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Abstract
Effects of physical/environmental factors on fine particle (PM2.5) exposure, outdoor-to-indoor
transport and air exchange rate (AER) were examined. The fraction of ambient PM2.5 found indoors
(FINF) and the fraction to which people are exposed (α) modify personal exposure to ambient
PM2.5. Because FINF, α, and AER are infrequently measured, some have used air conditioning (AC)
as a modifier of ambient PM2.5 exposure. We found no single variable that was a good predictor of
AER. About 50% and 40% of the variation in FINF and α, respectively, was explained by AER and
other activity variables. AER alone explained 36% and 24% of the variations in FINF and α,
respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of
the variation. This highlights the importance of AER measurements to predict FINF and α. Evidence
presented suggests that outdoor temperature and home ventilation features affect particle losses as
well as AER, and the effects differ.

Total personal exposures to PM2.5 mass/species were reconstructed using personal activity and
microenvironmental methods, and compared to direct personal measurement. Outdoor concentration
was the dominant predictor of (partial R2 = 30–70%) and the largest contributor to (20–90%) indoor
and personal exposures for PM2.5 mass and most species. Several activities had a dramatic impact
on personal PM2.5 mass/species exposures for the few study participants exposed to or engaged in
them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor
PM2.5) improved the predictive power of the personal activity model for PM2.5 mass/species; more
detailed information about personal activities and indoor sources is needed for further improvement
(especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and
for exposure to non-ambient sources could potentially increase the power of epidemiological analyses
linking health effects to particulate exposures.
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1. Introduction
Epidemiologic studies report positive associations between ambient fine particulate matter
(PM2.5) and adverse health effects in metropolitan areas worldwide (U.S. EPA, 2004). In these
studies, the ambient PM2.5 concentration is used as a surrogate for the ambient PM2.5
exposure. However, people spend more than 85% of their time indoors (Klepeis et al., 2001).
Thus the indoor environment is a main location in which exposures to ambient PM2.5 occur.
To account for the modification of ambient PM2.5 with outdoor-to-indoor transit, some
epidemiologic studies use air exchange rate (AER), or in its absence air conditioner use, as a
modifier of ambient PM2.5 (Franklin et al., 2007; 2008). We note below that the fraction of the
ambient concentration to which people are exposed (α) and the fraction of the ambient
concentration found indoors (FINF) are the key modifiers of personal exposure to ambient
PM2.5; these factors depend, in part, on AER. We recognize that indoor sources and personal
activities, as well as ambient PM2.5, contribute to total PM2.5 exposure. Herein we examine
the main determinants of AER, α and FINF, and the effects of activities and other exposure
factors on indoor PM2.5 and total personal exposure. A better understanding of the drivers of
AER, FINF and α variability could help refine epidemiological study design (U.S. EPA,
2004) and aid the development of effective strategies to mitigate PM2.5 exposures.

The steady state mass balance equations,

(1)

(2)

have been widely used to separate indoor PM2.5 (Ci, µg/m3) and total personal PM2.5 exposure
(Et, µg/m3) into two components: PM2.5 of ambient (or outdoor) origin (Ca in Equation 1;
Ea in Equation 2, µg/m3), and PM2.5 of nonambient origin (Cna in Equation 1; Ena in Equation
2, µg/m3). The ambient component of indoor PM2.5 is a product of the ambient concentration
(Ca, µg/m3) and FINF (dimensionless), which is a function of the penetration coefficient (P,
dimensionless), air exchange rate (a, h−1), and particle loss rate (k, h−1). Personal exposure to
ambient PM2.5 is a product of the ambient exposure factor (α, a.k.a. attenuation factor,
dimensionless) and ambient concentration. The ambient exposure factor is a function of
FINF and the fraction of time a person spends outdoors (y, dimensionless).

New methods have been proposed to estimate α and FINF based on measured indoor, outdoor,
and personal PM mass and species concentrations (U.S. EPA, 2004; Hopke et al., 2003; Meng
el al., 2005; Wilson and Brauer, 2006; Strand et al., 2007), or based on mechanisms governing
PM penetration (Hering et al., 2007). However, the influence of environmental factors (e.g.,
temperature) and housing factors (e.g., house age, ventilation) on AER, α, and FINF is poorly
characterized.

Personal exposure to non-ambient PM2.5 (e.g., from indoor sources and personal activities)
can also complicate the interpretation of air pollution studies and reduce the power of
epidemiological findings (U.S. EPA, 2004). Personal activity information from questionnaires
has been used in regression and analysis of variance models to describe sources and activities
impacting exposure and indoor air quality (Koistinen et al., 2001; Lai et al., 2006; Lanki et al.,
2007; Baxter et al., 2007). However, the multivariate nature of personal activities and use of
this knowledge to reconstruct PM2.5 exposures requires further elucidation. How well can
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PM2.5 exposure be predicted by personal activities? How important are various activities to
indoor PM2.5 concentrations and personal exposures? Three methods frequently employed to
quantify personal PM2.5 exposure are: 1) direct personal exposure measurements, 2) measured
microenvironmental concentrations and time spent in each microenvironment, and 3) personal
activity information. It is not feasible to measure personal exposures directly for a large
population. It is also burdensome to apply the microenvironmental method to estimate personal
exposures for a large population. Thus the personal activity method could prove more practical
as a method for estimating population exposure distributions.

In this work, the effects of home characteristics and environmental factors on AER, FINF and
α are examined. Also, models are employed to predict indoor and total personal exposure to
PM2.5 using personal activity information and using a microenvironmental method. This work
reflects our continuing effort to understand 1) indoor and personal exposure to ambient and
non-ambient PM2.5 and 2) exposure modifiers (e.g., Naumova et al., 2003; Meng et al.,
2005; 2007; Polidori et al., 2006).

2. Methods
2.1 Sampling and Chemical Analysis

The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study is documented in detail
elsewhere (Weisel et al., 2005; Turpin et al., 2007). Briefly, as part of the RIOPA study (1999
summer – 2001 spring), 48-h indoor, outdoor and personal PM2.5 samples were collected in
374 non-smoking homes in Houston (TX), Los Angeles County (CA), and Elizabeth (NJ).
Samples were analyzed for mass (gravimetric), and a subset of the samples (279 homes) were
analyzed for 36 elements (XRF) and organic and elemental carbon (OC and EC, indoor and
outdoor samples only; thermal-optical transmittance with adsorption artifact correction). The
48-h average indoor and outdoor temperature and AER for each home were also measured.
AER was determined from house volume and the concentration of an inert non-toxic tracer
released at a constant rate during sampling (Dietz et al., 1986). The maximum measurable
AER was approximately 5 air changes/hr, and method precision (expressed as coefficient of
variation) was 18%, based on 79 pairs of collocated samples.

2.2 RIOPA Questionnaires
Four questionnaires were developed based on the National Human Exposure Assessment
Survey (NHEXAS; Sexton et al., 1995): the Baseline Questionnaire, Activity Questionnaire,
Technician Walk-Through Questionnaire, and Activity Diary. Questions related to household
characteristics, participant demographics and socioeconomic information were included in the
Baseline Questionnaire and answered by study participants. The Technician Walk-Through
Questionnaire documented the independent observations of study personnel with respect to the
characteristics of the participants’ household and neighborhood. The Activity Questionnaire
collected information regarding when and where participants spent time and what they did
during the sampling period. The Activity Diary was a 30-min resolution activity log listing the
time a participant spent in each location or microenvironment.

In this analysis, questions were examined for their relevance to indoor PM2.5 emission, home
ventilation, particle loss, particle penetration, and the fraction of time a person spent in each
microenvironment. Thirty-two questions from the Activity Questionnaire and three questions
from the Baseline Questionnaire were selected for use.

2.3 Estimation of FINF and α
In previous work, a microscopic mixture model was used to calculate FINF for each RIOPA
home based on the measured indoor and outdoor PM2.5 elements, OC, and EC (Meng et al.,
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2005; Turpin et al., 2007). Briefly, a least-trimmed squared regression (S-plus, Insightful, Inc.)
was used to regress the indoor PM2.5 species concentrations on the outdoor PM2.5 species
concentrations collected concurrently at a single home, yielding a PM2.5 FINF (slope) for each
of 114 RIOPA homes. The FINF mean and standard deviation were 0.69 and 0.23 respectively,
across homes. Individual FINF values had standard errors of 0.0002 – 0.066. The microscopic
mixture model assumes steady state and that indoor and outdoor sources are independent. This
model allows for sample-to-sample variations (across homes and days) in AER, particle
penetration, and particle loss rate that can occur due to variations in parameters such as house
structure, air conditioner use, ventilation practice, particle size distribution, particle
composition, and the thermodynamic stability of particle species. The least-trimmed squared
regression was used to estimate FINF for each home because it is very robust with respect to
outliers, and outliers occur whenever there are substantial indoor sources.

The ambient exposure factor (α) for each subject was calculated (Equation 2) using FINF
estimated above and the fraction of time a person spent in different microenvironments, as
recorded in the Activity Diary Questionnaire. The effects of ventilation conditions and
temperatures on FINF, α and AER were then examined.

2.4 Analysis of Housing, Environmental Factors and Activities
The central tendency of the AER, FINF, and α under different household and ventilation
conditions was examined using nonparametric statistical techniques, such as Wilcoxon two-
sample test and Kruskal-Wallis tests. The relationships between ambient temperature and
AER, FINF, and α were characterized by a nonparametric regression method, LOESS (Local
Polynomial Regression Fitting), which provides great flexibility and does not assume a
parametric form for the regression surface. The smoothing parameter was determined based
on the optimization of the bias-corrected Akaike information criterion, and the robustness of
the nonparametric fit was improved by iterative reweighting.

2.5 Reconstruction of Total Personal Exposures
Personal exposures were reconstructed with two methods: 1) microenvironmental method and
2) personal activity method. The resulting personal exposure estimates were compared with
direct personal exposure measurements using Wilcoxon two-sample tests.

The microenvironmental method is given by:

(3)

where Cj is the PM2.5 concentration in the jth microenvironment, and tj is the time a person
spends in the jth microenvironment. In this work, the microenvironmental method predicted
personal exposure to PM2.5 and associated species using residential indoor and outdoor
concentrations, time spent in each microenvironment, and Equation 3.

The personal activity method predicted indoor and personal exposures using multiple linear
regression (MLR) of activity variables with stepwise predictor selection, adjusting for
corresponding outdoor concentrations. The 27 dichotomous activity variables used in the
analysis (Table S1) are related to PM source emissions. These variables document that a certain
activity/event either happened (Yes, coded as 1 in the regression model) or didn’t happen (No,
coded as 0) during the 48-h sampling period. Variables were first selected based on their
relevance and frequency distribution across the two levels (Yes/No) of each activity variable

Meng et al. Page 4

Atmos Environ. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Table S2). If the frequency of an activity on either level was less than 1, that variable was
removed from the input even if it was relevant to PM2.5 exposure.

The collinearity between activity variables was then tested and outliers were identified.
Questionnaire-based personal activity information has a multivariate nature due to personal/
population living patterns and the design of the questionnaire (e.g. the same information might
be asked multiple times in different ways). The variance inflation factor was used to identify
collinearities between activity variables. No more than one of any group of highly correlated
variables was retained in any final stepwise regression model. The final variance inflation
factors for all variables were close to one, indicating that the issue of collinearity was addressed
adequately. The detection of outliers was based on influential diagnostics (the DFFITS statistic)
in the regular least square regression; outlier detection by least trimmed square regression was
computationally prohibitive in this case. An outlier was defined and removed from the final
input if the DFFITS value was greater than , where k is the number of regression
coefficients to be determined and N is the number of observations.

Finally, MLR with stepwise selection was conducted based on the “clean” input dataset
(without outliers and collinear variables) to characterize the effects of personal activities on
indoor and personal PM2.5 exposure. Input variables (Table S1) differ slightly for different PM
species because the subset of PM samples analyzed for elements and OC/EC were not entirely
identical, leading to slightly different collinearity and sample size issues. The PM species
selected are those typically associated with PM sources or formation mechanisms: Ca (soil
dust), K (soil dust and biomass combustion), S (secondary PM from coal and diesel
combustion), V (oil combustion), OC (both primary and secondary PM) and EC (combustion)
(Hopke, 1985). Nitrate was not measured.

Statistical analyses were conducted with the Statistical Analysis System (SAS version 9.1, SAS
Inc, Cary, NC). The significance level was 0.05 except where specified, and mathematical
transformation of data (i.e. logarithmization) was made whenever necessary to reduce the
skewness of the original data and more closely meet the assumptions of the statistical models.
Homes sampled a second time (~3 mo later) were treated as independent samples.

3. Results and Discussion
3.1 Effects of Home Ventilation and House Type on FINF, α, and AER

As defined in Equation 1, FINF is a function of three physical parameters: P, k and AER. The
relationship among FINF, P, k and AER (a) can be recast as

(4)

where (1/P) and (k/P) can be regarded as the intercept and the slope, respectively, in the context
of a regression analysis. A least trimmed square robust regression was conducted to examine
the association between 1/FINF and 1/a for the 114 RIOPA homes with home-specific FINF
(Meng et al., 2005). A positive association (P-value < 0.001) between 1/FINF and 1/a was seen
(Figure 1), and the population average P (0.83) and k (0.06 h−1), derived from the regression
intercept and slope, are similar to what we found previously for the overall RIOPA study
(Turpin et al, 2007). If all homes shared the same penetration coefficient and particle loss rate,
a perfect linear relationship between 1/FINF and 1/a would have been observed, and AER would
be an outstanding surrogate for FINF. Differences in P and k across homes might contribute to
the observed scatter in Figure 1 (r2 = 0.18). Physically, P and k are not independent (Lunden
et al., 2003). We expect that P and k are affected by factors such as home ventilation status
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(e.g., Central AC Operation), type/age of construction (e.g. Building Age), particle size
distribution, and the thermodynamic properties of the aerosol because these factors affect PM
losses by impaction, diffusion, sedimentation and evaporation. For these reasons, below we
examine the effects of several factors on the magnitude and variability of FINF, α, and AER
(Table 1–2).

Central AC Operation was the only factor significantly associated (negatively) with all three
parameters (FINF, α, and AER; Wilcoxon two-sample tests P-value < 0.05) (Table 1). Mean
FINF, α, and AER were 0.57, 0.68, and 0.7 h−1, respectively, for homes where a central air
conditioning (AC) system was in operation; and 0.73, 0.79, and 1.3 h−1, respectively, for homes
where it was not. The lower FINF and α for homes using central AC (compared to those that
were not) could be driven by the lower AERs for these homes.

Unlike Central AC Operation, the factors Window Fan Operation, Ceiling Fan Operation, and
Central AC (existence of a system) were significantly (P-value < 0.05) or marginally
significantly (0.05 < P-value < 0.10) associated with changes in FINF or α, but not AER. For
example, Window Fan Operation was significantly associated with changes in α (P-value =
0.0069) and marginally associated with changes in FINF (P-value = 0.10). The mean α was
0.85 vs. 0.75 and mean FINF was 0.76 vs. 0.68 for using vs. not using a window fan,
respectively, whereas the increase in AER was not significant (1.5 h−1 for using vs. 1.1 h−1 for
not using a window fan). In contrast, Window AC Operation was a marginally significant factor
associated with AER change (1.9 h−1 for using vs. 1.0 h−1 for not using a window AC); however,
using window AC did not significantly alter FINF or α.

This observation (see also Figure 1) is consistent with the expectation that exposure factors
can alter FINF or α not only by affecting AER but also by changing particle loss rates indoors
(k) and/or during outdoor-to-indoor transport (P) (Bearg, 1993). In part this occurs because
particle loss processes are complex functions of the air flow patterns (stagnant vs. turbulent),
and the use of some ventilation units (e.g. ceiling fans) change the air flow pattern in a room.
Therefore, the use of a ventilation unit is expected to change P, k and AER. It is important to
recognize this when house type/age, home ventilation status, or AER is used as a surrogate for
FINF or α to classify personal exposure to ambient PM2.5. Note sample sizes for some categories
are small (e.g. N = 3 for using attic fan, Table 1); findings for these factors are less robust.

Outdoor temperature also affected FINF, α, and AER (Figure 2). FINF (and α) reaches its
maximum when the outdoor temperature is approximately 20 °C, decreasing at higher and
lower temperature (Figure 2b,2c). In contrast, little association was observed between AER
and outdoor temperature (Figure 2a). Relationships with outdoor temperature (Figure 2a–c)
were characterized by LOESS, a nonparametric regression method. LOESS was used because
no parametric form of the regression surface is known, although Lai et al. (2006) found a
significant association between outdoor temperature and indoor PM2.5 (ln-transformed) in
EXPOLIS. Long et al. (2001) observed a seasonal effect of hourly FINF in nine Boston
residential homes, with higher FINF in the summer (> 0.7) and lower in the winter (68% of
hourly FINF were less than 0.7).

Differences in the response of FINF, α, and AER to temperature changes might be explained as
follows. When the ambient temperature departs from the thermal comfort temperature, people
tend to close their windows and use either cooling or heating equipment. As a result of heating
or cooling, the absolute indoor-outdoor temperature difference increases, driving additional
airflow. Closing the windows decreases AER (wind effect) and increases particle losses; while
at the same time the increased temperature gradient increases AER (temperature effect),
resulting in greater effects of temperature on P and k (and therefore FINF) than on AER.
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Least trimmed square regressions were applied to examine the effect of absolute indoor-
outdoor temperature differences on FINF (Figure 2e) and α (Figure 2f). Correlations were weak;
slopes were negative and not significant at the level of 0.05. The association between AER and
the absolute temperature difference was positive but not significant (Figure 2d). In contrast,
Wallace et al. (2002) and Howard-Reed (2002) reported a strong linear association between
the within-home AER (70 min resolution) and the absolute indoor-outdoor temperature
difference (R2 = 0.46, N=543). The differences in findings between these studies can, in part,
be explained by differences in study designs. This study examined associations across homes
in three distinct climates, whereas the other examined within home associations longitudinally.

To examine how much variation in FINF, α, and AER can be explained by the observed or
measured variables, a multivariate approach (stepwise MLR) was used to predict FINF, α, and
AER based on home ventilation status, building age/type, measured AER and outdoor
temperature (Table 2). For FINF and α, AER was the dominant predictor, accounting for 35.6%
and 24.1% of variations in FINF and α, respectively. Each of the other predictors accounted for
less than 4% of the overall variation. The overall modeled coefficients of determination (R2)
are 49% for FINF and 41% for α, respectively. For AER, the only significant predictor was
Central AC Operation, explaining 6.9% of the overall variation. Thus, no simple ventilation
variable was identified that was an adequate surrogate for AER. Substantially better FINF
prediction was achieved, with AER as the main predictor. This highlights the importance of
AER measurements.

3.2 Effects of Activity Patterns on Indoor PM2.5 and Personal Exposure
Indoor and personal PM2.5 mass and species predictions from stepwise MLR of personal
activity variables and outdoor concentrations are presented in Table 3–Table 4. The regression
coefficients (and P-values), partial R2 for each predictor, and the overall model R2 from the
final least square fit are given. Regression coefficients for activity variables are in concentration
units (µg/m3 for mass, OC, EC, and S; ng/m3 for Ca, K, and V). They represent the increase
in the PM mass or species concentration when a certain activity occurs. For example, the
regression coefficient for “Incense” is 1.6 µg/m3 for indoor PM2.5 mass and 26.8 µg/m3 for K
(Table 3, N=58), suggesting that burning incense indoors increases the 48-h average indoor
PM2.5 mass and K by 1.6 and 26.8 µg/m3 on average, respectively, when it happens. Also
presented (Table 3–4) are the median percentage contributions of outdoor PM2.5 and each
activity to the measured PM2.5 mass/species concentrations for the study population. The
median contribution of an activity to the population is determined by the product of the activity-
related source strength (the regression coefficient) and the frequency distribution of the activity
across the population (Bernoulli distribution for dichotomous variable; 0 when the activity
didn’t occur; 1 when it did; Table S2). Even if an activity generated substantial emissions, it
was not a substantial contributor to population exposure unless it was also a frequently
occurring activity.

Among all predictors, outdoor concentration dominates the contribution to PM2.5 mass and
species (except for Ca), with median percentage contributions of 18.5% to 100% (Table 3–4).
In addition, in all cases, the overall R2 in the MLR models are larger than the partial R2 for
outdoor concentration (as if outdoor concentration were the only predictor), indicating that the
inclusion of personal activities increases the predictive power of the model. For indoor OC,
Ca, K and personal Ca, K and mass, the overall model R2 increases by a factor of two by
including personal activities as predictors, compared to the partial R2 for outdoor concentration
alone (Table 3–4). For S, V, and EC, outdoor concentration is the predominant predictor. The
overall model R2 is high for S, V, EC (dominated by outdoor sources), but still low for Ca, K,
and OC (which have substantial indoor sources) despite the added predictive power of personal
activities. The low R2 for these species might occur if: 1) these species are generated by
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activities that are not adequately documented in the questionnaires; 2) indoor activity-related
emissions or losses are highly variable, or 3) outdoor soil dust particles are a substantial
contributor to these species and their infiltration is highly variable. (Dust particles are in the
coarse tail of PM2.5 and have low infiltration factors; Meng et al., 2007.)

Environmental tobacco smoke (ETS) has long been known to be the most important indoor
particle source (Wallace, 1996). Although RIOPA subjects were non-smokers, ETS emissions
were reported in a few (N=5) homes. For these homes, the median indoor PM2.5 (23.2 µg/
m3) was almost double that of homes without ETS emissions (14.2 µg/m3) (Table S2),
consistent with EXPOLIS (Lai et al., 2006).

Home cleaning processes (labeled “Sweeping”) primarily contributed to PM2.5 mass and dust
related species (Ca, K) (Table 3–4). They also contributed to indoor OC (15%). The association
of cleaning with OC might occur because OC is a constituent of house dust (Hopke et al.,
2003), and/or because it is formed from the oxidation of household cleaning products
(Weschler, 2001). Housework such as vacuuming has previously been linked to soil dust tracers
(Ca, K) (Baxter et al., 2007). Lanki et al (2007) estimated that indoor cleaning activities
increased 24-h average personal PM2.5 mass exposures by 2 µg/m3. Baxter et al. (2007)
estimated that they increased indoor Ca and K by 3.28 and 11.8 ng/m3, respectively, when
averaged over a week. The Baxter et al. (2007) finding for the effects of indoor cleaning on
Ca is comparable to our results: in RIOPA, cleaning increased indoor Ca by 20.9 ng/m3 over
the 48-h sampling period, which is equivalent to ~ 6.0 ng/m3 averaged over a week (assuming
cleaning once per week).

Indoor heating and combustion activities (Oil furnace, Oven, Fireplace, and Incense) are
associated with increased indoor and personal exposure to EC, K, S and/or V (Table 3–4). This
is not surprising, since these species have been used as combustion tracers in the past. Note
that Baxter et al. (2007) found an association between EC and candle burning. Cooking could
be another important indoor combustion source (Wallace, 1996), although results from recent
studies are mixed. No significant effects of cooking on indoor PM2.5 mass were reported in
this study or EXPOLIS (Helsinki; Koistinen et al., 2001). In contrast, Lanki et al (2007) and
Baxter et al. (2007) reported that cooking was a significant contributor to indoor PM2.5
(Amsterdam, Helsinki, and Boston). The differences might result from variations in cooking
style, cooking time, frequency and kitchen/home design.

Travel, Cooking_outside, Woodworking, Sander, and Chainsaw contributed to increases in
Ca, K and/or V. Neither time spent outdoors nor Travel affected personal PM2.5 exposure in
EXPOLIS (Koistinen et al., 2001), but in RIOPA Travel was significantly associated with
personal Ca exposure. Chainsaw and Sander use were associated with increased personal V
exposure, and Outdoor Cooking with increased Ca, K and V. Ca is released from meat cooking
and is a soil dust component (Watson and Chow, 2001). Note these activities were rare and
therefore contributed little to the median exposure.

Exposures reconstructed using the microenvironmental method (Equation 3) were more highly
correlated with direct personal exposure measurements (Figure 3) than were exposures
predicted with the personal activity method (Table 4), suggesting that personal exposure
variations are better captured by the microenvironmental model. The coefficients of
determination (R2) for PM2.5 mass, S, Ca, K, and V were 28.4%, 86.2%, 26.2%, 30.5%, and
79.3%, respectively, for the microenvironmental model; they were 8.5%, 75.4%, 9.9%, 11.0%
and 75.6%, respectively, for the personal activity model. For ambient generated species such
as S and V, no significant differences were observed between measured (personal) and modeled
(microenvironmental method) exposure concentrations according to Wilcoxon two-sample
tests. In contrast, for species with strong local and indoor sources, the microenvironmental
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model underestimated population mean exposures by 20 µg/m3, 87 ng/m3, and 346 ng/m3 (for
PM2.5 mass, K and Ca, respectively; P-value < 0.001). For the personal activity model, no
significant differences were observed between the modeled and measured exposures since
measured personal exposures were used in the model (dependent variables) to “calibrate” the
contributions from personal activities.

4. Discussion and Conclusions
In this work, the ability to predict exposure to ambient and to total PM2.5 and associated species
was examined. Specifically, we examined drivers of exposure to PM2.5 and associated species
including personal activities, microenvironmental concentrations, and outdoor-to-indoor
transport.

First we explored the effects of physical and environmental factors on 1) the main modifiers
of exposure (FINF and α), and 2) on air AER. No single variable was a good predictor of
AER. Substantially better prediction of FINF and α was achieved, with AER as the dominant
factor (explaining 36% and 24% of the variation in FINF and α, respectively). This highlights
the importance of AER measurements.

There was a considerable difference in the response of FINF and of AER to changes in
temperature. FINF was largest for ambient temperatures near 20 °C and decreases at higher and
lower temperatures, whereas AER showed little sensitivity to outdoor temperature. Central AC
operation was the only factor with a statistically significant effect on FINF, α, and AER. Other
home ventilation and building features seem to affect AER differently than they affect FINF
and α. These observations suggest that temperature, ventilation features, and building age/type
alter particle loss processes (P, k) as well as AER. Note P and k are also physical determinants
of FINF and α (Equations 1,2). This is important to recognize when using a ventilation variable
as an exposure modifier in PM epidemiology.

The contributions of personal activities to total PM2.5 exposures were investigated using the
personal activity model. Outdoor concentration was the dominant predictor of indoor
concentration and personal exposure for all examined species (except Ca). Incorporation of
personal activities as predictors improved the predictive power of the personal activity model,
despite the fact that these activities were incorporated as binary variables. Several non-ambient
PM sources were identified that were rarely encountered by RIOPA participants but
dramatically increased the PM2.5 mass/species exposures for the participants that were
exposed. Most notably, engaging in woodworking and exposure to tobacco smoke increased
PM2.5 exposures by approximately 25 and 10 µg/m3 (averaged over 48-h) respectively, when
these exposures occurred. Engaging in woodworking, when it occurred, also had a large impact
on K exposure (>100 ng/m3). Several personal activities were identified that can substantially
increase exposure to Ca and K. Effective control for (or accounting of) non-ambient sources
in predictive exposure models could enhance the ability of epidemiologic studies to explore
associations between health endpoints and exposure to individual particle-phase species.

Total personal exposure was reconstructed using personal activity and microenvironmental
methods. The microenvironmental model better captured exposure variability than the personal
activity method, suggesting that inter-personal variations in exposure features such as indoor
source strength and exposure duration can be well captured by microenvironmental models
that make use of both indoor and outdoor measurements. However, in this work the
microenvironmental model did not accurately capture the magnitude of exposure to PM2.5
species with large personal activity source contributions. One limitation of this study is that
concentrations were only measured in two microenvironments (indoor and outdoor), and
exposures in other microenvironments (e.g. office) were not represented.
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The performance of the personal activity model relies on activity information collected using
a questionnaire. The biggest limitation of the personal activity model is that it does not account
for variations in the duration, composition, or magnitude of emissions associated with a
documented activity. The personal activity model provides a single average source strength
(the regression coefficient). It is possible that a more sophisticated treatment of activities and
indoor sources, for example coupling highly time-resolved measurements and activity data,
could substantially improve prediction for species with considerable activity-related sources.
More information about sources of Ca, K, and OC is especially warranted.

RIOPA was a pooled study where many homes were sampled 1–2 times to maximize the
variability in important exposure drivers. If this study instead had a longitudinal design (few
people sampled many times), we would expect that a greater portion of the exposure variability
would have been explained because personal activities and indoor sources vary less within
subjects than between subjects and the effects of home construction on P, k and AER would
be de-emphasized.

This paper highlights the importance of AER, FINF, α, and PM exposure prediction with the
goal of inspiring further advancements that will aid exposure mitigation and PM epidemiology.
Because people spend most of their time indoors and the fraction of ambient PM that penetrates
and persists in the indoor environment (FINF) varies, we expect that adequately accounting for
the penetration and persistence of ambient particles into indoor spaces will reduce exposure
error and bias leading to narrower confidence intervals, better model fits and perhaps larger
risk estimates in epidemiologic studies of ambient PM. Also, if a particular PM species were
responsible for PM toxicity, exposure error and bias would be reduced if epidemiologic studies
examined total (ambient plus non-ambient) exposure to that species. Exposure assessment is
also needed to develop effective exposure mitigation strategies.
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Figure 1.
The relationship between the fraction of ambient PM2.5 found indoors (FINF) and air exchange
rate (a) for the 114 RIOPA homes with home-specific PM2.5 FINF values. The regression line
and the equation on the plot are the results of least trimmed square regression.
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Figure 2.
The relationship between outdoor temperature and air exchange rate (a), fraction of ambient
PM2.5 found indoors, FINF (b), and alpha (ambient exposure factor) (c), a LOESS smooth curve
(solid line) and corresponding upper and lower 95% confidence levels (dash lines) are also
shown on (a), (b), and (c); the relationship between the absolute difference of indoor and
outdoor temperature and air exchange rate (d), infiltration factor (e) and alpha (f), the lines and
the equations on (d), (e) and (f) are the results of the least trimmed square regression.
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Figure 3.
Estimated personal exposure concentrations using a microenvironmental model and direct
personal exposure measurements for PM2.5 mass (a) and Sulfur (b). The solid line is the least
trimmed square robust regression line.
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