
Understanding Nuclear Receptors Using Computational
Methods

Ni Ai1, Matthew D. Krasowski2,3, William J Welsh1, and Sean Ekins1,4,5,*

1Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine &
Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
2Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
3Department of Pathology, Division of Clinical Chemistry, Toxicology and Therapeutic Drug
Monitoring Laboratory, University of Pittsburgh Medical Center Presbyterian/Shadyside,
Pittsburgh, PA, 15261, USA
4Collaborations in Chemistry, Jenkintown, PA 19046, USA
5Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA

Abstract
Nuclear receptors (NRs) are important targets for therapeutic drugs. NRs regulate transcriptional
activities through binding to ligands and interacting with a number of regulating proteins.
Computational methods can provide insights into essential ligand-receptor and protein-protein
interactions. These in turn have facilitated the discovery of novel agonists and antagonists with
high affinity and specificity as well as aiding in the prediction of toxic side effects of drugs by
identifying possible off-target interactions. Here, we review the application of computational
methods towards several clinically important NRs (with special emphasis on PXR) and discuss
their use for screening and predicting the toxic side effects of xenobiotics.

Introduction
Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the
expression of a variety of important target genes involved in a wide spectrum of
developmental and physiological processes[1]. In addition to ligand binding, the
transcriptional activities of NRs are also modulated through a range of regulating proteins
termed a coactivator and a corepressor[2–4]. The ligand binding domain (LBD) of NRs is
responsible for both ligand recognition and regulation of protein-protein interactions (Figure
1A) [5]. Upon agonist binding, conformational changes are induced in the LBD, particularly
the AF-2 region, which leads to the dissociation of a corepressor and recruitment of a
coactivator (Figure 1B) (reviewed in [6]). This contributes to downstream gene activation.

NRs represent one of the most important targets for therapeutic interventions for multiple
diseases, including cancer, inflammation and metabolic diseases (such as metabolic
syndrome)[7]. Understanding xenobiotic interactions with NRs is also important in the
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context of endocrine disruptors and environmental toxicity assessment [8]. It is therefore
important to identify synthetic compounds that mimic the cognate NR ligand activity, but
also to develop synthetic compounds that selectively modulate the pharmacology of NRs in
a cell-type and/or tissue-selective manner to exert the desired therapeutic effects while
avoiding potentially undesirable off-target effects (reviewed in [9–15]).

Different computational methods have emerged aimed at understanding and modeling the
functional activities of NR modulators at the molecular level. Generally these computational
approaches fall into two categories, ligand-based and receptor-based approaches, although
more recently there have been efforts to combine these usually distinct approaches [16].
Ligand-based methods essentially focus on molecular similarity, which implies molecules
with similar features exhibit similar biological responses. It is a particularly valuable
approach to identify compounds if structural information for a receptor is unavailable. In
contrast, receptor-based (also synonymous with target-based) methods require the three-
dimensional structure of the protein targets predominantly generated from X-ray
crystallography, NMR structures or homology modeling, in order to address the fundamental
question of how a potential ligand might bind to the receptor. Both ligand- and receptor-
based strategies have been widely applied to advance the understanding of various aspects of
pharmacology in NRs [17,18]. In this review, we focus on several key NRs including the
androgen receptor (AR; NR3C4), estrogen receptor α and β (ERα and ERβ; NR3A1 and
NR3A2), pregnane X receptor (PXR; NR1I2), farnesoid X receptor (FXR; NR1H4), liver X
receptors α and β (LXRα and LXRβ; NR1H3 and NR1H2) and vitamin D receptor (VDR;
NR1I1). We will describe the process of method development and optimization to
accommodate distinct receptor features of NRs, detail the success of computational methods
and finally discuss the application of computational strategies to examine adverse effects of
drugs.

Computational methods to understand NR pharmacology and evolution
NR ligands typically occupy a hydrophobic pocket that lies within the core of the NR LBD
(reviewed in [19]). In contrast to the extensively studied ligand-protein recognition inside
the ligand binding pocket (LBP), the ligand entry or exit mechanisms to and from the
binding site of NRs are poorly understood since there is not an obvious entry or exit route on
the surface. Molecular dynamics (MD) simulations have emerged as a powerful approach to
elucidate various potential dissociation routes of endogenous ligands and synthetic
modulators for several NRs, such as the retinoic acid receptors (RARs; NR1B1, NR1B2, and
NR1B3), thyroid receptor α and β (TRα and TRβ; NR1A1 and NR1A2), VDR and ERs[20–
26]. Results from these computational simulations have revealed that significant
conformational rearrangements of the receptor occur upon ligand binding and release. In
addition to specific receptor and ligand types, computational simulations have indicated that
the quaternary state of the receptor is one of the key factors that influences the prevalence of
a particular pathway, implying that dimerization of NRs plays a role in ligand
dissociation[20]. Several groups have suggested that it may be possible to develop
pharmaceutically relevant ligands that could interact preferentially with NRs in specific
oligomeric states, representing a new type of NR modulator[20].

Transcriptional activities of NRs are regulated by complex functional interactions of NRs
with ligand, DNA, coactivators, and corepressors. Recently a comparison of multiple crystal
structures of LBDs revealed distinct receptor conformations under different ligand
conditions (ligand-free, agonist-bound, or antagonist bound) and coactivator/corepressor
binding [27]. These structures make it possible to understand the ligand specificity of
individual NRs at the atomic level. In the process they also identified helix 12 (H12) in the
AF-2 site of the LBD as the molecular switch for NR activation. H12 is allosterically
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controlled by the binding of different ligands as it plays a structural role through its
localization in the receptor, forming a corresponding site on the protein surface for
cooperative coactivator/corepressor binding, in turn modulating the transcriptional effects of
NRs. Several pieces of evidence suggest that receptor-specific recruitment or interaction
with different transcriptional cofactors is necessary for gene activation in different cell types
and leads to distinct physiological consequences [28–30].

Computational methods have been employed to understand the structural basis for
recognition and specificity among interacting partners that are required for precise
regulation of transcriptional activities of NRs. Wang et al., constructed a structural model
for the PXR LBD with two different interacting domains (ID1 and ID2) from corepressors
using homology modeling[31]. MD simulations on these two models predicted preferential
binding toward ID2 over ID1 by PXR and revealed the key interactions, which was further
supported and validated experimentally. These studies provide insights into the molecular
interactions that direct the assembly of PXR and the corepressor. This may in turn have
important implications for understanding the role of corepressors in regulating the biological
activities of PXR, facilitating the design of therapeutic modulators promoting corepressor
binding. Recently, similar MD simulations were performed on various oligomerization
states of PXR to understand how the AF-2 region rearranges to form an “active-capable”
conformation on the receptor surface for obligate contacts with transcriptional
coactivators[32]. These results revealed highly correlated motions by helices that comprise
the AF-2 region, and indicated a path transmitting long-range motions from the PXR ligand
scaffold to the surface (AF-2 region). Based on observations from computational
simulations, it was also suggested that PXR formed a heterotetramer with RXR, instead of a
heterodimer, to interact with coactivators [32]. Increased motion or flexibility/distortion of
H12 on the AF-2 region was also demonstrated by MD performed with ERα after
coactivator binding [32], as well as with AR and mutations associated with androgen
insensitivity syndrome [33].

Computational methods have also shown their applicability to study adaptive evolutionary
changes of the LBP of different NRs that correspond to varying ligand specificities across
species. Reschly et al. recently combined computational approaches with in vitro studies to
explore the structural basis of ligand preference across vertebrate species for NRs involved
in the cholesterol metabolism pathway, identifying three patterns of co-evolution with bile
salts, the major elimination metabolites of cholesterol[34,35]. FXRs were suggested to have
different specificities for primary bile salts across species which was achieved by altering
the shape and size of the LBP. Human FXR has a curved binding pocket best suited for the
bent steroid ring configuration typical of evolutionarily more recent bile acids. VDRs have
recently acquired sensitivity to lithocholic acid, a toxic secondary bile salt, by changing the
entrance to the LBP. PXRs have expanded their specificity for bile salts, from a narrow
selectivity for planar bile salts in zebrafish to broad specificity for a wide range of bile salt
structures in human, by substantial increases in the volume of the LBP [36]. Analysis of
crystal structures of these three human NRs and LXR show substantial differences in the
volume of the ligand-binding cavity (PXR>>LXR>FXR> VDR) and distances between a
critical arginine residue (Arg-328 in human FXR) and a key glutamine or histamine residue
(His-444 in human FXR) (FXR> LXR> VDR>PXR)[34]. Using evidence from homology
modeling and docking, Reschly et al. proposed that FXR, VDR, and PXR each acquired
sensitivity to bile salts at separate points in vertebrate evolution and then adapted in different
ways to the evolutionary changes in bile salt structure and metabolism[34]. In total, these
combined in vitro-in silico observations present a new integrated picture of co-evolution of a
biochemical pathway and protein structure.
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Computational analysis of three-dimensional coordinates of protein structures has helped to
identify evolutionary important residues and correlate them with important NR functions,
such as dimerization and DNA binding[37]. Recently a new functional site located on the
receptor surface was identified for steroid receptors in the NR3 family using the
evolutionary trace computational method, which integrates evolution of protein sequence,
structures and functions[38]. As shown in Figure 2, this new site is different from amino
residues in the AF-2 region, dimerization domains, or LBP and comprises residues specific
for steroid receptors. Five of nine residues were found to correlate with certain human
diseases, which suggests a biological role in vivo [39–43]. The biological relevance of the
new functional site was further confirmed by experimental mutations of these residues in
ER, showing they disrupted signaling by allosterically influencing estradiol binding and
coactivator recruitment [38]. Results from this computational study have also expanded our
knowledge of protein-protein interactions involved in NR signaling.

Virtual Screening methods to identify NR modulators
Ligand specificity of NRs is crucial in terms of both cellular transcription and therapeutic
applications. In order to understand the essential interactions that determine specificity, it is
important to identify the key ligand structural features and critical receptor residues that are
involved. Computational methods have been widely applied to derive knowledge of such
ligand-protein interactions and identify novel NR ligands, such as endocrine disrupting
compounds (EDCs). EDCs are xenobiotics that activate NRs and disrupt crucial
physiological functions by mimicking cognate ligands, posing a potential risk to wildlife and
humans. Quantitative Structure-Activity Relationship (QSAR) and machine learning models
are useful tools to rapidly extract the structural characteristics for binding from a set of
active ligands using statistical techniques and specific molecular descriptors that may
represent physicochemical properties, molecular shape or other properties. Multiple QSAR
and machine learning models have been published for several NRs, including ER, AR, and
PXR, primarily to address the increasing need for high throughput endocrine disruptor risk
assessment[44–46], but also for toxicological screening [47] in combination with crystal
structures and other in silico methods. A recent analysis of 74 natural or synthetic estrogens
by a QSAR model yielded useful information on structural features for preferential
activation of the ERα and ERβ subtypes[48]. In addition to QSAR models, non-linear
statistical machine learning methods have been successfully applied to separate NR
activators from non-activators[49].

Activation of PXR regulates the expression of metabolizing enzymes such as cytochrome
P450 enzymes (CYP3A4, CYP2B6, and CYP2C8/9) and glutathione-S-transferases, as well
as important drug transporters (P-glycoprotein, multidrug resistance protein as well as
others)[47]. Since the CYP enzymes metabolize the majority of clinically important drugs,
inadvertent up-regulation by PXR agonists may increase metabolism and excretion of other
coadministered therapeutic agents and cause undesirable drug-drug interactions or the
generation of toxic levels of a drug metabolite. It is important to identify molecules that
interact with PXR early in the drug development process, while some environmental
compounds may also activate PXR[50]. Computational methods continue to play a
significant role in identification of PXR activators[45,51,52] and assist in avoiding
unexpected drug-drug interactions before human clinical testing. For example a recent study
used docking to propose candidate molecules that reduced PXR activity by forming
destabilizing interactions [53]. Ung et al., explored the application of three machine learning
methods for predicting PXR activators[52]. Their results indicated that the support vector
machine (SVM) method had the best performance with overall accuracy around 80%. A
more recent machine learning analysis has used the same training set to create Tree and
SVM models which were then tested with a large external test set, providing the most
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exhaustive evaluation of PXR models to date [54]. The selected descriptors in these models
were in good accord with those used in previous pharmacophore and QSAR modeling, as
well as interactions suggested in X-ray crystallography studies.

Some NRs display broad ligand selectivity such that they can promiscuously bind and be
activated by an array of structurally diverse ligands. This characteristic is correlated with
their biological functions as xenobiotic sensors (e.g. PXR) or lipid sensors (e.g.,
peroxisome-proliferator activated receptor, PPARs, NR1C1, NR1C2, NR1C3) [55]. Many
proteins have been found to possess intrinsic disorder in some part of their sequence [56].
These disordered areas lack a rigid three-dimensional structure and frequently are not
resolved in X-ray or NMR structures. These disorded regions can perform various important
biological functions [57] such as protein-protein interactions [58], DNA binding, cell
signaling [59], and protein-ligand interactions [60]. It was recently found that there is
considerable variability in predicted intrinsic disorder within NRs, particularly in the D-
domain (a region of NRs known to be involved in DNA recognition and heterodimerization,
coactivator/corepressor interactions and protein-protein interactions) and LBD, which is
likely an additional important evolutionary force in shaping protein-protein interactions,
promiscuity and NR function [61].

Analysis of available crystal structures of PXR co-crystallized with different ligands
indicated the LBP of PXR is a very large and flexible hydrophobic site, which may account
for its promiscuity in binding structurally diverse ligands [62–68]. Receptor flexibility
observed in the PXR LBD represents a considerable challenge for binding pose prediction
and evaluation by docking methods and is an important consideration for applying receptor-
based approaches to PXR. The majority of computational studies on PXR have therefore
focused on ligand-based approaches to distinguish PXR activators and non-activators, such
as pharmacophores and descriptor-based statistical models (as described above).
Pharmacophores represent the geometric arrangement of essential structural features of
ligands for binding to protein targets. The first pharmacophore study of PXR used 12
published ligands to develop a model that revealed the structural determinants necessary for
binding and suggested its potential application as a structural filter before in vitro
determination.[51] (Figure 3). As more three-dimensional receptor structures co-crystallized
with various ligands became available, new structural information on the LBP was
integrated to develop a receptor-based pharmacophore model that labeled the area
prohibiting the ligand binding (`excluded volumes') and important residues involved in the
binding[69]. To date, a consensus pharmacophore suggests that multiple hydrophobic
features and one hydrogen bond acceptor are common for PXR agonists [70]. Recently we
have evaluated a hybrid method combining ligand-based SVM models with molecular
docking in an attempt to improve predictions [16]. A two-dimensional pharmacophore
model has been used by Lemaire et al. to filter a commercial compound database for
previously unknown PXR activators[71]. The resulting compounds were docked into a PXR
crystal structure and scored for ligand-receptor interactions. Experimental data from in vitro
and in vivo studies corroborated their predictions and identified more active compounds. It
is important to note that across species, PXR shows a high degree of sequence diversity in
the ligand binding domain (LBD), resulting in marked differences in ligand selectivity,
which likely also correlates with the evolutionary pressure of adaption to toxic compounds
throughout development. A pharmacophore analysis performed on the same 16 ligands for
mammalian (human, mouse, rat), chicken, frog and zebrafish PXRs also helped to
understand the evolutionary history influencing ligand specificity[72] as mammals had
similar pharmacophore arrangements while other species differed widely.

Virtual screening (VS) of large compound databases, which incorporates molecular docking
methods and mathematical scoring functions, has been widely adopted to predict ligand-
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protein interactions and identify new drug leads for many NRs, such as ER, progesterone
receptor (PR, NR3C3), glucocorticoid receptor (GR, NR3C1), TR, PPARs, and LXR [73–
80]. Since specificity for a given subtype of NR is of considerable importance for
therapeutic applications, it is important to tailor the VS scheme with target-specific
structural information, e.g. key hydrogen bonding residues, distance cutoff for important
interactions and ligand-receptor complementarities in order to discover subtype-selective
compounds. Using a VS protocol customized with ERβ specific parameters, Zhao et al.,
identified ERβ specific ligands from a plant product-based database [81]. Binding affinity
and selectivity of the 12 candidates from VS were evaluated by a fluorescence polarization
binding assay. Three of twelve compounds displayed over 100-fold selectivity to ERβ over
ERα. Similarly, Knox et al. proposed a target specific VS scheme optimized for ERα. 19
known ERα inhibitors were used to calibrate the scoring functions for specific ERα activity.
Three of seven tested compounds bound to ERα and exhibited good selectivity of ERα over
ERβ[78,82]. A similar strategy (Figure 4) can be utilized to discover novel compounds that
interact with other NRs with high specificities and affinity such as the agonists and
antagonists shown in Figure 5 and 6.

The LBP has been the predominant focus for identification of NR modulators.
Computational methods, combined with experimental approaches, have shown that there are
other sites on the receptor surface possible for small molecule binding to alter NR biological
activities. The AF-2 site is a conserved region among NRs for cofactor protein binding, and
is therefore a potential site for designing novel NR modulators which directly interfere with
essential protein-protein interactions. Recently a VS scheme was integrated with a cell-
based assay to identify novel ERα antagonists that may disrupt coactivator binding[83].
Through a molecular docking study, compounds from the VS were found to selectively fit
into the AF-2 site on the ER surface due to their unique shape and charge properties [83]. A
mammalian two-hydrid assay also confirmed that selected compounds disrupted the receptor
co-activator interactions without displacing estradiol binding to ER. The best compound was
not structurally similar to known anti-estrogens, which suggested a novel class of ERα
modulators as an alternative to the current anti-estrogen therapy.

Ketoconazole and miconazole have been shown as GR antagonists of dexamethasone
binding (while fluconazole had no effect), repressing PXR, CAR and downstream gene
expression[84]. Mutagenesis data, has indicated that the AF-2 region is a potential binding
site for azole antifungals (ketoconazole, enilconazole and fluconazole) acting as PXR
antagonists [85]. Computational docking results revealed these PXR antagonists partially
occupied the same hydrophobic groove where the coactivator motif binds to receptor,
antagonizing the essential protein-protein interaction ([70] and references therein). Based on
these PXR antagonists, a pharmacophore model was developed to elucidate the important
structural features for binding. When this model was combined with docking studies and
biological testing, it enabled discovery of several more potent non-azole PXR antagonists
(included in Figure 6) which included commercially available synthetic compounds and the
FDA approved prodrug leflunomide (Figure 6), confirmed experimentally in vitro [86].
These small molecules also had good ligand efficiencies (as they were more potent on a per
heavy atom basis) compared with ketoconazole when determined using the published
approaches (Figure 7) [87]. This suggests that smaller molecules could also be effective
antagonists and with optimal protein-ligand interactions. It is also important to consider that
antagonism of PXR or other NRs could occur via interactions with other proteins that
interact with PXR or at other surface sites beyond those currently known. Novel PXR
antagonists provide a possible small molecule intervention to control drug metabolism and
transport by reducing the activation of these genes during therapeutic treatment.
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Computational methods to study toxicity profiles related to NR modulators
Selective estrogen receptor modulators (SERMs) such as tamoxifen have been developed to
treat breast cancers and other diseases. However, several adverse effects are associated with
treatment using these drugs, including cardiac abnormalities, thromoboembolic disorders,
and ocular toxicity. In order to understand the molecular mechanism of adverse effects,
considerable efforts have been taken to identify off-target interactions using computational
approaches such as docking studies with structural similarity comparison methods for
binding sites. The protein target with the highest similarity to the ERα LBP was
sarcoplasmic reticulum (SR) Ca2+ ion channel ATPase protein (SERCA), which is a key
mediator of cytosolic calcium levels by accumulating calcium in the lumen. Since the
gradient concentration of calcium in the SR is important for muscle contraction, it is
possible that inhibition of SERCA by SERMs may cause the loss of calcium homeostasis in
platelets and lead to the reported adverse effects, such as cardiac abnormalities[88].

Similar in silico approaches could therefore be used with other NRs and incorporated into
the drug discovery process for early identification of off-target adverse effects.
Retrospectively, computational approaches are also able to discover endocrine effects for
marketed drugs. These results can help to explain the observed side effects and provide an
opportunity to optimize the pharmacological profiles of drugs to eliminate activity at the
original target and ultimately enhance endocrine activities for related therapeutic indications
(an example of drug repurposing[89]). This latter approach takes advantage of the
presumably favorable bioavailability and toxicity profiles for marketed drugs to save time
and cost during the drug development process. Bisson et al., demonstrated the application of
this computational approach on a library of marketed oral drugs. Their study led to a
nonsteroidal antiandrogen with improved AR antagonistic activity and markedly reduced
antipsychotic effects[90].

Conclusions
NRs are important transcriptional factors that regulate a number of essential physiological
processes involved in metabolism, development and systemic homeostasis. Transcriptional
activities of NRs are guided by interactions with ligands and multiple cofactor proteins. In
recent years, computational modeling of NRs has proved increasingly valuable to advance
the understanding of NR pharmacology. Detailed insights about how ligand-protein, protein-
protein, protein-corepressor and protein-coactivator interactions occur make it possible to
predict potential off-target effects. We have shown that a number agonists and antagonists
were computationally discovered for NRs (Figures 5 and 6), which indicates their potential
utility for discovering potential therapeutics to treat NR-related diseases in the future.
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Figure 1.
Domain structures of NRs and mechanism of action upon ligand binding. A) The NR
superfamily shares a common domain structure consisting of a NH2-terminal domain
(NTD), a central DNA-binding domain (DBD), a carboxy-terminal ligand-binding domain
(LBD), and a hinge domain between DBD and LBD. Functions for each domain are also
listed. B) General model for transcriptional activation and repression in presence of agonist
and antagonist. Upon agonist binding, heat shock protein (HSP) and corepressor are
dissociated from receptor. Conformational changes occur in the LBD during coactivator
recruitment, then activation complexes are formed with other cofactor proteins to turn on
target gene expression. Antagonism of NRs is complex and not completely understood. Here
we present one known silencing mechanisms associated with antagonist binding. Antagonist
binding may induce a difference conformation of LBD, therefore prohibiting coactivator
binding or promoting the recruitment of corepressors. It is important to note many NRs work
as homo- or heterodimers (and possibly higher order multimers). The monomer is displayed
here for simplicity.
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Figure 2.
Functional sites on the LBD of NRs. The ER is used as an example. The ligand binding
pocket is shown as a green surface. The cofactor protein binding site is colored in orange.
The computationally identified possible steroid receptor-specific functional site is shown
with a yellow surface. The helices of ER are rendered by a ribbon representation and colored
in magenta, while the coactivator motif is in white.
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Figure 3.
A–D). 3-D agonist pharmacophores derived from different training sets [51,70] E).
Antagonist pharmacophore [70,86]. All pharmacophores were generated with Catalyst
(Accelrys, San Diego). Pharmacophore features represent: green = hydrogen bond acceptor;
cyan = hydrophobic, Orange = ring hydrophobic and Purple = hydrogen bond donor.
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Figure 4.
A Virtual Screening scheme for NRs. First, the corporate or commercial databases need to
undergo prescreening processing that incorporates input file formatting, pre-filtering for the
drug-like compounds, exploring the conformational space of compounds, as well as their
protonation, tautomeric, and stereochemical stages. Studies have identified the “hidden”
impact of database preprocessing on VS results [91]. It is common that the number of
screening compounds in the database can reach thousands to millions. Since docking/scoring
is the most CPU-intensive and rate-limiting step, it is useful to apply certain prescreening
filters to speed up the process. Generally these filters can be derived from structural and
activities information from known modulators based on pharmacophore modeling and
structural similarity. Structural information about the target receptor can be extracted from
resolved X-ray crystallography structures or homology modeling. Abundant knowledge
about ligand-protein interactions can be utilized to customize or fine tune important
parameters for the docking/scoring step of VS. The list of hits will be then post-processed by
target-specific filters. This step tries to increase the retrieval rate of the active compounds
from the whole database and minimize the occurrence of false positives. Finally selected hits
that pass through all requirements are suggested to be evaluated biologically.
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Figure 5.
Structural drawings of some computationally discovered NR modulators using identifiers in
the original references. These compounds bind to the LBP of the corresponding NRs.
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Figure 6.
Structural drawings of some computationally discovered NR antagonists using identifiers in
the original references. These compounds bind to the alternative site on the surface of NRs.
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Figure 7.
Ligand efficiency versus heavy atom count for PXR antagonists which highlights the
relative positions of the three compounds of interest. When we consider the ligand
efficiency (logKi/heavy atom count (no hydrogens) versus heavy atom count, there is an
exponential decrease in efficiency between 10–20 heavy atoms, which is comparable with
observations for much larger datasets across different targets [87].
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