protein structures as an integral part of their energy function.
The conformational space annealing (CSA) approach has limited the sampling of dihedral
angles with disfavored ϕ and ψ angles by introducing bounds during the creation of random
and mutated trial conformations [14]. Floudas and co-workers [15] suggested that the
physically feasible values for the backbone ϕ and ψ dihedral angles are [−180,−50] and
[−75,175], respectively, for their study of the 20 residue peptide melittin. Although these
specific ranges are restrictive because they ignore the favorable left-handed α-helix and also
the greater conformational flexibility of glycine, the introduction of dihedral angle bounds is
still a reasonable method for narrowing the conformational search space. The introduction of
generic bounds based upon the studies of Lovell et al. [11] will be presented in Section 2.1.

The introduction of distance bounds for interatomic distances within protein structures has
been considerably less studied. In specific protein folding applications, comparative modeling
approaches, such as the MODELLER program, can build spatial restraints from homologous
proteins of known structure and subsequently predict a protein structure that satisfies them
[16,17]. With the notable exceptions of bond lengths and other intra-residue distances, very
little information can be applied to the problem for an entirely unrestricted search of the protein
conformational space.

A first principles framework that predicts protein secondary structure information prior to a
final tertiary structure prediction stage, such as the ASTRO-FOLD approach [1], may benefit
from the introduction of bounds on interatomic distances. A critical area of interest is the need
for quicker and more accurate methods for tertiary structure prediction, given secondary
structure information and β-sheet topologies. A carefully restrained problem can significantly
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reduce the feasible search space of the protein. The search space reduction can result in both
an increase in the speed of the algorithm, as well as improved results through a more focused
problem statement. The introduction and refinement of distance bounds given secondary
structure location and topology information will be the focus of Section 2.2.

2 Methods
The secondary structure of a protein can be predicted using a variety of algorithmic techniques
[18,19,20]. In addition, one secondary structure prediction approach has demonstrated the
ability to predict the topology of protein secondary structure, specifically the β-sheet topologies
and the disulfide bridges that may form between Cysteine residues [21]. The goal of the
proposed work, given this secondary structure information, is to develop a set of meaningful
dihedral angle bounds and distance bounds between Cα atoms within the protein backbone.

The introduction of dihedral angles bounds can be done using only the predicted secondary
structure location and the residue identity, as presented in Section 2.1. The bounds on
interatomic distances will then be discussed in Section 2.2. In Section 2.3, the use of torsion
angle dynamics is discussed to generate an ensemble of protein structures that satisfies these
bounds. A hybrid global optimization method for tertiary structure prediction is described in
Section 2.4 to identify low-energy protein structures that satisfy these bounds.

2.1 Dihedral Angle Bounds
There is a variety of ways to constrain the dihedral angles based on the prediction of secondary
structure elements. The ideal, right-handed α-helix adopts a ϕ angle of approximately −57° and
a ψ angle of approximately −47° [22]. In a folded natural protein, the geometry of an α-helix
may deviate from these values depending upon its environment. As shown in Table 1, Klepeis
and Floudas have used two similar sets of dihedral angle bounds for residues predicted to be
part of an α-helix. The ideal values of the α-helix and the α-helical bounds are plotted against
the allowed and strictly allowed ϕ and ψ angles (for all residues except Glycine and Proline)
as determined by examining a database of 500 high quality protein structures [11] in Figure 1.

The ideal antiparallel β-strand adopts a ϕ angle of approximately −139° and a ψ angle of
approximately −135°, whereas the parallel β-strand has a ϕ angle of −119° and a ψ angle of
113° [22]. The geometry of the β-strands also deviates from these values in folded proteins
depending on the environment and other factors. As shown in Table 1, Klepeis and Floudas
have used two similar sets of dihedral angle bounds for residues predicted to be part of a β-
strand. These values are used regardless of the existence of a parallel or an antiparallel
orientation.

If the structure of the loop residues is not predicted using available methodologies [23], the
dihedral angles of these residues can still be restrained based on the strictly allowed regions of
the ϕ and ψ angles [24]. These restraints, based upon the identity of the residue at a given
position, are presented in Table 1.

Rotation around the C’-N bond is represented by the ω dihedral angle. Unlike the relatively
flexible backbone ϕ and ψ dihedral angles, the feasible conformations of the ω angle are greatly
reduced due to the partial double bonded nature of the C’-N peptide bond. Although the cis
form (ω=0°) of the peptide bond is achievable, this form disfavorably places neighboring Cα
atoms in close proximity. As a result, the trans form (ω=180°) of the peptide bond is
approximately 1000 times more common [22]. For the protein ensemble generation and tertiary
structure prediction applications discussed here, only the trans form of the peptide bond will
be considered. In these applications, the ω dihedral angle will be restricted to the range of
[160,200] to allow for limited flexibility around the trans conformation of the peptide bond.
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For most residues, further information about the dihedral angles associated with the side chain
atoms (the χ angles) is needed to fully specify the position of all the atoms within the residue.
Although protein side chains often adopt a discrete set of favorable conformations, there are
very few generic bounds that can be introduced based only upon the residue identity. The main
exception to this rule are dihedral angles that correspond to the placement of symmetric atoms.
An example of type of symmetry is the χ1 angle of alanine, which controls the placement of
the Hβ1, Hβ2, and Hβ3 atoms. These three atoms are indistinguishable, so popular convention
assigns the β1 label to the atom placed by a dihedral angle in the range of [0,120]. In the
implementation of this algorithm, symmetric atoms will be restricted to ranges of [0,120] or
[0,180] depending on the number of symmetric atom positions that are defined by a single χ
angle.

2.2 Distance Bounds
A number of distance bounds can be developed from basic secondary structure information
that may be known about a protein. These types of bounds can be divided into two categories.
The first is local interactions that occur within a single element of secondary structure. A
number of bounds can also be established on non-local interactions between elements of
secondary structure. To maintain a manageable representation of all of these distance bounds,
only the distances between the Cα carbon residues will be considered throughout the rest of
this paper.

The previous strategies for introducing bounds on the distances within a protein will be
discussed first. The presentation of a dataset of proteins used to establish and validate some of
the lower and upper bounding values will follow. Improved strategies for bounding local
interactions and non-local interactions will then be discussed.

2.2.1 Previous Distance Bounding Strategies—Distance constraints can be introduced
based on predicted secondary structure elements or predicted topology. The formation of an
α-helix is dependent upon the formation of a hydrogen bond between the carbonyl oxygen at
residue i and the backbone -NH at position i + 4. Klepeis and Floudas [1] introduce bounds on
the distances between the Cα atoms of these helical residues to enforce the formation of the
hydrogen bonding network. Knowledge of β-sheet topology can also be used to introduce
bounds on the distances before the application of the tertiary structure prediction algorithm.
Klepeis and Floudas [1] again use bounds on the distances between the Cα atoms for β-sheets.
These bounds are non-local and help to enforce the formation of a β-sheet between two
opposing β-strands. The lower and upper distances used for these bounds are presented in Table
2. Other predicted non-local tertiary contacts, such as disulfide bridges, can be introduced as
distance bounds as well. Disulfide bridges are enforced by bounding the distance between two
Cysteine sulfur atoms with a range of 2.01 to 2.03 Å.

2.2.2 Dataset—In order to obtain a representative set of protein structure tendencies, a large
set of non-homologous protein structures that span the Protein Data Bank [25] should be
selected. For this implementation, a set of structures that contain no more than 25% sequence
similarity, denoted as the PDBSelect25 [26], has been used to develop the distance bounds
based on geometric tendencies. The recent release of the PDBSelect25 contains 2216 protein
chains and a total of 352855 residues.

For each protein, there are a number of distance bounds that will be based on the secondary
structure at a particular residue position. This secondary structure will be assigned using the
Dictionary of Protein Secondary Structure (DSSP) [27]. The DSSP method assigns secondary
structure through the identification of hydrogen bonding patterns indicative of α-helices, β-
sheets, and turns.
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The derivation of distance bounds results from a threshold that can be established on the relative
number of violations that may occur for a given value of the distance bounds. For example, a
lower bound of 4.5 Å may be such that 99.5% of the occurrences in the PDBSelect25 dataset
satisfy such a bound. By statistically quantifying the establishment of lower and upper bounds,
we may extend these bounds to be representative of the overall tendencies of protein structures.

2.2.3 Local Interactions—There are three main types of local interactions that should be
considered, based on the type of secondary structure. The first type of local interactions
involves helical regions of the protein. α-helical residues are characterized by an intra-helical
hydrogen bond between residues i and i + 4, four positions away in the amino acid sequence.
Instead of merely characterizing the helix by this single intra-helical distance, let us consider
all i, i + n distances within the helix. Equations 1-2 will be used as a method to derive bounds
from the dataset in Section 2.2.2. The lower and upper bounds of Equation 1 are developed
specifically for each value of n ≤ 8. In contrast, for n > 8 in Equation 2, the helical interactions
are generalized into distance bounds normalized by residue separation to more easily account
for longer helices.

(1)

(2)

Consider the example of Figure 2. This figure considers the case of n = 3 from Equation 1,
analyzing the distances that commonly occur for residues 3 positions away within a helix. A
single-peaked distribution of distance occurrences is clearly visible. In this case, a lower bound
of 4.0 Å and an upper bound of 6.0 or 6.2 Å appear to be appropriate to capture the typical
intrahelical i, i + 3 distance for protein structures.

A similar set of distance bounds can be established for local β-strand structure. Equations 3-4
are used to derive bounds on the upper and lower distance bounds of β-strands within a protein.
Equation 3 specifically addresses distances between residues i, i + n for cases of 2 ≤ n ≤ 6. For
intra-strand distances separated by a large number of residues, n > 6, Equation 4 defines per
residue characteristic bounds.

(3)

(4)

The typical distances between the Cα atoms of any two neighboring residues is approximately
independent of the secondary structure or residue identity, due to the planar nature of the
peptide bond. Thus, for the residue pair i, i + 1, a single set of distance bounds can be established
for all residue classifications in Equation 5.

(5)

It is important to distinguish between distance bounds that further constrain the conformational
space for tertiary structure prediction applications and redundant bounds that are only
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introduced for modeling applications when protein coordinates are not available. The bounds
on the local interactions are not typically directly useful for protein tertiary structure prediction,
but can be useful in optimization-based models where no coordinate system is defined, such
as one proposed for residue contact prediction in mixed α/β proteins [28]. The values of the
bounds recommended for use in this section are presented in Table 3. For neighboring residues,
lower and upper bounds of 3.7 Å and 3.9 Å, respectively, are recommended.

2.2.4 Nonlocal Interactions—When a secondary structure prediction method that provides
topology information is used [21], tight distance bounds can be developed on contacts between
β-sheets and disulfide bridges. Hydrogen bonds form between residues within the β-sheets,
bounding the distance between them. The distance bound form for the main β-contact residues
is illustrated in Equation 6 where i, j is a contact between two β-sheets.

(6)

Some additional distance bounds can be applied to residues within β-sheets that form layered
topologies. Thus, if two distinct β-strands form β-sheets with a third strand, the distance
between them can be tightly bound in a fashion distinct from Equation 6. These so-called
“double” contacts, and even “triple” contacts, can be used to bound such residue-to-residue
distances as defined by Equations 7-8. The type of residue-residue pairs that are considered
double and triple contacts are illustrated in Figure 3.

(7)

(8)

Further bounds on contacting β-sheets can be introduced based on the assumption of
approximately parallel (in an undirected sense) β-strands that are spanned by approximately
perpendicular contacting residues. The development of these “cross” contact bounds can then
be aided by the use of the Pythagorean Theorem and introduced as shown in Equations 9-10.
These cross contact distance bounds are only imposed across β-strands connected by a single
β-contact or a double contact. The type of residue-residue pairs that are considered single cross
and double cross contacts are illustrated in Figure 4.

(9)

(10)

The values of the bounds recommended for use in this section are presented in Tables 4-5.

2.3 Protein Ensemble Generation
The introduction of bounds on both the dihedral angles and interatomic distances requires a
method to transform these constraints into valid protein structures. Metric matrix distance
geometry can be used to uniquely determine the Cartesian coordinates of all atoms if the exact
distance values are available for all pairs of atoms [29,30,31]. For the applications discussed
in this paper, however, the distance values are neither exact nor completely specified between
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all pairs of atoms. Distance geometry algorithms such as EMBED [31] and dgsol [32] can be
used to produce molecular conformations that satisfy a set of sparse distance constraints. A
number of alternatives to distance geometry algorithms exist, including molecular dynamics
[33,34], variable target function methods [35,36], and molecular dynamics in torsion angle
space (torsion angle dynamics) [37,38,39]. The various algorithms for protein structure
determination are reviewed in further detail elsewhere [40].

Torsion angle dynamics fixes the bond lengths and bond angles of the protein structure and
defines a protein solely by its torsion angles. While this representation has the advantage of
reducing the number of variables in the system and allowing for longer integration time steps
than traditional molecular dynamics approaches, it has the disadvantage of increasing the
complexity of equations of motion that must be solved at each time step. The development of
a torsion angle dynamics algorithm that scales linearly with the number of dihedral angles
helped overcome this complexity issue [37]. This algorithm has been combined with simulated
annealing approaches and successfully applied to NMR structure determination problems
[38,39]. A study of the conformational sampling properties of torsion angle dynamics
algorithms showed that good sampling can be achieved in both well-constrained proteins and
long unconstrained polypeptides [41].

The new, tighter set of dihedral angle and distance bounds can be used as input to a torsion
angle dynamics approach to generate an ensemble of protein conformations that satisfy the
bounds. A program developed for NMR structure refinement, CYANA, is used for the initial
ensemble generation [38]. This algorithm performs molecular dynamics in torsion angle space
to minimize a scoring function that sums the violation of the dihedral angle bounds, the
violation of the lower and upper distance bounds, and the violation of steric constraints based
upon the van der Waals radii of interacting atoms.

2.4 Tertiary Structure Prediction
The new set of dihedral angle and distance bounds can also be used as part of a tertiary structure
prediction framework. The tertiary structure prediction problem has previously been
formulated as a constrained nonlinear minimization problem [15]. The basic formulation is the
minimization of the ECEPP/3 force field [42] energy over torsion angle space, subject to upper
and lowering bounding constraints on these torsion angles as well as distance constraints in
Cartesian space.

The ASTRO-FOLD tertiary structure prediction approach applies a hybrid algorithm that
consists of the αBB global optimization algorithm, a stochastic global optimization method,
and a molecular dynamics approach in torsion angle space [1,15]. The torsion angle
representation of the model significantly reduces the size of the independent variable set, while
only modestly increasing the model complexity.

The use of the αBB global optimization algorithm [43,44,45,46,47,48,49,50,51] provides a
theoretical guarantee of convergence to the global minimum solution by establishing a valid
sequence of upper and lower bounds on the potential energy minimum. The upper bound on
the global minimum is obtained by constrained nonlinear minimization on any protein
conformation. The lower bound is determined by creating a valid convex underestimating
function and identifying its minimum function value. The algorithm converges by partitioning
regions of conformational space at every level of a branch and bound tree to create subregions
where tighter lower bounding functions can be derived.

Stochastic optimization methods can further improve the performance of the upper bounding
approach of the formulation. One such hybrid global optimization method, described as an
alternating hybrid, has been proposed [15,52]. It combines the deterministic αBB approach
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with the stochastic approach of conformational space annealing [53,54,55,56,57].
Conformational space annealing balances genetic algorithm techniques of mutations and
crossovers with simulated annealing to identify low energy conformers. A hybrid algorithm of
this form retains the deterministic guarantees of convergence while yielding a much more
efficient search for the native state [15,52].

The local minimization strategy for this hybrid algorithm is composed of three stages (1) torsion
angle dynamics, (2) rotamer optimization, and (3) sequential quadratic programming. The
identification of initial feasible points is critical to the success and efficiency of the constrained
nonlinear minimization algorithm. The basic torsion angle dynamics routine has been
integrated into the hybrid optimization algorithm by interfacing with the CYANA software
package [38]. The number of structures that satisfy both the distance and dihedral angle
constraints after this routine is significantly increased, especially in the cases of distance
constraints with tight bounds or large numbers of distance constraints. The goal of the rotamer
optimization stage is to remove any steric clashes that may exist between protein side chains
in conformations produced by torsion angle dynamics or trial conformations from the
conformational space annealing algorithm. The rotamer optimization is implemented as a three
stage approach, combing the FASTER algorithm [58] with a cyclical search and a random
search. With the backbone fixed in its initial conformation, the rotamers are varied one residue
at a time and a replacement is made if any energetic improvement is realized. In this way,
rotamer optimization acts as an efficient local minimizer, with no guarantee that the optimal
set of rotamers is chosen. After the rotamer optimization stage is completed, this feasible, low-
energy conformation is subject to local minimization using sequential quadratic programming
techniques. The NPSOL package [59] is especially attractive for the protein structure prediction
minimization problem as it requires relatively few evaluations of the computationally
expensive ECEPP/3 potential energy function. The minimization using NPSOL is repeated
with multiple values of the line search tolerance to improve convergence to feasible protein
conformations.

An improved parallel implementation of this hybrid global optimization approach has been
developed [52]. In this approach, a single processor is allocated as a control processor, to
control both the αBB iterations and the CSA iterations. The control processor maintains the
lower and upper bounds and the lower-bounding subregions for the αBB portion of the
approach as well as the bank of conformers necessary for the CSA iterations. This allocation
of a single processor is effective because the work distributed to the work processors requires
several orders of magnitude more time for processing than for the communication associated
with delivering the work and receiving the results. In fact, the idle time of this control processor
can be used to further explore the conformational space with perturbations of existing
structures. Initially, all of the remaining processors are assigned αBB iterations. Once, the CSA
bank is full, a pre-specified number of these processors are assigned CSA iterations to perform
instead. A complete description of the implementation of this improved hybrid global
optimization algorithm is available in [52].

The ASTRO-FOLD methodology has been successfully applied to a varied set of proteins
throughout the range of small to medium-sized proteins [1]. The recent success of the ASTRO-
FOLD method in a double blind prediction of a four-helix bundle reinforces the value of the
approach [60].

3 Illustrative Example: Protein G
A 56 amino acid protein, the immunoglobulin binding domain of protein G from the
Streptococcus species, was selected to illustrate the bounding strategy proposed in Section 2.
Both NMR spectroscopy and X-ray crystallography have been used to determine the structure
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of this protein, which folds into a ββαββ motif. The four β-strands form a single β-sheet and a
single α-helix is located above the plane of the β-sheet. The single α-helix spans residues 23-35
and the four β-strand span the residues 2-8, 13-19, 42-46, and 51-55, with an experimental
topology as shown in Figures 3-4. Protein G is a well-studied system due to its tightly-packed
hydrophobic core and extensive hydrogen bonding network. The following sections will
describe the development of distance and dihedral angle bounds, the application of the
bounding strategy using torsion angle dynamics, and the application of the bounding strategy
using a hybrid global optimization method for tertiary structure prediction.

3.1 Distance and Dihedral Angle Bounds
The ϕ and ψ dihedral angles of the α-helix region are restricted to [−90,−40] and [−60,10],
respectively. The residues in the β-strands have their ϕ and ψ dihedral angles constrained to
the ranges [−155,−75] and [110,180], respectively. The ϕ and ψ dihedral angles of all the
remaining residues are both allowed to vary from [−180,180]. The imposed distance constraints
for the first study correspond to the bounding strategy of Klepeis and Floudas [1], as shown in
Table 2. In Table 6, the 9 distance bounds associated with the formation of the hydrogen
bonding network in the α-helical structure are presented. An additional 17 lower and upper
distance bounds are introduced to enforce the formation of the β-sheet topology as shown in
Table 7. These bounds use an expanded distance range, allowing the distance between a pair
of contacting β-strand residues to be as close as 4.25 Å instead of 4.5 Å. This set of dihedral
angle and distance constraints will be denoted as the “original” bounding strategy and will be
the basis for comparing the results of the new bounding strategy.

The methods of Sections 2.1-2.2 are then used to develop additional dihedral angle and distance
bounds on the Protein G structure given this information. The loop residues are constrained
according to the methodology of Section 2.1, as shown in Table 8. The three Glycine residues
have a restricted range for the value of ϕ, and the total area of the ϕ/ψ dihedral angle space that
must be explored for each Glycine residue is approximately 86% of the original conformational
space. The remaining 14 non-Glycine loop residues have restricted ϕ and ψ angle bounds,
which narrows the total area of the ϕ/ψ dihedral angle space to approximately 58% of the
original area.

The β-sheet contacts from the original bounding strategy, established above in Table 7, can be
examined to extract double and triple β-sheet contacts. The distances between the Cα carbons
in these double and triple contacts can be bounded as shown in Table 9. The ten double contacts,
with the interactions β1-β3 and β2-β4 are restricted to the range 8.5-13.0 Å, while the five triple
contacts between β2 and β3 are bounded between 13.0 and 19.5 Å.

The β-sheet contacts from the original bounding strategy can also be used to create bounds on
single cross and double cross contacts. The set of eight single cross contacts introduced for
Protein G is presented in Table 10. The four single cross contacts between β1 and β2 are
established as two sets with a separation of 5 (the maximum separation allowed) and distance
bounds between 12.8 and 18.7 Å. The single cross contacts for the pairs β1,β4 and β3,β4 have
a separation of 4 and distance bounds of 10.1-15.4 Å. A total of 36 double cross contacts with
offsets of 1-3 are enumerated in Table 11. Of these 36 double cross contacts, 16 have an offset
of 1 with distance bounds of 9.0-13.5 Å, 12 have an offset of 2 with distance bounds of 9.5-14.8
Å, and 8 have an offset of 3 with distance bounds of 10.8-16.7 Å.

Tables 6-11, along with the ϕ and ψ dihedral angle restrictions on the secondary structure
elements, represent the new bounding strategy for Protein G. In total, 85 lower and upper
distance bounds are introduced using this new strategy, compared to 26 lower and upper
distance bounds in the original strategy. The number of distance bounds, however, is not an
adequate method to judge the utility of a set of distance constraints. Clearly, the distance
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between every atom can be bounded by (0,∞), but these bounds would not add any meaningful
information to the model. The ensemble generation method of Section 2.3 and the tertiary
structure prediction method of Section 2.4 will instead be used with the original and new
bounding strategies to evaluate the utility of the new sets of bounds.

3.2 Ensemble Generation with Bounds
For each bounding strategy, an ensemble of 1000 protein conformations was generated. These
protein structures will be evaluated by comparing the root mean squared deviation (RMSD) of
the ensembles to the native protein G structure. An RMSD value of 0.0 Å indicates perfect
agreement between the native structure and the predicted protein conformer, and the RMSD
value increases as the prediction deviates from the native structure. The evaluation of the
RMSD values throughout this paper are calculated using the vectors representing the Cα
coordinates of the predicted protein structure and the experimentally-determined structures.
The RMSD of the protein ensembles will be measured against the violation value of the
imposed distance bounds, which will be the only measure of structural quality discussed in this
section.

Figure 5 presents the distance constraint violation values of the proteins in the ensemble versus
their RMSD to the native protein G structure for both bounding strategies. The RMSD values
achieved by the new bounding strategy range from 3.41-10.55 Å, while the RMSD values from
the original bounding strategy vary from 3.73-10.68 Å. If we define 5.0 Å as the RMSD cutoff
for a near-native protein structure, the new bounding strategy identifies 65 near-native
structures, 16 more than from the original bounding strategy. In Figure 5 there is a clear
separation of conformers generated using the new bounding strategy into two distinct clusters
centered around RMSD values of 9.5 Å and 5.5 Å. This separation results from the placement
of the α-helix relative to the β-sheet. If the β-sheet region is fixed in a given orientation,
sometimes the helix appears in front of the β-sheet and sometimes the helix appears behind the
β-sheet.

One of the major focuses of the distance bounds in this paper is to introduce constraints related
to β-sheet formation given a set of contacts between β-strands. A better illustration of the utility
of the new bounding strategy can be obtained if the RMSD values are computed only for the
residues in the β-strand regions of protein G. Figure 6 shows the RMSD values for the selected
regions of these proteins plotted against the distance constraint violation values. The new
bounding strategy achieves a low RMSD of 1.40 Å and a maximum RMSD of 5.72 Å, while
the RMSD values using the original bounding strategy vary from 1.62-6.93 Å. If we define 2.0
Å as the RMSD cutoff for a near-native protein structure, the new bounding strategy identifies
79 near-native structures, 54 more than from the original bounding strategy.

3.3 Tertiary Structure Prediction with Bounds
The utility of the proposed bounding strategy was validated by using torsion angle dynamics
to create an ensemble of conformations of protein G in Section 3.2. This proposed bounding
strategy led to increased conformational sampling of near-native structures, as defined by their
RMSD from the native protein G structure. The ability to generate near-native structures based
on torsion angle dynamics is important, but it is more advantageous to identify these same
near-native structures as energetically favorable using the proposed tertiary structure prediction
algorithm. For the analysis in this section, a distinct conformation is defined to be a protein
structure that has a RMSD of at least 1.0 Å from all other conformations in the ensemble

The proposed tertiary structure prediction algorithm of Section 2.4 was applied to the structure
prediction of protein G using both the original bounding strategy of Klepeis and Floudas [51,
1] and the new bounding strategy of Section 2. As described in Section 3.1, 85 lower and upper
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distance bounds are introduced using the new strategy, compared to 26 lower and upper
distance bounds for the original strategy. Tighter ϕ and ψ dihedral angles bounds are also
introduced for the 17 loop residues in the new bounding strategy. The quality of each ensemble
of predicted protein conformers can be evaluated by presenting the RMSDs from the native
protein G structure as a function of the potential energy, as shown in Figure 7. Table 12
compares the ensembles generated by both bounding strategies. Although the RMSD of the
lowest energy conformation is slightly lower using the original bounding strategy, there is a
clear advantage to implementing the new bounding strategy. The best single conformations,
measured by both RMSD and GDT TS score [61,62], are found using the new strategy. Of
even more importance is the much larger number of near-native conformations that are
identified using the new bounding strategy. The new bounding strategy is able to identify ten
times as many distinct protein conformations below 3.0 Å RMSD to the native protein G
structure when it is combined with the ASTRO-FOLD tertiary protein structure prediction
method. This difference further illustrates the need to impose any available additional bounding
information for the tertiary structure prediction problem, allowing the proposed algorithm to
focus its efforts in the most fruitful regions of the conformational space.

4 Summary and Discussion
There exists a clear trade-off between the selection of worst-case bound values and tight bounds
that exclude large portions of the feasible space while introducing small deviations from some
native protein structures. The numerical values of these bounds can be adjusted depending on
the application and the confidence in the secondary structure location and topology predictions.
For example, in Figure 1, the allowed and strictly allowed dihedral angle values are presented
as determined by Lowell et al. The allowed dihedral angle region encompasses 99.95% of the
dihedral angles in a database of high resolution structures. The strictly allowed dihedral angle
regions significantly shrink the conformational space, but only include 98% of the angles in
the database. While the values of the bounds are not as important as the strategy, the bounds
proposed here are fairly conservative and tended to fall in the 90-95% range. In fact, the largest
contributions to the RMSD in the examples studied was the spatial relationship of the alpha-
helix to the beta-strand and the local loop and coil conformations, which were not the result of
incorrect bounds on the distances and dihedral angles.

The utility of the bounding strategy described here is dependent upon the quality of the
secondary structure location and topology predictions. It is inherent in a framework-based
approach that errors in the earliest stages of the framework will propagate to the later stages.
While the proposed bounding strategy cannot “fix” an incorrect secondary structure prediction,
it can focus the tertiary structure prediction on the most native-like regions of the
conformational space for a protein with the predicted topology. If the limitations of available
computational resources can be overcome, the bounding strategy and tertiary structure
prediction can be applied to a number of the highest ranking secondary structure topology
predictions. For mixed-integer linear optimization approaches [21,64,28], such a rank-ordered
list can easily be produced using integer cut techniques [65].

5 Conclusions
A new strategy for establishing bounds on the backbone dihedral angles and Cα-Cα distances
within the protein structure has been presented. The dihedral angle bounds on the ϕ and ψ
angles within the loop regions of a protein structure have been refined to incorporate known
information on the allowed backbone conformations of a residue. The use of distance bounds
to enforce knowledge of secondary structure elements and hydrogen bonding patterns was
previously explored, but has been further investigated and augmented here. A number of
additional distance bounds were introduced, especially related to the formation of β-sheet
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topologies, that enabled a torsion angle dynamics approach to generate a significantly higher
number of near native protein conformations for protein G than the original bounding strategies.
Similar improvements were observed when the bounding strategy used for the tertiary structure
prediction of protein G. The restrictions on the dihedral angles and distances within the protein
structures allows both of these conformational search algorithms to spend more time sampling
the correct (i.e., near-native) regions of space, without relying upon homology between the
target protein and other known protein structures.
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Figure 1.
A Ramachandran plot [63] comparing idealized secondary structure to dihedral angle bounds
on secondary structure and allowed dihedral angles for all residues except Glycine and Proline.
The allowed (black, solid) and strictly allowed (black, dashed) as defined by Lovell et al.
[24] are included for reference. The ideal right-handed α-helix (blue, square) and the ideal
310-helix (blue, circle) are shown compared to the bounds of Klepeis and Floudas, 2003b (blue,
dotted) and Klepeis and Floudas, 2003c (blue,, dashed). The ideal antiparallel β-strand (red,
square) and the ideal parallel β-strand (red, circle) are shown compared to the bounds of Klepeis
and Floudas, 2003b (red, dotted) and Klepeis and Floudas, 2003c (red, dashed).
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Figure 2.
Distribution of distance occurrences for intrahelical i, i + 3 distances within the PDBSelect25
dataset
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Figure 3.
An illustration of a double (blue) and triple (red) contact, given the contacts that represent the
β-sheet topology for Protein G
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Figure 4.
An illustration of a set of single cross contacts with a separation of 5 (red) and a set of double
cross contacts with an offset of 2 (blue)
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Figure 5.
The constraint violation versus the RMSD from the native protein G structure (PDB:2GB1)
using torsion angle dynamics and both the original (black) and new (red) bounding strategies.
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Figure 6.
The constraint violation versus the RMSD from the β-strands of the native protein G structure
(PDB:2GB1) using torsion angle dynamics and both the original (black) and new (red)
bounding strategies.
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Figure 7.
The ECEPP/3 potential energy of each protein conformer and its RMSD from the native protein
G structure (PDB:2GB1) using both the original (black) and new (red) bounding strategies.
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Table 1

Dihedral angle bounds for residues based on type and secondary structure

Residue ϕ L ϕ U ψ L ψ U

α-helix [51] −85 −55 −50 −10

α-helix [1] −90 −40 −60 −10

β-sheet [51] −155 −75 110 180

β-sheet [1] −180 −80 80 180

Loop - Glycine 25 335 −180 180

Loop - Proline n/a n/a −75 195

Loop - others −180 100 −75 195
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Table 2

Bounds on distances based secondary structure

Secondary structure type dL dU

α-helix residue (i, i + 4) 5.5 6.5

β-sheet contact 4.5 6.5
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Table 4

Lower and upper β-contact distance bounds

Type dL (Å) dU (Å)

Single 4.2 6.5

Double 8.5 13.0

Triple 12.7 19.5
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Table 5

Lower and upper single and double cross contact distance bounds

Single Double

Separation dL (Å) dU (Å) dL (Å) dU (Å)

1 4.5 7.4 8.5 13.5

2 5.4 9.6 9.5 14.8

3 7.5 12.4 10.8 16.7

4 10.1 15.4 - -

5 12.8 18.6 - -
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Table 12

A comparison of the ensembles generated for protein G using the original and new bounding strategies with the
hybrid global optimization algorithm for protein tertiary structure prediction

Evaluation metric Original New

Lowest Energy (kcal/mol) −419.386 −426.539

RMSD of Lowest Energy (Å) 3.26 3.48

Best GDT-TS Score 70.54 72.77

Lowest RMSD (Å) 2.62 2.24

Distinct Conformers, E<0 20064 19066

Distinct Conformers, RMSD<3.0Å 10 159

Distinct Conformers, GDT-TS>65 13 68
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