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Abstract
Fine particulate matter (PM2.5) is an atmospheric pollutant that has been linked to serious health
problems, including mortality. PM2.5 is a mixture of pollutants, and it has five main components:
sulfate, nitrate, total carbonaceous mass, ammonium, and crustal material. These components have
complex spatial-temporal dependency and cross dependency structures. It is important to gain
insight and better understanding about the spatial-temporal distribution of each component of the
total PM2.5 mass, and also to estimate how the composition of PM2.5 might change with space and
time, by spatially interpolating speciated PM2.5. This type of analysis is needed to conduct spatial-
temporal epidemiological studies of the association of these pollutants and adverse health effect.

We introduce a multivariate spatial-temporal model for speciated PM2.5. We propose a Bayesian
hierarchical framework with spatiotemporally varying coefficients. In addition, a linear model of
coregionalization is developed to account for spatial and temporal dependency structures for each
component as well as the associations among the components. We also introduce a statistical
framework to combine different sources of data, which accounts for bias and measurement error.
We apply our framework to speciated PM2.5 data in the United States for the year 2004. Our study
shows that sulfate concentrations are the highest during the summer while nitrate concentrations
are the highest during the winter. The results also show total carbonaceous mass
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1 Introduction
The study of the association between ambient particulate matter (PM) and human health has
received much attention in epidemiological studies over the past few years. Özkaynak and
Thurston (1987) conducted an analysis of the association between several particle measures
and mortality. Their results showed the importance of considering particle size, composition,
and source information when modeling particle pollution health effect. In particular, fine
particle matter, PM2.5 (< 2.5μm in diameter), is an atmospheric pollutant that has been
linked to numerous adverse health effect (e.g. respiratory and cardiovascular diseases).
PM2.5 is a mixture of pollutants, and is classified into five main components (U.S. EPA,
2003): sulfate, nitrate, total carbonaceous mass (TCM), ammonium, and crustal material
(that includes calcium, iron, silicon, aluminum, and titanium). These components have
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complex spatial-temporal dependency and cross dependency structures. Fuentes et al. (2006)
studied the health effect of PM2.5 and its components using monthly data across the United
States. In order to investigate the health effect associated to speciated fine PM across space
and time, we need to have first the speciated PM2.5 information at the locations and times of
interest. However, daily speciated PM2.5 measurements are available at limited monitoring
sites, and missing values may occur at given time point. Rao et al. (2003) and Malm et al.
(2004) showed the spatial and temporal patterns of speciated PM2.5, but they only conducted
an exploratory analysis of speciated PM2.5. The research presented here is part of a larger
project to study the association between speciated PM2.5 and adverse health outcomes across
the entire U.S. Our goal here is to develop a statistical framework using all available sources
of data about speciated PM2.5 to investigate the spatial-temporal patterns of speciated PM2.5
and then be able to predict speciated PM2.5 at all locations and times of interest. We also
study the spatial-temporal patterns of the so called “unknown components” which are not
the main speciated PM2.5 components (as defined by EPA).

In this article we introduce a new statistical framework to combine different sources of
information of PM2.5 taking into account potential bias and measurement error, and we
develop a multivariate spatial-temporal model for speciated PM2.5 accounting for the
complex dependency structures of the speciated PM2.5. We develop a spatial-temporal linear
model of coregionalization (STLMC) to account for multivariate spatial-temporal
dependency structures. In addition, a hierarchical framework is proposed to investigate the
relative contribution of each component to the total PM2.5 mass, which changes over space
and time.

We use a new speciated PM2.5 data set. To our knowledge, this is the first time that a
statistical framework has been proposed and used to analyze speciated PM2.5 across the
entire United States. The proposed framework captures the cross dependency structure
among the PM2.5 components and explains their spatial-temporal dependency structures. A
Bayesian hierarchical framework is used to study different random effect of interest. The
STLMC proposed here allows for very general multivariate spatial-temporal covariance
structures, and offer some computational advantages. We can accurately predict speciated
PM2.5 at any location or time point of interest. In addition, we present a new approach to
combine different sources of information about PM2.5, that improve the prediction of the
total PM2.5 mass. Wikle et al. (2001) presented a similar approach to combine different
sources of information of ocean surface winds, but they treated one of the data sources as a
prior process. In our approach, all of the data sources are simultaneously represented in
terms of the underlying truth, and we also model the potential bias of the different sources of
information as spatial temporal processes.

This article is organized as follows. In Section 2 we describe the data used in this study. In
Section 3, we present a Bayesian hierarchical multivariate spatial-temporal model for
speciated PM2.5, and we also introduce the STLMC. A statistical framework to combine
PM2.5 data is described in Section 4. In Section 5 we present the results, and in Section 6 we
offer a general discussion.

2 Data Description
PM2.5 data from two monitoring networks and meteorological data in the conterminous
United States for year 2004 were used in this study. The first source of PM2.5 data is the
Speciated Trends Network (STN) established by the U.S. Environmental Protection Agency
(EPA) in 1999. The STN measures the speciated PM2.5 either every day, every third day or
every sixth day. It included about 200 monitoring stations in 2004, which were mostly in
urban areas. Even though the STN collects numerous trace elements, elemental carbon,
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organic carbon, and ions (sulfate, nitrate, sodium, potassium, ammonium), we only consider
the five main PM2.5 components presented in the previous section. In the STN, sulfate,
nitrate, and ammonium are measured independently. Total carbonaceous mass is sum of
elemental carbon mass and estimated organic carbon mass which is 1.4 × ([OC] − 1.53),
where [OC] is the measured organic carbon value, 1.4 is the factor to correct organic carbon
mass for other elements (Rao et al., 2003), and 1.53 is the blank correction factor to adjust
for sampling artifacts (Flanagan et al., 2003). Elemental carbon mass is also measured at
STN monitoring stations. Crustal material is computed using the IMPROVE equation
(Malm et al., 2004) for the five most prevalent trace elements.

Since the PM2.5 data at the STN monitoring stations provide sparse spatial coverage, using
only the STN monitoring data might be insufficient for modeling the speciated fine PM over
the entire United States. Therefore, we use the total PM2.5 data from the Federal Reference
Method (FRM) monitoring network which includes rural and urban sites, and measures
PM2.5 samples either every day, every third day or every sixth day. While the STN is a
smaller network, the FRM network is a large national network, which consisted of about
1000 monitoring stations in 2004.

Meteorological data for 2004 have been provided from the U.S. National Climate Data
Center. We use five daily meteorological variables: minimum temperature (°C), maximum
temperature (°C), dew point temperature (°C), wind speed (m/s), and pressure (hPa).

3 Statistical Models
While speciated PM2.5 is only available at about 200 STN stations, total PM2.5 mass is
available at about 1000 FRM network stations. In addition, we can compute an estimate of
the total PM2.5 mass from the PM2.5 components. Thus, we model the total PM2.5 mass
using the PM2.5 data from both networks, and then express the mean of each PM2.5
component as a proportion of the total PM2.5 mass. The proportion of each component to the
total PM2.5 mass varies over space and time, and we use a hierarchical framework to
account for the spatial-temporal associations of the proportion. To ensure that at each site
and time the sum of the proportions of the components to the total PM2.5 mass is one, we
use a multinomial logit function (McFadden, 1974) for the proportion parameters. Even
though the spatial-temporal dependency structures of the proportions are considered, it could
be insufficient to capture the spatial-temporal dependency and the cross dependency
structures of speciated PM2.5. We thus include a mean-zero spatial-temporal process in the
model, which explains the dependency structures. This approach allows us to estimate both
the speciated PM2.5 in terms of the total PM2.5 mass and the cross-covariance between the
PM2.5 components, which is not captured by the mean function of the speciated PM2.5.
Figure 1 shows the framework of the speciated fine PM.

We assume there is an underlying (unobserved) field Z(s, t), where Z(s, t) represents the true
total PM2.5 value at location s ∈ D1 at time t ∈ D2, where {s : s1…,sNs} ∈ D1 ⊂ ℜ2and {t :
t1, …, tNt} ∈ D2 ⊂ℜ. Let V(s, t) = (V1(s, t), V2(s, t), … V5(s, t))T be a vector of the
speciated PM2.5 at location s and at time t. The parameter θ (s, t) is a vector of the
proportions of the speciated PM2.5 to the total PM2.5 mass at location s and time t. Each
parameter θi(s, t) denotes a proportion of the total PM2.5 mass attributed to the component i,
for i = 1, … 5. The model of the speciated PM2.5 is defined as:

(1)
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(2)

(3)

where logit [θi(s, t)] = log [θi(s, t)/θ5(s, t)] is modeled using a dynamic hierarchical model
(Gelfand et al., 2005). The function ηi(t) denotes the overall temporal trend of the ith logit
component, which is expressed by the function fi(t) to explain seasonality of the ith logit
component. The process eηi is assumed to be a white noise Gaussian process. We model the
process γi(s, t) using a spatial-temporal first-order Markovian process, which accounts for
the spatial-temporal structure of the ith logit component not explained by the overall
temporal trend. We assume the process eγi (·, t) is a Gaussian process with mean zero and a
spatial covariance function to explain spatial dependency structure. To guarantee that the
multinomial logit model is identifiable, we assume η5(t) = 0 for all t, and γ5(s, t) = 0, for all s
and t. In our study, crustal material is assumed to be the 5th component because it is the most
stable component.

The true total PM2.5, Z(s, t), is affected by a vector of meteorological weather variables M(s,
t) (minimum temperature, maximum temperature, dew point temperature, wind speed, and
pressure). The meteorological influence could vary in space and time, and we define β(s, t)
to be meteorological parameters at location s and time t. The meteorological data might not
exist at all the sites of interest. We thus interpolate the weather data at those locations using
a spatial model for each time point (as part of the hierarchical frame-work). The residual
process denoted by ez(s, t) is assumed to be normal. We explain the spatial-temporal
modeling of the Z(·, ·) in Section 4.

The spatial-temporal process ε(s, t) = (ε1(s, t), … ε5(s, t))T is assumed to be a Gaussian
process with mean zero and a covariance matrix, which changes with space and time. The
covariance matrix of the process ε(s, t) represents the dependency structures of the speciated
PM2.5 not captured by the mean function of the speciated fine PM. The STLMC is
developed to specify the covariance function of the process ε(s, t). The process ε(s, t) is
expressed by the weight matrix A and the vector w(s, t) having independent Gaussian
spatial-temporal processes. We discuss the STLMC in detail in the following subsection.
The pure measurement error process, εw(s, t), is assumed to be normal and be independent of
ε(s, t).

3.1 The Spatial-Temporal Linear Model of Coregionalization
The basic idea of the STLMC is that dependent spatial-temporal processes are expressed
using the linear combination of uncorrelated spatial-temporal processes in the spatial-
temporal modeling. The STLMC provides a very rich class of multivariate spatial-temporal
processes with simple specification and interpretation. The STLMC like the linear model of
coregionalization use in multivariate spatial analysis (Grzebyk and Wackernagel, 1994;
Wackernagel, 1998) could be used as a dimension reduction method, which means that the
given multivariate processes are represented as lower dimensional processes. In this study,
we use the STLMC to construct a valid cross-covariance function of multivariate spatial-
temporal processes. The STLMC used here is:

(4)
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where wT(s, t) = (w1(s, t), … w5(s, t)), and A is a 5 × 5 weight matrix explaining the
association among the five variables. Without loss of generality, we assume A is a full rank
lower triangular matrix. For computational convenience, we adopt a simple approach to
model the spatial-temporal process w(s, t). We assume that wi(s, t), i = 1, … 5, are
independent Gaussian spatial-temporal processes with mean zero and separable spatial-

temporal covariance, , where  is a

spatial covariance with the parameter vector φi and  is a temporal autocovariance with
the parameter vector ψi. The STLMC in (4) implies E(ε (s, t)) = 0 and

(5)

Where  and ai is the ith column vector of A, and  becomes the covariance
matrix of ε at any site s and time t.

We form  and  for i = 1, …. 5, where
 for j=1 …Nt then the covariance matrix of ε is

(6)

where ⊗ denotes the Kronecker product. Each Ri is a Ns × Ns matrix with

, which accounts for spatial associations. Each Ui is a Nt × Nt matrix

with , which explains temporal associations. This covariance matrix,

Σε, is nonseparable, except in the special case of the STLMC where  and

 for all i, i′ = 1. … 5. In this case, Σε = T ⊗ U ⊗ R for (R)ll′ = C(1)(sl, sl′; φ)
and (U)jj′ = C(2)(tj, tj′; ψ).

3.2 Algorithm for Estimation and Prediction
We now discuss estimation and prediction of the speciated PM2.5 using a Bayesian
approach. In order to predict the speciated PM2.5 at location s0 and time t0 given the data V
and Z (all available speciated PM2.5 data and total PM2.5 mass data, respectively) and a
value Z(s0, t0), we need the posterior predictive distribution of V(s0, t0):

(7)

where Θ= (Θ1, Θ2) is a collection of all of the unknown parameters in our statistical
framework. The vector Θ1 includes parameters used to model the proportions of the
speciated PM2.5 to the total PM2.5 mass, θ, and the vector Θ2 includes covariance
parameters of the speciated PM2.5. We use a Markov chain Monte Carlo (MCMC) sampling
algorithm to sample N1 values from the posterior distribution of the parameter Θ (within the

Choi et al. Page 5

J Stat Theory Pract. Author manuscript; available in PMC 2010 April 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



software WinBUGS). Our MCMC sampling algorithm has three stages. We alternate
between the proportion parameters Θ1 given the data (Stage 1), the covariance parameters
Θ2 given the data and the values of Θ1 updated (Stage 2), and the unobserved true values of
V at all sites and time points (Stage 3). We obtain the conditional posterior distribution of
the parameters Θgiven the data updated in Stage 3.

The conditional distribution of V at location s0 and time t0 is:

(8)

where μ(V(s0, t0)) = θ (s0, t0)Z(s0, t0) + Σ12ΣV(V−θZ), (Σ21)T = Σ12 = Cov(V(s0, t0), V) is a
5 × (5NtNs) matrix and ΣV = Cov(V, V). Using the Rao-Blackwellized estimator (Gelfand
and Smith, 1990), the predictive distribution is approximated by

(9)

where Θ(n1) is the  draw from the posterior distribution for the parameters.

4 Spatial-Temporal Model for PM2.5

This section introduces a spatial-temporal model for total PM2.5 mass. We do not consider
the PM2.5 measurements at the FRM monitoring stations to be the “true” values because of
measurement error. We thus denote the observed total PM2.5 mass at location s at time t
from the FRM network by ẐF (s, t), and we assume that

(10)

where  is the measurement error at location s and time t, which is
independent of the true underlying process Z.

A second estimate of the total PM2.5 mass is the reconstructed fine mass (RCFM), ẐR(s, t),
defined as a sum of five main PM2.5 components measured at the STN monitoring stations.
We model ẐR(s, t) as

(11)

where  is the measurement error at location s and time t and is also
independent of processes eF and Z. Since the “true” total PM2.5 mass consists of more
pollutants than the five main components, the additive bias a(s, t) is needed. The bias can be
represented as the bias of the RCFM data, ẐR, with respect to the FRM data, ẐF.
Exploratory analysis suggests the additive bias varies over space and time, and we model
a(s, t) using a hierarchical framework,
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(12)

(13)

(14)

where a1(t) represents the overall temporal trend in the bias of the RCFM data, and h(t) is a
smoothing function of time to explain seasonality in the additive bias term. The process a2(s,
t) accounts for the spatial-temporal structure which is not captured by the overall temporal
trend. We assume the process a2(s, t) is a spatial-temporal first-order Markovian process,
and e1 and e2 are independent white noise processes and are independent of the process Z.

The true underlying PM2.5 process, Z(s, t), is modeled in terms of meteorological variables,

(15)

where the residual process ez is assumed to be normal with a spatial-temporal covariance
function.

We seek to predict values of Z at location s0 and time t0 given the data, ẐF, ẐR, and M.
Therefore, the posterior predictive distribution of Z(s0, t0) given the observations Ẑ = (ẐF,
ẐR) and M is

(16)

where ΘZ is a collection of all parameters considered in the PM2.5 model. After simulating
N2 values from the posterior distribution of the parameters ΘZ, the estimator for the

predictive distribution is , where  is the
 draw from the posterior distribution.

5 Application
Our statistical framework is applied to the daily speciated PM2.5 data in the United States for
the year 2004. In the PM2.5 data framework, we study the spatial-temporal patterns of the
additive bias term of the RCFM process. In the speciated PM2.5 model, we study the spatial-
temporal associations for each component as well as the associations among the
components, and we also study the spatial-temporal pattern of the proportion of each
component of the total PM2.5 mass. We work with our spatial-temporal framework using
only California data because of the computational costs, but we work with our framework
over the entire United States at a fixed time or at a fixed location for year 2004.

In the PM2.5 data framework, we observed that the coefficients of the weather covariates are
different in different regions from the results of the preliminary exploratory analysis. We
thus implement our framework for the nine geographic regions as defined by the United
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States Census: Region (1): Northeast (New England); (2): Northeast (Middle Atlantic); (3):
Midwest (East North Central); (4): Midwest (West North Central); (5): South (South
Atlantic); (6): South (East South Central); (7): South (West South Central); (8): West
(Mountain); (9): West (Pacific). We assume that β(s, t) varies across regions but is constant
over space and time within each region. For the error term ez, we use a separable spatial-
temporal covariance, a stationary exponential covariance for space and autocovariance of
the first-order autoregressive function AR(1) for time. From the exploratory analysis, it
appears that the overall temporal pattern of bias is a sine or cosine function. We assume that
the overall temporal trend function for the bias, h(t), in (13) is a linear combination of one
sine and one cosine function with respect to a 12-month period (1/frequency). Similarly, we
conducted a preliminary data analysis to choose the temporal function, fi(t), in the
multinomial logit model of the proportion parameters. We fitted possible smoothing
functions, and we found the third-order autoregressive function AR(3) seemed appropriate
using AIC and BIC. We use AR(3) for the function fi(t). For the process w, we use a

stationary exponential covariance function , i = 1, …, 5, for
h1 = ||sl − sl′|| (in km) with the sill parameter  and the range parameter ϕi and the

autocovariance function of the AR(1)  for h2 = |tj − tj′|. For the
spatial covariance function of the process eγi (s, t), we also use an exponential covariance
function with unit variance.

We now describe the prior distributions used here. We use gamma priors, G(0.01,0.01), for
the precision of the error terms, e1(t) and e2(s, t). Following the guidance and general
approach used by U.S. EPA (1997 U.S. EPA (2000), we use informative uniform priors,
Unif(1.778,1.814) and Unif(1.362,1.390) for σF and σR, respectively. For the coefficients of
the weather covariates and the sine and cosine functions, we use vague normal priors, N(0,
0.01) (0.01 is the precision). For the error term ez, we use normal hyperprior, N (0, 0.1), for
the parameter in the temporal covariance, and we use uniform hyperpriors, Unif(1,100) and
Unif(0,100), for the range and sill parameters, respectively. We assume the measurement
error term  where I5 is an identity matrix. We use a uniform prior,
Unif(0,100), for . In terms of the priors for the coefficients of the function fi(t), we use

normal priors, N(0, 0.01). For the error term eni, we use a normal prior,  being a
uniform hyperprior, Unif(0,100). For the process eγi, we use a uniform hyperprior,
Unif(1,100), for the range parameter. For the process wi, we use uniform hyperpriors
Unif(1,100) and Unif(0,100), for the range and sill parameters, respectively. The parameter
ψi has normal hyperprior, N(0, 0.1). Since A is a lower triangular matrix, we need to assign
priors for elements Aii′, i, i′ = 1, …, 5 and i ≥i′. We set , and we use normal priors, N
(0, 0.1), for off-diagonal elements.

Figure 2 shows boxplots of the estimated additive bias parameter, a(s, t), for July 2004 and
December 2004 in nine geographic regions as defined by the U.S. Census Bureau. The
estimated daily bias values are the medians of the posterior distribution. Here, we used
monthly averaged values at each location. In July 2004, the estimated bias values were the
lowest in the South Atlantic region and the highest in the Pacific region. In all regions
except the Pacific region, the total PM2.5 mass measured at the FRM network was larger
than the RCFM in July 2004. The difference results in the Pacific region are not surprising
because California during summer season is known to have the losses of about 60 – 90% of
nitrate due to evaporation when the total PM2.5 mass at the FRM network is measured
(Frank, 2006). In December 2004, all regions had negative values for the estimated additive
bias. Overall, the estimated additive bias values in July was lower than in December because
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summer season has high sulfate and ammonium concentrations and the FRM total PM2.5
mass includes high amount of water during the summer season (Frank, 2006).

Figure 3 presents maps of the estimated concentrations of sulfate and nitrate on June 14 and
December 14. Sulfate concentrations were higher than nitrate concentrations across the
United States on June 14. On average, sulfate concentration was 3.22μg/m3 on June 14,
while nitrate concentration was 0.38μg/m3. On June 14, sulfate concentrations in the eastern
United States were highest over the United States. Nitrate concentrations seemed to be high
in Southern California. However, on December 14, sulfate concentrations decreased and
nitrate concentrations increased. The northwestern United States had high sulfate
concentrations on December 14, while Southern California and the Mountain region had
high nitrate concentrations.

The time series plots of the estimated concentrations of speciated PM2.5 in Los Angeles,
Phoenix, and New York City in 2004 are presented in Figure 4. The estimated sulfate and
ammonium concentrations in Los Angeles and New York City were higher than those in
Phoenix. Sulfate concentrations tended to be highest during the summer in Los Angeles and
New York City. For these three cities, nitrate concentrations tended to be highest during the
winter. In particular, it is interesting that nitrate concentrations in Phoenix peak during the
winter. It appears that Los Angeles and Phoenix have high TCM concentrations during the
winter. In Los Angeles, all of the components had high concentrations during March, and
total PM2.5 mass was also high during March.

Figure 5 shows maps of the estimated speciated PM2.5 composition by region and by season
in 2004. In the maps, circle size corresponds to total PM2.5 mass, and we can clearly see the
spatial-temporal pattern of the total PM2.5 mass. During the summer season (July-
September), the total PM2.5 mass was highest in the eastern United States. TCM had the
highest proportion of the total PM2.5 mass among the components over the entire United
States. Sulfate concentrations were highest during the summer season in most of the eastern
United States and the Pacific region because increased photochemical reactions in the
atmosphere increases sulfate formation (Baumgardner et al., 1999). Nitrate concentrations
were highest during the winter season (January-March) because higher ammonia
availability, the cooler winter temperatures, and higher relative humidities favor ammonium
nitrate condensation. On average, nitrate concentration during the winter season was 1.92μg/
m3 over the United States (vs. 1.09μg/m3 for the year 2004). We also see the seasonal
pattern of ammonium concentration. On average, during the winter and spring seasons
(January-June), ammonium concentrations were about 3.2 time higher than during the
summer and fall seasons. During the summer and fall seasons, TCM concentrations were
high because of secondary organic aerosol formation. Crustal material concentrations were
higher in the eastern United States during the spring season because of low soil moisture and
high wind speeds. Also, these regions are impacted by North African dust during the spring
(Malm et al., 2004).

We present in Table 1 the posterior estimates of the elements (Tij) of the T matrix using the
data from California in 2004. The results show the correlations between a pair of speciated
PM2.5 not explained by the mean function of the speciated PM2.5.

Finally, we present some model diagnostics using the deviance information criterion (DIC)
of Speigelhalter et al. (2002), as well as the calibration. We compare three different models
using only data from California in 2004. Model 1 is our statistical framework proposed in
this article. Model 2 ignores the spatial-temporal process ε in Model 1. Model 3 removes
both the spatial-temporal process ε and the hierarchical framework of the proportion
parameters. The DIC for Model 1 was −1149. For Model 2 it was 15575, and for Model 3 it
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was 17604. We also use the root mean squared prediction error (RMSPE). The RMSPE
value for Model 1 was 0.4631, for Model 2 it was 2.092, and for Model 3 it was 3.726.
Thus, our framework has the lowest DIC and RMSPE values among three models. In
addition, we did calibration analysis for the speciated PM2.5 in Phoenix to see the
performance of our framework. We selected randomly 30 observations in 2004, and we
obtained 95% prediction intervals for the ith time given the data, not using data from the ith
time we are predicting. In Figure 6, we present the calibration plots for sulfate and nitrate in
Phoenix. The percentages of the observed values that are outside the interval are 3.3%. We
also did calibration analyses for the other three components in Phoenix. The percentages of
the observed values lying outside the interval are between 0% and 6.7%. We obtained very
good calibration results.

6 Conclusion
In this article we present a flexible hierarchical framework to study speciated PM2.5. The
multivariate spatial-temporal model proposed here allows for spatial-temporal dependency
for each component and cross dependency structures among the components. A hierarchical
framework provides a natural way to investigate the spatiotemporally varying contribution
of each component to the total PM2.5 mass. Using our framework, we can estimate speciated
PM2.5 at unobserved locations of interest in the United States. We also introduce a new
statistical framework to incorporate PM2.5 data from different sources, which takes into
account bias and measurement error over space and time.

We found that the additive bias term of the RCFM process overall seems to be negative and
the RCFM is less than the total PM2.5 mass observed at the FRM network. However, in the
Pacific region, we can clearly see the different results during the summer season because of
the losses of nitrate. In the eastern United States, the contribution of sulfate to the total
PM2.5 mass tends to be higher during the summer. In almost all regions, sulfate
concentrations are higher during the summer. Also, the spatial differences in the sulfate
concentrations are the largest during the summer. On average, the sulfate proportions and
concentrations in the East South Central region are highest where sulfur is emitted from
coal-fired sources (Malm et al., 2002). In general, nitrate concentrations are higher during
the winter, and they are also higher in urban areas because of high nitrogen oxide (NOx)
emissions from automobiles. During the summer, nitrate and ammonium concentrations in
the western United States are low. TCM concentrations explain most of total PM2.5 mass. It
is found that TCM has high concentrations in the summer and fall seasons because of high
fire-related activity. During the spring season, crustal material concentrations are high in the
eastern United States. Our results for the speciated PM2.5 are consistent with previous
analyses (Malm et al., 2004).

The diagnostics show the adequate performance of our model. Some extensions could be
considered in our statistical framework. For example, the total PM2.5 process, Z(s, t), could
be modeled as a nonstationary spatial-temporal Gaussian process with the meteorological
variables. In the STLMC, the separable spatial-temporal process for w(s, t) we assumed
could be extended to a non-separable process. However, computational burden is
exacerbated in these cases and we used simple spatial-temporal models.

We are currently working on association between speciated PM2.5 and daily mortality. The
framework and results presented here will be essential for the health analysis.
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Figure 1.
Model framework for speciated PM2.5.
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Figure 2.
Boxplots of the additive bias of the RCFM process for (a) July 2004 and (b) December 2004
by geographic region (as defined by the U.S. Census). Region (1): Northeast (New
England); (2): Northeast (Middle Atlantic); (3): Midwest (East North Central); (4): Midwest
(West North Central); (5): South (South Atlantic); (6): South (East South Central); (7):
South (West South Central); (8): West (Mountain); (9): West (Pacific).
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Figure 3.
Maps of the posterior median of sulfate concentration (μg/m3) and nitrate concentration (μg/
m3) on June 14, 2004 and on December 14, 2004, respectively.
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Figure 4.
Time series plots of the estimated speciated PM2.5 (μg/m3) for three cities (Los Angeles,
Phoenix, and New York City) in 2004.
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Figure 5.
Maps of estimated speciated PM2.5 composition by region and by season in 2004.
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Figure 6.
Model diagnostics for sulfate and nitrate in Phoenix: STN values of each component versus
the median of the predictive posterior distribution of the component values at time j
eliminating the ith observation. The dotted lines show the 95% prediction intervals. The
percentages of the observed values that are outside the prediction intervals are 3.3%.
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