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Abstract
Chronic low level polychlorinated biphenyls (PCB) exposures remain a significant public health
concern since results from epidemiological studies indicate PCB burden is associated with immune
system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of
these various adverse health effects, developmental neurotoxicity has emerged as a particularly
vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could
be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or
more receptor mediated processes. This review will focus on our current knowledge of the structure
and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related
non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-
coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible
short and long-term consequences of these perturbations on neurodevelopment and
neurodegeneration are reviewed.

1. Dioxin-like and non-dioxin-like PCBs
1.1. Occurrence and concerns to public health

Polychlorinated biphenyls (PCBs) are synthetic chlorinated aromatic hydrocarbons that are
non-flammable, chemically stable and have high boiling points. In the United States, PCBs
were synthesized and marketed primarily as Aroclor® mixtures whose degree of chlorination
was identified by a four-digit designation (e.g., 1248, 1254, 1260, etc.), with the first two digits
identifying the mixture as PCBs and the last two digits identifying the percent of chlorine used
during synthesis. A higher degree of PCB chlorination increases melting point and lipophilicity,
whereas lower chlorination increases vapor pressure and water solubility. Similar PCB
mixtures were synthesized worldwide and identified under several trade names such as
Clophen® and Kanechlor®. PCB mixtures, especially those of intermediate chlorination, such
as Aroclor 1248 and Aroclor 1254, were widely used in several industries for their insulation
and heat dissipating properties. PCBs were also broadly incorporated into a variety of common
products such as pesticide extenders, plastics, varnishes, adhesives, carbonless copy paper,
newsprint, fluorescent light ballasts and caulking compounds (Ross, 2004).

By 1977, when PCBs were banned, more than 600,000 tons were manufactured in the United
States, and global production is estimated at over 1.5 million tons (Breivik, Sweetman, Pacyna,
& Jones, 2002). Because of their extensive industrial use and chemical stability, PCBs have
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accumulated in the environment and biota. PCBs have been identified in approximately one
third of the sites listed on the National Priorities List (NPL) and Superfund Sites (Anonymous,
2007). The average PCB levels in the environment and human blood have steadily declined
since 1977. However, geographic “hotspots” of relatively high PCB contamination persist due
to improper disposal, and mobilization of PCBs from historical end uses in and around urban
environments (legacy PCBs). Specific examples of PCB hotspots in the United States that
contribute to higher human exposures include the San Francisco Bay watershed (Davis, Hetzel,
Oram, & McKee, 2007), the Hudson River watershed (Asher, Wong, & Rodenburg, 2007;
Schneider, Porter, & Baker, 2007), Chicago air (Hu, Martinez, & Hornbuckle, 2008; P. Sun,
Basu, & Hites, 2006; Zhao et al., 2009), and regions of Lake Erie near urban centers (S. D.
Robinson, Landrum, Van Hoof, & Eadie, 2008; P. Sun, Basu, Blanchard, Brice, & Hites,
2007). Thus, chronic low level PCB exposures remain a significant public health concern since
results from epidemiological studies indicate PCB burden is associated with immune system
dysfunction (Heilmann, Grandjean, Weihe, Nielsen, & Budtz-Jorgensen, 2006; H. Y. Park et
al., 2008; Selgrade, 2007), cardiovascular disease (Dziennis et al., 2008; Everett, Mainous,
Frithsen, Player, & Matheson, 2008; Helyar et al., 2009; Hennig et al., 2005; Humblet,
Birnbaum, Rimm, Mittleman, & Hauser, 2008), and impairment of the developing nervous
system (Y. C. Chen, Guo, & Hsu, 1992; Grandjean & Landrigan, 2006; Jacobson, Jacobson,
Padgett, Brumitt, & Billings, 1992; Koopman-Esseboom et al., 1996; Roegge & Schantz,
2006; Rogan & Ragan, 2007; Schantz, Widholm, & Rice, 2003; P. W. Stewart et al., 2008).
Of these various adverse health effects, developmental neurotoxicity has emerged as a
particularly vulnerable endpoint in PCB toxicity. Whether neurological, immunological and
cardiovascular impairments are interrelated by one or more convergent mechanisms, or arise
independently from biologically distinct mechanisms continues to be debated. Furthermore,
which PCB structures confer specific health risks to the general public or to a susceptible
population, remains unclear.

1.2. Non-dioxin-like PCB structures–convergent mechanisms mediated by RyRs
Of the 209 possible PCB congeners that were synthesized as commercial mixtures, most of the
scientific and regulatory attention has been directed toward the so-called dioxin-like PCBs that
lack at least two chlorines in the ortho-positions. The phenyl rings of dioxin-like PCBs, for
example PCB 77 (3,3′,4,4′-tetrachlorobiphenyl) and PCB 126 (3,3′,4,4′,5-
pentachlorobiphenyl), assume a coplanar orientation that mimics the planar structure of dioxin
(2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD), the archetypical agonist for the
arylhydrocarbon hydroxylase receptor (AhR) (Fig. 1). Co-planarity and lipophilicity are
arguably the two most important physicochemical parameters for optimizing tight binding to
AhR, although the position of para and meta substituents influences apparent binding affinity.
A growing number of environmental chemicals are known to activate or inhibit AhR, thereby
regulating its translocation to the nucleus where it dimerizes with AhR nuclear translocator
(ARNT) (Denison & Nagy, 2003). The AhR-ARNT complex binds to the DNA core sequence
5′-GCGTG-3′ in the promoter region of dioxin-responsive genes to regulate their expression.
Prolonged activation of AhR and its responsive genes has been implicated in diverse
toxicological sequelae associated with chronic, low-level exposures to TCDD, polycyclic
aromatic hydrocarbons (PAHs), and coplanar PCBs (Carpenter, 2006;Mitchell & Elferink,
2009). Thus, the risk to human, fish and wildlife associated with PCB exposures is assessed
by assigning an equivalence factor (TEF) that reflects the AhR activity of any individual PCB
congener relative to TCDD, which is arbitrarily assigned a TEF of 1.0.

Several limitations of the TEF concept have been identified (Van den Berg et al., 2006).
Arguably the most important limitation for predicting PCB toxicity based solely on an AhR-
based TEF is the fact that PCBs having two or more chlorines in the ortho-positions are non-
coplanar structures with very low or no activity towards the AhR yet they exhibit significant
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toxicological activity. In vitro studies have identified PCB 95 (Fig. 1) among the most
biologically active non-coplanar structures and its occurrence in human and environmental
samples has been recently scrutinized using improved analytical methods. PCB 95 has been
detected in human tissues (Chu, Covaci, & Schepens, 2003; Covaci, de Boer, Ryan,
Voorspoels, & Schepens, 2002; DeCaprio et al., 2005; Jursa, Chovancova, Petrik, & Loksa,
2006), and in environmental samples including indoor and outdoor air, top soil, tidal marsh
sediments, grass, diets, and human feces (Harrad, Ren, Hazrati, & Robson, 2006; Hwang,
Green, & Young, 2006; Robson & Harrad, 2004; F. Wong, Robson, Diamond, Harrad, &
Truong, 2009; Zhao et al., 2009). Recent studies indicate that non-coplanar PCBs currently
predominate in biological and environmental samples. For example, PCB 153 (Fig. 1) has been
identified as a major contributor to total PCB burden in humans (Agudo et al., 2009; Axelrad,
Goodman, & Woodruff, 2009; Longnecker et al., 2003; Moon, Kim, Choi, Yu, & Choi,
2009).

The ortho-rich PCBs and metabolites of both ortho-rich and ortho-poor PCBs have a number
of actions independent of the AhR that have been termed “non-dioxin-like”. Mono-ortho
substituted PCBs may have dioxin-like and non-dioxin-like activities. However mono-ortho
congeners commonly detected in tissues, such as PCB 118 (2,3,4,4′,5-pentachlorobiphenyl)
and PCB 156 (2,3,3′,4,4′,5-hexachlorobiphenyl), have extremely low TEF values (≪0.0001),
and their apparent AhR activity could be largely attributed to coplanar contaminants (Peters,
et al. 2006). Several biological activities have been experimentally demonstrated with non-
dioxin-like PCBs, and these were recently reviewed (Fonnum, Mariussen, & Reistad, 2006;
Mariussen & Fonnum, 2006). Endocrine effects include weak estrogenicity (Safe, 2004),
enhanced insulin (Fischer, Wagner, & Madhukar, 1999) and arachidonic acid secretion (Bae,
Peters-Golden, & Loch-Caruso, 1999), and disruption of the hypothalamo-pituitary-thyroid
axis. Two possibly convergent mechanisms actively being investigated include (1) disruption
of thyroid hormone metabolism and signaling (Knerr & Schrenk, 2006; Zoeller, 2005; Zoeller,
Dowling, & Vas, 2000), and (2) perturbations in cellular Ca2+ signaling (Pessah, 2001; Tilson,
1998). Arguably the most pervasive biological effects of PCBs could be mediated by their
ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor
mediated processes. The pivotal roles of Ca2+ signals in regulating movement, metabolism,
growth, proliferation, gene transcription and protein translation in virtually all cell types is well
established. Kodavanti and coworkers first reported that exposure non-coplanar PCBs elevate
cytoplasmic Ca 2+ in cultured cerebellar granule neurons (P. R. Kodavanti, Shin, Tilson, &
Harry, 1993), and several mechanisms were proposed including disruption of membrane
properties (P. R. Kodavanti, Ward, McKinney, & Tilson, 1996). A selective receptor-targeted
mechanism was also proposed based on the stringent structure-activity relationship of PCBs
for enhancing the activity of ryanodine receptors (RyRs), a family of intracellular Ca2+

channels ( P. W. Wong & Pessah, 1996). For example, PCB 95 and PCB 153 at concentrations
≤10 μM lack detectable AhR activity, yet significantly enhance the activity of type 1 (RyR1)
and type 2 (RyR2) isoforms at concentrations ≤1 μM (Pessah et al., 2006; P. W. Wong &
Pessah, 1996). Figure 2 demonstrates the relative activity of 28 non-coplanar PCBs toward
RyR1 and their relative contribution to total PCB burden reported in Fox River fish (52%)
(Kostyniak et al., 2005), San Francisco Bay tidal marsh sediments (~50%) (Hwang et al.,
2006), and human serum (~45%) (DeCaprio et al., 2005). Because not all the PCBs detected
in these studies have been tested for RyR activity, these estimates of the occurrence of RyR-
active PCBs are conservative. Therefore, the PCB congeners found in highest abundance in
environmental samples and tissues collected from humans and animals are capable of directly
and potently interacting with a major family of intracellular Ca2+ channels. RyRs are broadly
expressed in most cell types where they participate in shaping temporally and spatially defined
Ca2+ signals that are essential for regulating several aspects of cellular signaling that regulate
growth, movement, metabolism, secretion and plasticity.
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Significant to the neurotoxic potential of PCBs, RyR channel activity regulates a variety of
physiological and pathophysiological processes in the central (Berridge, 2006; Dai, Hall, &
Hell, 2009), and peripheral nervous systems (Behringer, Vanterpool, Pearce, Wilson, &
Buchholz, 2009; Buchholz, Behringer, Pottorf, Pearce, & Vanterpool, 2007; Jackson & Thayer,
2006). Decrements in neonatal reflexes, cognitive function, motor activity, tremors, changes
in autonomic functioning, and hearing impairments are consistent findings with developmental
PCB exposures in studies of humans and animals, and are primarily attributed to adverse effects
on the developing CNS (Darras, 2008; Fitzgerald et al., 2008; Kenet, Froemke, Schreiner,
Pessah, & Merzenich, 2007; Mariussen & Fonnum, 2006; Roegge & Schantz, 2006; P. Stewart,
Reihman, Lonky, Darvill, & Pagano, 2000). The possibility that PCBs might directly influence
peripheral neurons and their effectors including skeletal, cardiac, and smooth muscle, and
cochlear hair cells, all of which express functionally essential RyRs, has not received nearly
as much investigation as their influence on the developing endocrine and central nervous
systems.

In addition to TH, studies on the endocrine disrupting effects of PCBs and related
organohalogens have also focused on estrogen, insulin, and their respective signaling pathways
(Carpenter, 2008; Fonnum et al., 2006; Zoeller, 2007). Considering that RyRs have been shown
to regulate several aspects of these same endocrine functions (Dillmann, 2002; Islam, 2002;
Muchekehu & Harvey, 2008), a common convergent mechanism may contribute to
pathological endocrine signaling and abnormal responses in target organs that depend on RyR
activity for mediating appropriate Ca2+ signals.

This review will focus on our current knowledge of the structure and function of RyRs in
muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions.
Our current knowledge of how RyRs assemble into arrays and clusters, how they generate local
releases of Ca 2+ termed sparks, and trigger global Ca2+ waves is most advanced in studies of
skeletal, cardiac and smooth muscle. The topic is reviewed here first to provide context to the
molecular mechanisms by which PCBs and related structures influence RyR structure and
function. The molecular and cellular mechanisms by which non-coplanar PCBs and related
structures alter local and global Ca2+ signaling properties and the possible short and long-term
consequences of these perturbations on neurodevelopment and neurodegeneration will then be
discussed.

2. RyR macromolecular complexes: Significance to PCB-mediated Ca2+

dysregulation
As might be predicted by their size and critical contribution to muscle function, multiple factors
contribute to the precise regulation of RyR channel activity. In skeletal and cardiac muscle at
least 20 protein-protein interactions have been described for the two major isoforms RyR1
(type 1 RyR) and RyR2 (type 2 RyR), respectively (Fig 3), and these interactions influence
important aspects of Ca2+ channel function that are either essential for excitation-contraction
(EC) coupling or fine-tune the spatial and temporal properties of local and global Ca2+ signals
in the myocyte. Many of these interactions, when disrupted, have been shown to contribute to
RyR-mediated susceptibility to muscle damage and to the progression of several muscle
disorders. Similar functional and/or physical coupling of RyRs to context-specific proteins
have been identified in smooth muscle, neurons and other cells types.

The composition of RyR macromolecular complexes is therefore an important consideration
when interpreting the seemingly diverse in vitro and in vivo actions attributed to non-coplanar
PCB congeners and Aroclor mixtures in a wide variety of tissues and cell types. PCBs have
been shown to enhance Ca2+ release from sarcoplasmic reticulum/endoplasmic reticulum (SR/
ER) and mitochondrial stores, and to promote Ca2+ entry, but whether these effects stem from
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convergent receptor-mediated mechanisms or multiple “nonspecific” influences on membrane
integrity has been debated (Inglefield, Mundy, & Shafer, 2001; Pessah, & Wong, 2001). PCBs
also alter the activities of RyR “accessory” proteins including the multifunctional protein
kinases, PKA (Inglefield, Mundy, Meacham, & Shafer, 2002; Llansola, Piedrafita, Rodrigo,
Montoliu, & Felipo, 2009) and PKC (P. R. Kodavanti et al., 1994), calmodulin (Benninghoff
& Thomas, 2005; Olivero & Ganey, 2001), and FKBP12 (FK506 binding protein 12 kDa), the
major T-cell immunophilin (Gafni, Wong, & Pessah, 2004; P. W. Wong, Garcia, & Pessah,
2001; P. W. Wong & Pessah, 1997). Additionally, PCB toxicity in excitable and non excitable
cells appears to be mediated at least in part by oxidative stress and involves biotransformation
via quinone and hydroxylated metabolites, and altered activities of key anti-oxidant defense
enzymes such as glutathione transferases, NADH/NAD(P)H oxidoreductases, and possibly
selenoproteins (Duntas, 2008; Howard, Fitzpatrick, Pessah, Kostyniak, & Lein, 2003; Y. Liu
et al., 2009; Murugesan, Balaganesh, Balasubramanian, & Arunakaran, 2007; Wei et al.,
2009). Many of these proteins have been directly implicated in redox regulation of RyRs.

2.1. Organization, function and dysfunction of RyR complexes
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of
Ca2+ channels that are broadly expressed throughout the central and peripheral nervous
systems. The distribution, structure, and function of RyRs are best understood in striated muscle
where expression of RyR1 and RyR2 isoforms are essential for engaging the process of EC
coupling in skeletal and cardiac muscle, respectively. In mice, targeted deletion of RyR1 results
in a birth-lethal phenotype (Buck, Nguyen, Pessah, & Allen, 1997; Takeshima et al., 1994),
whereas RyR2 null mice do not survive past embryonic day 9 (Takeshima et al., 1998). These
phenotypes are consistent with the failure to engage EC coupling in these tissues at times critical
for the animal’s survival. A third isoform, RyR3, is not essential for EC coupling although it
is transiently expressed in skeletal muscle during embryonic development and is down
regulated in most, but not all, fibers postnatally (Conti, Reggiani, & Sorrentino, 2005; Legrand
et al., 2008; Tarroni, Rossi, Conti, & Sorrentino, 1997). Targeted deletion of RyR3 does not
impair muscle function or survival, but does seem to impact neurobehavioral function (Section
2.5.2).

2.2. RyRs in striated muscle
In striated muscle, RyRs channels are anchored to specialized regions of the SR of the
developing myotube and adult fiber, termed junctional regions, where the SR and transverse
tubule membranes approach within 10–15 nm of each other (Fig 4). In the context of these
junctions, RyRs organize into tetrameric arrays or clusters that span the junctional SR-T tubule
space (Di Biase & Franzini-Armstrong, 2005;Franzini-Armstrong, Protasi, & Tijskens,
2005). Each tetramer has four-fold symmetry and constitutes a functional channel of ~2.2 MDa
that regulates releases of Ca2+ stored within the lumen of the SR into the cytoplasm.

Coordinated gating (activation and inactivation) of multiple RyR channels generates spatially
limited and temporally defined release of Ca2+ sparks (Cheng & Lederer, 2008; Chun, Ward,
& Schneider, 2003; Gonzalez et al., 2000; Gyorke, Hagen, Terentyev, & Lederer, 2007). Thus
sparks represent quantal releases of Ca2+ from the lumen of junctional SR to a restricted area
of the cytoplasm. Although spontaneous and evoked Ca2+ sparks are commonly observed in
cardiomyocytes, smooth muscle myocytes, and invertebrate skeletal muscle, they are rarely
detected in intact adult mammalian skeletal muscle under physiological conditions. The lack
of sparks in mammalian skeletal muscle is likely because the L-type Ca2+ channel CaV1.1
confers direct negative regulation of RyR1 (E. H. Lee et al., 2004; Zhou et al., 2006). However,
Ca2+ sparks can be readily detected in mammalian skeletal muscle under pathophysiological
conditions that generate reactive oxygen species (ROS) (Martins, Shkryl, Nowycky, &
Shirokova, 2008). This is not unexpected since both RyR1 and RyR2 are exquisitely sensitive
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to sulfhydryl modification by compounds that generate ROS (Abramson, Zable, Favero, &
Salama, 1995; Favero, Zable, & Abramson, 1995), redox cyclers, and cysteine arylators
(Abramson, Buck, Salama, Casida, & Pessah, 1988; Feng, Liu, Xia, Abramson, & Pessah,
1999; J. Gao et al., 2005; Pessah et al., 2001; Pessah, Durie, Schiedt, & Zimanyi, 1990; Pessah,
Kim, & Feng, 2002). Highly reactive (hyper-reactive) cysteine residues within the RyR
sequence and possibly accessory proteins have been identified, and these confer redox sensing
properties to the Ca2+ channel complex (Jurynec et al., 2008; G. Liu, Abramson, Zable, &
Pessah, 1994; G. Liu & Pessah, 1994; Phimister et al., 2007; Voss, Lango, Ernst-Russell,
Morin, & Pessah, 2004). Shifts in RyR activity in response to localized changes of glutathione
(GSH/GSSG), nitric oxide, oxygen, and ROS appear to constitute a fundamental physiological
and pathophysiological mechanism that adjusts local and global cellular Ca2+ signals to the
changing local redox environment. The mechanisms appear to involve glutathionylation,
nitrosylation, electron delocalization, and oxidation of hyper-reactive cysteines within RyR
complexes (Aracena, Sanchez, Donoso, Hamilton, & Hidalgo, 2003; Aracena-Parks et al.,
2006; Feng & Pessah, 2002; Sun et al., 2008; Terentyev et al., 2008; Xia, Stangler, &
Abramson, 2000; Zable, Favero, & Abramson, 1997). PCBs appear to mediate toxicity, at least
in part, by mechanisms involving oxidative stress (Glauert et al., 2008; Howard et al., 2003;
Y. Liu et al., 2009; Lyng & Seegal, 2008). Thus, in addition to direct binding of PCBs to RyRs,
PCB metabolites that possess redox active moieties, such as quinones and semiquinones
(Machala et al., 2004; Spencer, Lehmler, Robertson, & Gupta, 2009), would be expected to
confer additional activities toward modifying RyRs and their signaling events. In this regard,
site-selective oxidation of RyRs was already demonstrated for naphthoquinones,
benzoquinones, and benzo[a]pyrene 7,8-dione (Feng et al., 1999; Gao et al., 2005; Pessah et
al., 2001).

As spark frequency and spatial spread of Ca2+ increases with physiological (e.g. plasma
membrane depolarization) or pharmacological (e.g., caffeine) stimuli, Ca2+ waves are initiated
that are capable of propagating throughout the cell in which they occur (Cheng & Lederer,
2008). Thus activation of RyRs is a means of eliciting controlled release of SR Ca2+ stores and
is a major source of both local and global Ca2+ signals that are essential for regulating
contractility of striated and smooth muscle.

2.2.1. Could non-coplanar PCBs alter RyR function in striated muscle?—Skeletal
and cardiac muscle represent major organs for the initial disposition of PCBs following
exposure (Matthews & Anderson, 1975; Matthews & Tuey, 1980; Birnbaum, 1983; Brandt,
Mohammed & Slanina, 1981). Muscle tissues are therefore considered critical compartments
when formulating physiologically based pharmacokinetic models that faithfully reproduce
tissue: blood partitioning (Pharam, Kohn, Matthews, DeRosa & Protier, 1997). A recent study
of Galapogos sea lions identified the congener profile of PCBs found in muscle biopsies (Alava
et al., 2009). Results from this study indicate that the 10 most active congeners identified based
on [3H]ryanodine binding analysis (Fig. 2) represented nearly 25% of the total PCB burden
found in muscle (Avala et al, 2009). In rodents exposed to PCB 136, the low-dose group
displayed significantly higher PCB levels in cardiac and skeletal muscle compared to other
tissues, such as adipose tissue and the liver (Kania-Korwel et al., 2008).

Surprisingly, if and how non-coplanar PCBs modify the properties of striated muscle EC
coupling has only recently been examined. The physical interactions between CaV1.1 and
RyR1 that trigger skeletal muscle EC coupling provide a relevant experimental model for
testing whether non-coplanar PCBs can impair the fidelity of this otherwise tight form of
conformational coupling between two Ca 2+ channels. The amplitude of Ca2+ transients in
mouse embryonic myotubes elicited by low frequency (0.1 Hz) electrical pulses was
significantly enhanced within 2.5 min after initiating perfusion of 5 μM PCB 95 in the external
medium compared to the solvent control, and PCB 95 prevented recovery of the Ca2+ signal
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to its original baseline (Fig 5A&B) (Cherednichenko & Pessah, in review). When higher
frequency electrical pulse trains were evoked (2.5 and 5 Hz), PCB 95 not only amplified
Ca2+ transient amplitudes but also caused ectopic Ca2+ transients immediately after electrical
stimuli were suspended (arrows, Fig 5C), and these were not observed in the absence of PCB.
How non-coplanar PCBs and related structures influence the coupling between RyRs and
plasmalemmal Ca2+ channels (Fig 4), and their direct impacts on skeletal and cardiac muscle
function clearly needs more attention.

2.2.2. RyR associations with plasma membrane proteins—Over the last 15 years
major advances have been made in understanding how RyR structure relates to function and
identifying key accessory proteins that regulate activation and inhibition of Ca2+ release from
ER/SR stores. Most of our understanding comes from studies of RyR1 in skeletal muscle and
RyR2 in cardiac muscle where they assemble in macromolecular complexes termed Ca2+

release units (CRUs). The central component of the CRU is the RyR homotetramer, with a
small C-terminal transmembrane assembly anchored within the membrane and a massive
cytoplasmic (“junctional foot”) assembly spanning the T-tubule SR junction (Di Biase &
Franzini-Armstrong, 2005; Franzini-Armstrong et al., 2005) (Fig 4). Although the composition
of key proteins comprising the CRUs of skeletal and cardiac muscle are strikingly similar (Fig
3), skeletal muscle does not require Ca2+ entry through the L-type voltage gated Ca2+ channel
(CaV1.1) to trigger activation of RyR1 and SR Ca2+ release. Rather, CaV1.1 and RyR1
physically interact such that four CaV1.1 subunits in the T-tubule membrane orient over every
second RyR1 anchored to the junctional SR. This structural arrangement engages a form of
bidirectional signaling in which T-tubule depolarization is sensed by the S4 segment of
CaV1.1 and transmitted to RyR1 through conformational shifts of the “critical
domain” (residues 720–765 of CaV1.1) residing within the cytoplasmic loop between repeats
II and III (Grabner, Dirksen, Suda, & Beam, 1999). RyR1 transmits a retrograde signal to not
only enhance L-type Ca2+ entry current (Fleig, Takeshima, & Penner, 1996; Nakai et al.,
1996; Sheridan et al., 2006), but also affect precise alignment of CaV1.1 and associated subunits
into tetradic arrays within the T-tubule membrane (Protasi, Franzini-Armstrong, & Allen,
1998). In myotubes and some adult fibers, retrograde signaling from RyR1 to CaV1.1 appears
to be essential for preventing decrement and ultimate failure of EC coupling during prolonged
high frequency (tetanic) electrical pulse trains, through a process termed excitation-coupled
Ca2+ entry (ECCE) (Cherednichenko, Hurne et al., 2004).

Initial results using pharmacological tools indicated that CaV1.1 was the voltage sensor that
triggers ECCE, and that the L-type Ca2+ channel was unlikely to constitute the Ca2+ conduction
pathway for ECCE. More recent evidence indicates that the L-type channel is a major
contributor to ECCE (Bannister, Pessah, & Beam, 2009). Pharmacological agents that
influence conformational states of RyR1 influence electrophysiological properties of the L-
type Ca2+ current and ECCE in similar ways. For example, experimental conditions that permit
the alkaloid ryanodine to lock RyR1 channels in a persistently closed (non-conducting)
conformation (Zimanyi, Buck, Abramson, Mack, & Pessah, 1992) also causes significant
reduction in the inter-tetrad distances of the CaV1.1 complex (Paolini, Fessenden, Pessah, &
Franzini-Armstrong, 2004) and influences the activation-deactivation kinetics of ECCE
(Bannister et al., 2009; Cherednichenko, Hurne et al., 2004). Importantly, missense mutations
that affect RyR1 function can dramatically alter the properties of both orthograde and
retrograde signaling, modifying channel functions on both side of the junction (Andronache,
Hamilton, Dirksen, & Melzer, 2009; Bannister et al., 2009; Cherednichenko et al., 2008; Hurne
et al., 2005; T. Yang, Allen, Pessah, & Lopez, 2007).

In contrast to skeletal muscle, conformational coupling between L-type Ca2+ channels
(CaV1.2) and RyR2 is not sufficient to trigger EC coupling in the absence of Ca2+ entry across
the T-tubular membrane in cardiomyocytes. Rather tight functional coupling between L-type

Pessah et al. Page 7

Pharmacol Ther. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ca2+ entry mediated by CaV1.2 channels within the T-tubule membrane and RyR2s occurs
across narrow 12 nm junctions through the process of Ca2+-induced Ca2+ release (CICR)
(Bers, 2008). Depolarization of the T-tubule membrane triggers CaV1.2-mediated localized
Ca2+ influx (termed sparklets) that in turn triggers RyR2-mediated sparks immediately across
the junctional space. Depending on the intensity of stimuli arriving at the T-tubule membrane
and other local “environmental” factors that influence RyR2 activity (e.g., phosphorylation
state), summation of sparks can produce local and propagated Ca2+waves through the process
of CICR (Cheng & Lederer, 2008).

In addition to interactions with voltage-gated channels (CaV1.1 and CaV1.2) as described
above, RyRs have been shown to directly or indirectly interact with and regulate the function
of store-operated Ca2+ channels (SOCCs) in some, but not all muscle tissues examined. For
example, the transient receptor protein channels TrpC3 (Kiselyov et al., 2000; E. H. Lee,
Cherednichenko, Pessah, & Allen, 2006; Woo et al., 2009), TrpM4 (Morita et al., 2007), and
TrpV4 (Earley, Heppner, Nelson, & Brayden, 2005) were shown to interact with RyR
complexes. However, Trp-RyR interactions may not be the major mechanism responsible for
store-operated Ca2+ entry (SOCE) in skeletal muscle. Knockdown of STIM and Orai, the
essential components of the Ca2+-release activated Ca2+ current (ICRAC), greatly suppresses
SOCE in skeletal muscle cells without impairing ECCE (Lyfenko & Dirksen, 2008), and SOCE
is not dependent on RyR1 expression (Cherednichenko, Hurne et al., 2004; Lyfenko & Dirksen,
2008). However, STIM was recently shown to gate TrpC channels by electrostatic interaction
(Zeng et al., 2008).

Homer is a family of proteins shown to regulate signal transduction, synaptogenesis, and
receptor trafficking in neurons (Szumlinski, Kalivas, & Worley, 2006; Xiao, Tu, & Worley,
2000). Both short and long forms of Homer interact with RyR1 and RyR2 and regulate channel
function in an additive biphasic manner that is highly dependent on their relative concentration,
but is independent of multimerization via the coiled-coil domains found in Homer long-forms
(Feng et al., 2008; Feng et al., 2002; Pouliquin, Pace, & Dulhunty, 2009; Ward et al., 2004).
As demonstrated earlier in neurons where Homer links IP3R responses to mGluR1 signaling,
Homer may also play a scaffolding function in striated muscle linking RyR1 and RyR2 to
CaV1.1 or CaV1.2, respectively, to regulate the gain of EC coupling (G. Huang et al., 2007;
Pouliquin et al., 2009). In skeletal muscle, Homer appears to also link TRPC (Trp or TRP??)
channels to the cytoskeletal matrix and function to regulate mechanotransduction (Stiber et al.,
2008).

Three important consequences of co-localization and functional coupling of RyRs with Ca2+

channels residing in the surface membrane include: (1) it permits local signaling microdomains;
(2) it confers a mechanism for reciprocal regulation between channels in the plasma membrane
and RyRs anchored within the SR/ER membrane; and (3) it provides direct feedback about the
state of Ca2+ filling within the SR/ER lumen. Thus chemical agents that interact with RyR and
alter its conformation and function are likely to influence not only the properties of Ca 2+

release from stores, but also Ca2+ entry through SOCE and ECCE mechanisms.

2.2.3. RyR associations with cytoplasmic proteins—Two T-cell immunophilins,
FK506 binding protein 12 kDa (FKBP12) and its isoform FKBP12.6 (also referred to as
calstabins 1 and 2) can tightly bind to RyR1 (Jayaraman et al., 1992) and RyR2 (Timerman et
al., 1996). Although up to four FKBPs can bind per functional RyR channel (one per subunit),
the ratio of FKBP isoform/RyR is likely to vary according to tissue and with changing
physiological or pathophysiological states (Lehnart, 2007; Zalk, Lehnart, & Marks, 2007).
Cryo-electron microscopy (EM) reconstruction of frozen hydrated RyR1 tetramers revealed
that FKBP12 binds adjacent to cytoplasmic domain 9 of the clamp region complex (Samso,
Shen, & Allen, 2006; Serysheva et al., 2008; Wagenknecht et al., 1997) (Fig. 6A, top view of
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cytoplasmic “foot” domain). Mutagenesis studies with RyR1 suggest essential contributions
of Val-2461-Pro-2462 (corresponding RyR2 residues Ile-2427-Pro-2428) in the binding
interaction (Gaburjakova et al., 2001), but the N-terminal residues 305-1937 of RyR2 may also
contribute to binding FKBP12.6 (Masumiya, Wang, Zhang, Xiao, & Chen, 2003). Since the
first report that FKBP12 stabilizes the functional behavior of RyR1 (Brillantes et al., 1994),
disruption of FKBP12/12.6 RyR complexes has been associated with heritable and acquired
disorders of cardiac (Gyorke & Carnes, 2008; Zalk et al., 2007), and skeletal (Bellinger,
Mongillo, & Marks, 2008; Bellinger et al., 2009) muscle.

PCB-triggered Ca2+ release form junctional SR membrane vesicles isolated from skeletal
muscle can be selectively negated by pretreatment with either the immunosuppressive drug
FK506 or rapamycin (Fig 6B) without inhibiting responses to other RyR1 channel activators
such as caffeine (Wong & Pessah, 1997). FK506 and rapamycin tightly bind to the greasy
binding pocket of FKBP12 promoting dissociation of the FKBP12/RyR1 complex and possibly
preventing rebinding. Rapamycin and FK506 interfere with the actions of PCB 95 (and other
active PCBs) in the same concentration range that promotes the dissociation of the FKBP12/
RyR1 complex, suggesting that PCBs interact with a binding site formed at the FKBP12/RyR1
complex interface to enhance channel open probability (Fig 6A). However, an allosteric
mechanism has not been ruled out.

Nevertheless, the molecular mechanism by which PCB 95 affects the RyR1/FKBP12 is
mediated by direct stabilization of the channel in the full open state (Fig 7). Samso and
coworkers (2009) recently utilized PCB 95 to better understand the basis for RyR1
conformational transitions between closed and open states. Single-channel biophysical
characterization of the two states in bilayer lipid membranes (Fig 7, left and middle panels)
and cryoelectron microscopy of frozen single-particles in their hydrated state (Fig 7 right panel)
were performed on identical samples and conditions to permit direct correspondence between
biophysical state and structural conformation of the channel. PCB 95 appears to invert the
thermodynamic stability of the RyR1/FKBP12 channel complex producing extremely long-
lived openings interspersed with extremely short-lived transitions to the closed state, although
the unitary current is indistinguishable from the native open state. By contrast, the presence of
very low Ca2+ on the cytoplasmic side (pCa2+<108 set in the presence of the Ca2+ chelator
EGTA) after fusion of an actively gating channel completely stabilized the fully closed state
of the channel. The corresponding three-dimensional structures at ~10Å resolution provided
information about the structure surrounding the ion pathway indicating the presence of two
right-handed bundles emerging from the putative ion gate (the cytoplasmic “inner branches”
and the transmembrane “inner helices”) (Samso et al., 2009). The PCB 95 modified state causes
a precise relocation of the inner helices and inner branches resulting in an approximately 4Å
increase in diameter of the ion gate (Fig 7, right panel). Six of the identifiable transmembrane
segments of RyR1 have similar organization to those of the mammalian Kv1.2 potassium
channel. Upon gating to the PCB 95-induced open state, the distal cytoplasmic domains move
towards the transmembrane domain while the central cytoplasmic domains move away from
it, and also away from the fourfold axis (Samso et al., 2009).

Similar FKBP12/RyR1 dependent Ca2+ release and direct activation of RyR1 channels have
been demonstrated with bastadin-5 (Fig 8) and bastadin-10, two members of a family of over
20 bromotyrosine-derived macrolactams that have been isolated from the Verongid marine
sponges Ianthella sp. (L. Chen, Molinski, & Pessah, 1999;Mack, Molinski, Buck, & Pessah,
1994). Like PCB 95, bastadin-10 (B10) dramatically stabilizes the open conformation of the
RyR1 channel, possibly by reducing the free energy associated with closed to open channel
transitions. The stability of the channel open state induced by B10 sensitized the channel to
activation by Ca2+ to such an extent that it essentially obviated regulation by physiological
concentrations of Ca2+ and relieved inhibition by physiological Mg2+. These actions of B10
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were produced only on the cytoplasmic face of the channel, were selectively eliminated by
pretreatment of channels with FK506 or rapamycin, and were reconstituted by exogenous
addition of human recombinant FKBP12. Bastadin-10 dramatically enhances spark frequency
and duration in adult frog skeletal muscle fibers (Gonzalez et al., 2000), whereas bastadin-5
was shown to influence both resting Ca2+ and caffeine-evoked transients in cultured myotubes
(Pessah et al., 1997;T.Yang, Esteve et al., 2007). The reduced pharmacophore that confers RyR
activity resides within the ‘eastern’ and ‘western’ non-coplanar bromocatechol ether moieties
that resemble hydroxylated brominated diphenylethers defined by the dashed boxes in Figure
8 (Masuno, Pessah, Olmstead, & Molinski, 2006).

The widely used antibacterial triclosan, a non-coplanar chlorocatechol ether (Fig 8), was shown
to activate RyR1 and mobilize Ca2+ from SR stores of intact primary skeletal myotubes (Ahn
et al., 2008). Both non-coplanar PCBs and bastadins also enhance RyR2 activity although the
requirement for FKBP12.6 has not been reported.

Calmodulin (CaM) and S100A1 are two widely expressed Ca2+ binding proteins that interact
with RyR1 and RyR2 isoforms in a Ca2+-dependent manner. Both proteins appear to compete
with a common conserved site within the clamp domains corresponding to residues 3614-3643
(Wright et al., 2008). Although ApoCaM can enhance RyR activity, it is thought that Ca2+-
CaM provides the major physiological regulatory role, inhibiting RyR channel activity as local
Ca2+ concentration rises (Meissner, 2002). By contrast Ca2+-S100A1 stimulates RyR channel
activity. Competition between Ca2+-CaM and Ca2+-S100A1 on RyRs has been proposed to
confer tight but dynamic regulation of EC coupling gain with temporal changes in local
Ca2+ concentration in skeletal and cardiac muscle (Wright et al., 2008). PCB 95 and bastadin-5
and 10 were shown to dramatically shift the Ca2+ dependence of RyR1 channel activation and
inhibition independently of exogenously added CaM or SA1001A (L. Chen et al., 1999; P. W.
Wong & Pessah, 1996). Whether these compounds shift the dynamic regulation mediated
through CaM and S100A1 remains to be investigated.

The Ca2+ binding protein sorcin and presenilin 2 (PS2) are ubiquitously expressed in various
tissues including neurons and cardiomyocytes and each has been demonstrated to influence
RyR function. Sorcin interacts with the C-terminal endoproteolytic fragment of PS2 in a
Ca2+ dependent manner, but not with full-length PS2 (Pack-Chung et al., 2000), but the
interaction may not be essential for modulation of RyR. In heart tissues, PS2 was shown to
physically interact with RyR2. Papillary muscle PS2 knockout mice display enhanced peak
amplitudes of Ca2+ transients and peak tension compared to wild type (Takeda et al., 2005).
Sorcin inhibits Ca2+ channel activity and attenuates spark activity and was proposed to
contribute a physiological means for terminating Ca2+ induced Ca2+ release in cardiac muscle
(Farrell et al., 2004; Farrell, Antaramian, Rueda, Gomez, & Valdivia, 2003; Stern & Cheng,
2004).

At least three Ser residues within the junctional foot assembly of RyR1 (Ser 2844) and RyR2
(Ser 2808, Ser 2814, Ser 2030), can be phosphorylated by PKA (Aydin et al., 2008; Wehrens
et al., 2006), Ca2+-CaM kinase II (Currie, Loughrey, Craig, & Smith, 2004; Huke & Bers,
2008) and possibly PKC (Takasago, Imagawa, Furukawa, Ogurusu, & Shigekawa, 1991).
Evidence that the scaffolding protein mAKAP tethers PKA in close proximity to protein
phosphatase A1 and A2 (PPA1 and PPA2) within the RyR2 complex, possibly through a
leucine/isoleucine zipper (LIZ) motif, suggests tight regulation of RyR2 phosphorylation in
response to changes in cellular cAMP, such as those that normally occur with β-adrenergic
stimulation (Marks, Marx, & Reiken, 2002; Marx et al., 2001). However, RyR phosphorylation
is complex in both striated muscle and neurons, and appears to be dynamically regulated with
shifting physiological and pathophysiological states (Dai et al., 2009; Zalk et al., 2007).
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Altered patterns of RyR phosphorylation are associated with changes in RyR nitrosylation,
glutathionylation, and depletion of FKBP12/12.6 from its binding site located within the clamp
region. Importantly these changes have been strongly implicated in the etiology of several
heritable and acquired disorders of striated muscle, including malignant hyperthermia
susceptibility (MHS) and central core disease (CCD) (Durham et al., 2008), Duchenne
muscular dystrophy (Bellinger et al., 2009), catecholaminergic polymorphic ventricular
tachycardia (CPVT), arrhythmogenic right ventricular dysplasia type 2 (ARVD2), and
ischemic heart failure (Blayney & Lai, 2009). Over 120 missense or deletion mutations within
RyR1 have been associated with MHS, central core disease (CCD) and/or multiminicore
disease (MmD) in skeletal muscle (R. Robinson, Carpenter, Shaw, Halsall, & Hopkins,
2006). Nearly 25 mutations have been identified within RyR2 that contribute to CPVT (Gyorke,
2009; N. Liu, Rizzi, Boveri, & Priori, 2009). Significant increases in RyR Ser phosphorylation
and Cys nitrosylation have been associated with an increased Ca2+ leak through RyR channels
carrying a few of these mutations and these can markedly reduce the Ca2+ content of the ER/
SR lumen. RyR mutations also alter the fidelity of ECCE (Cherednichenko et al., 2008; T.
Yang, Allen et al., 2007) perhaps further compounding SR Ca2+ depletion. Whether hyper-
phosphorylation, nitrosylation, and/or glutathionylation of RyRs with mutations are common
convergence points of CRU dysfunction and progression of these diverse disorders is currently
being intensely investigated. Of relevance to the toxicity of PCBs and related chemicals that
alter the function of RyRs, it should be noted that RyR mutations may remain phenotypically
silent or subclinical until triggered by one or more environmental exposures or stressors.
Recently, changes in the phosphorylation state (at Ser 2808 and Ser 2814) were associated with
functional impairments in cardiac RyR2 channels in the streptozotocin-induced model of type
1 diabetes (Shao et al., 2009).

Several enzymes and proteins involved in regulating cellular redox status have been also
demonstrated to directly regulate RyR channel activity. The mu isoform of glutathione-s-
transferase (GST mu) was shown to promote inactivation of RyR1 and RyR2, whereas its
distant relative CLIC-2 that functions as a chloride channel appears to selectively attenuate the
activity of RyR2 in the presence of a GSH:GSSG redox buffer (Abdellatif et al., 2007; Jalilian,
Gallant, Board, & Dulhunty, 2008; Meng et al., 2009). Selenoprotein N (SepN) is physically
associated with RyR1 of skeletal muscle and it appears to be essential for conferring regulation
of RyR1 channels by GSH:GSSG redox potential (Jurynec et al., 2008). Importantly the
absence of SepN in skeletal muscle appears to contribute to a subset of congenital myopathies
and altered redox regulation of RyR1 has been implicated in their etiology.

NAD(P)H oxidases are major sources of superoxide generation in myocytes, especially during
arrhythmia and after acute myocardial infarction. For example tachycardia augments the
association of the NAD(P)H oxidase cytosolic subunit p47phox to the SR fraction, without
modifying the content of the membrane integral subunit gp91phox (Sanchez, Pedrozo,
Domenech, Hidalgo, & Donoso, 2005). The enzymatic oxidation of NADH is tightly linked
with negative regulation of RyR2 channel activity in cardiac myocytes. Inhibition of NADH
oxidase activity with nanomolar rotenone or pyribaben relieves this negative regulation and
increases RyR2 channel activity, spark frequency, and Ca2+ oscillations in cardiomyocytes
(Cherednichenko, Zima et al., 2004).

RyRs are emerging as a central integrator of not only physiological signals, but also of
pathophysiological responses to oxidative stress that may arise from mutations in the RyR
proteins themselves, their accessory proteins, metabolic imbalances, or insults from xenobiotic
chemicals such as PCBs. Whether RyR-active PCBs and related non-coplanar structures
influence the phosphorylation, nitrosylation, and/or glutathionylation state of the receptor
complex has not been explored.
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2.2.4. RyR associations with integral and luminal SR proteins—Within the
junctional SR sacks of cardiac and skeletal muscle, RyRs form a protein complex with triadin
and junctin (which are anchored within the membrane), and calsequestrin that resides within
the SR lumen (Guo, Jorgensen, & Campbell, 1996; G. Liu & Pessah, 1994). Ultrastructural
and biochemical evidence supports a model in which triadin and junctin interact directly with
RyRs and may act to scaffold calsequestrin (a low affinity SR Ca2+ binding protein) near the
RyR lumen to control the availability of Ca2+ near RyRs thereby providing luminal control
(feedback) to the CRU about the local filling state of the Ca2+ store (Beard, Wei, & Dulhunty,
2009). Ablation of either triadin or calsequestrin expression in heart results in CPVT. Both
PCBs and bastadins were shown to influence the balance of regulated RyR1 channels (i.e.,
those sensitive to ryanodine) and their ryanodine-insensitive “leak” states in isolated SR and
BC3H1 cells, possibly by converting low conductance leak states into high conductance
channel states (Pessah et al., 1997; P. W. Wong & Pessah, 1997). More recently, bastadin 5’s
ability to convert ryanodine insensitive Ca2+ leak to ryanodine sensitive channels was shown
to lower resting free Ca2+ in intact myotubes expressing wild type RyR1 and those expressing
MH susceptibility mutations, but only in the presence of RyR1 channel blockers (ryanodine
or FLA 365) (T. Yang, Esteve et al., 2007). In this regard, myotubes with MH mutations have
significantly higher resting intracellular Ca2+ levels than those expressing wild type RyR1, and
the reductions afforded by bastadin 5 in the presence of ryanodine are significantly greater (Fig
9).

Junctophilins are integral ER/SR proteins that form non-covalent interactions with membrane
lipids through their MORN (membrane occupation recognition nexus) motifs, and are primarily
responsible for stabilizing close apposition of the junctional regions SR/ER and the
plasmalemma in both muscle cells and neurons (Kakizawa, Moriguchi, Ikeda, Iino, &
Takeshima, 2008; Takeshima, Komazaki, Nishi, Iino, & Kangawa, 2000). Junctophilins are
therefore essential for creating a specialized milieu that permits the large junctional foot
assembly of RyRs to physically and functionally interact with proteins in the plasma membrane.
The importance of proper assembly of junctional assembly has been recently underscored in
mice with targeted deletions or mutations in junctophilins. Deletion of junctophilin isoform 1
(JP1), the major form expressed in skeletal muscle, results in weak EC coupling and contractile
failure that is lethal shortly after birth (Ito et al., 2001). The lack of JP1 may also negate critical
aspects of channel regulation because JP1 and RyR1 interact in a confomationally sensitive
manner that involves hyper-reactive Cys residues (Phimister et al., 2007). Deletion of
junctophilin isoform 2 (JP2), the major form in cardiac muscle functionally uncouples CaV1.2
and RyR2 and is embryonic lethal due to contractile failure, whereas 5 missense mutations are
associated with hypertrophic cardiomyopathy in humans (Landstrom et al., 2007; Matsushita
et al., 2007).

Mice lacking neural junctophilins (JP3 and JP4) exhibit impaired exploratory behavior in the
open-field task, and impaired performance in the Y-maze and multiple-trial passive avoidance
tests indicating impaired short- and long-term memory (Moriguchi et al., 2006). Ablation of
JP3 and JP4 uncouples functional interactions among NMDA receptors, ryanodine receptors,
and small-conductance Ca2+-activated K+ channels activation. These results reveal that
activation of small-conductance Ca2+-activated K+ channels, which is necessary for
afterhyperpolarization in hippocampal neurons, requires Ca2+ release through RyRs, and is
triggered by NMDA receptor-mediated Ca2+ influx. Junctophilins stabilize close apposition
of “junctional” postsynaptic membranes that permit crosstalk between RyRs and their signaling
partners in the plasma membrane. These observations reveal the essential role of RyRs in
mediating changes in synaptic plasticity (Kakizawa et al., 2008). These newly discovered
mechanisms might be directly relevant to how PCBs mediate neurotoxicity.
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2.3. Structure-activity of PCBs toward RyR1 and RyR2
Non-coplanar PCBs were shown to potently and selectively sensitize both RyR1 and RyR2
channel activities in studies with SR membranes isolated from mammalian skeletal and cardiac
muscle, respectively, using radioligand binding studies with [3H]ryanodine ([3H]Ry) and
macroscopic Ca2+ flux measurements across isolated SR membrane vesicles (P. W. Wong &
Pessah, 1996). [3H]Ry binds to RyR1 with high selectivity and specificity only to an activated
conformation of RyRs, thereby providing a rapid and quantitative method for screening
chemicals that enhance or inhibit channel activity (Pessah, Stambuk, & Casida, 1987; Pessah,
Waterhouse, & Casida, 1985). Figure 10 (left panel) highlights two important aspects of the
PCB structure-activity relationship towards RyR1: (1) chlorine substitutions at the ortho-
positions which restrict the biphenyl rings to non-coplanarity; and (2) the contribution of
para-substituents which can reduce or eliminate activity. For example PCB 126, one of the
most potent PCB congeners toward the arylhydrocarbon hydroxylase (Ah) receptor, lacks
activity toward RyR1 at its solubility limits. In general, PCBs lacking at least one ortho-
substitution are inactive toward RyR1 and RyR2, regardless of the degree of chlorination. A
similar structure-activity profile applies for activation of RyR2 channels isolated from cardiac
muscle (P. W. Wong & Pessah, 1996),

ER preparations isolated from adult cerebellum, hippocampus or cortex contain all three RyR
isoforms, although RyR1 and RyR2 predominate (P. W. Wong, Brackney, & Pessah, 1997).
Of the congeners assayed on ER preparations from brain, noncoplanar PCB 95 exhibited the
highest potency toward activating high affinity [3H]Ry binding, whereas mono-ortho PCB 66
(2,3,4,4′-tetrachlorobiphenyl) and PCB 126 were inactive. Ca2+ transport measurements made
with cortical ER vesicles revealed that PCB 95 discriminates between inositol 1,4,5-
trisphosphate- and ryanodine-sensitive stores, and PCB 95 induced Ca2+ was dose-dependent
and completely inhibited by ryanodine receptor blockers (P. W. Wong, Brackney et al.,
1997).

A more detailed structure-activity analysis was completed with RyR1. Figure 2 shows a ranking
of the 28 most active congeners of 35 tested based on the concentration required to double
[3H]Ry binding activity to RyR1 (Pessah et al., 2006). Many of these are found in
environmental and human samples and collectively they can comprise up to 50% of the total
PCB burden. PCB 95 and PCB 136 and (2,2′,3,3′,6,6′-hexachlorobiphenyl) share asymmetric
chlorine substitutions on the phenyl rings (2,3,6 and 2′,3′,6′ for PCB 136 vs. 2,3,6 and 2′,5′ for
PCB95) and both are racemic mixtures of two atropisomers (see below). The 2′,5′-Cl
configuration of PCB 95 is equivalent to a 3′6′-Cl configuration of PCB 136 (i.e. 2,3,6,2′,5′
vs. 2,3,6,3′,6′) assuming a calculated dihedral angle of ~90° based on the crystal solution of
PCB 84 (Lehmler, Robertson, & Parkin, 2005). The 2,3,6-Cl configuration on one ring with
ortho, meta on the other is optimal for recognizing a binding site within the RyR1 complex
and for sensitizing channel activation. Para-chloro substitution lowers the maximum efficacy
towards RyR1 regardless of the presence of one or more ortho-substitutions. Comparing the
relative activities of PCB 30 and PCB 75 (2,4,6,4′-tetrachlorobiphenyl), the additional para-
Cl-substitution completely eliminates activity towards RyR1. Thus complete lack of activity
observed here with PCB 75 is likely due to the di-para-chloro substitution. In general, PCB
structures possessing 4,4′-Cl exhibit lower activity towards RyR1, regardless of the presence
of one or more ortho-substitutions (Pessah et al., 2006). Hydroxylated PCBs are appearing in
human tissues and there is currently great interest in determining whether these metabolites
are more biologically active than the corresponding parent structures (Fernandez et al.,
2008;Y. Liu et al., 2009; . J. S Park et al., 2008;Park, Petreas, Cohn, Cirillo, & Factor-Litvak,
2009). The 4-OH derivative of PCB 30 (4′OH-PCB 30) was found to be significantly more
active toward RyR1 than the parent PCB 30 (2,4,6-Cl) (Fig 10, right panel). Thus a para-OH
group on the phenyl ring that carries no other deactivating substitution confers potency and
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efficacy towards activating RyR1. Two possible mechanisms could be responsible. First, the
acidic property of the lone phenyl-OH substituent is likely to contribute hydrogen-bonding
potential to stabilize interactions with the receptor site. Alternatively, if the hydroxyl group is
partially or wholly ionized, then electrostatic interactions would be expected to stabilize the
PCB-RyR1 complex. In support of this interpretation, the di-OH derivative of PCB30, 3′,4′-
di-OH,2,4,6-PCB, was found to possess lower potency but similar efficacy to PCB 30. The
presence of two adjacent –OH moieties would be expected to promote intramolecular hydrogen
bonding and could preclude stabilizing interactions with RyR1 that impact the apparent affinity
and efficacy for channel activation (Pessah et al., 2006). There is an excellent correlation (r2

=0.87) between the initial rate of PCB-induced Ca2+ efflux and the concentration needed to
increase [3H]Ry binding by two fold, a measure of potency (Fig 11), and PCB-induced Ca2+

release from ER/SR membrane without inhibiting the SR/ER Ca2+-ATPase (SERCA pump).
Moreover, the release can be completely inhibited by prior block of RyR channels with
ryanodine or ruthenium red, suggesting a selective receptor mediated mechanism is
responsible.

2.3.1. Enatioselectivity of Chiral PCBs toward RyRs—Nineteen of the possible 209
polychlorinated biphenyl (PCB) structures exist as pairs of atropisomers (also referred to as
enantiomers) that are sufficiently stable to permit separation by gas or liquid chromatography
using chiral column matrices (Haglund, 1996). Stable enantiomeric PCB structures have
unsymmetrical chlorine substitutions in their respective phenyl rings and possess ≥3 chlorine
atoms in the ortho-positions that restrict the degree of rotation about the biphenyl bond.
Evidence of enantioselective enrichment of PCB atropisomers in environmental samples
(Asher et al., 2007; Pessah, 2001; Jamshidi, Hunter, Hazrati, & Harrad, 2007; Robson &
Harrad, 2004; C. S. Wong, Garrison, Smith, & Foreman, 2001; C. S. Wong et al., 2004; C. S.
Wong et al., 2007), food (Bordajandi & Gonzalez, 2008; Bordajandi, Ramos, Sanz, Gonzalez,
& Ramos, 2008; Bordajandi, Ramos, & Gonzalez, 2005), as well as biological tissues from
animals (Chu, Covaci, Van de Vijver et al., 2003; Kania-Korwel, Hornbuckle, Robertson, &
Lehmler, 2008a, 2008b; Kania-Korwel, Shaikh, Hornbuckle, Robertson, & Lehmler, 2007)
and humans (Chu, Covaci, & Schepens, 2003; Harrad et al., 2006) are being widely reported.
Recently (−) PCB 136 was shown to directly sensitize activation of RyR1 and RyR2, whereas
(+) PCB 136 did not when assayed at either 25 or 37oC (Pessah et al., 2009) (Fig 12). (−) PCB
136 rapidly mobilized SR Ca2+ stores by activating RyR1 in the presence of low (resting) levels
of cytoplasmic Ca2+, and (+) PCB 136 failed to competitively inhibit the actions of (−) PCB
136. The mechanism by which (−) PCB 136 promotes RyR activity is to coordinately stabilize
the open, while destabilizing the closed, states of the RyR1 channel.

The enantiospecificity of (−) PCB 136 indicates that the spatial configuration of the chlorine
substitutions about the biphenyl is significantly more important than the overall
physicochemical properties of the PCB for optimizing interactions with RyRs and implies a
highly ordered binding interaction between active PCBs and their site(s) of interaction within
RyR complexes. It is interesting to note that the four most active PCBs toward RyR thus far
tested are chiral (Figs 2 & 11) although the degree of enantiospecificity toward sensitizing RyR
activity may vary (Lehmler, Robertson, Garrison, & Kodavanti, 2005;Pessah et al., 2009).

2.4. RyRs in smooth muscle
All three RyR isoforms are expressed in smooth muscle myocytes (McGeown, 2004). The
patterns of RyR isoform expression and their contribution to smooth muscle contractility differ
among specific organs in which they are found including vascular, urinary bladder, ureter,
airway and the gastrointestinal track (Cheng & Lederer, 2008; McGeown, 2004). RyRs also
localize to regions of SR that are in close proximity (≤ 100 nm) to the plasma membrane of a
variety of smooth muscle myocytes where they are responsible for generating spontaneous and
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depolarization evoked CICR (Gollasch et al., 1998; Lesh et al., 1998). The patterns of
expression of RyR isoforms is highly dependent on the type of smooth muscle and multiple
isoforms can be expressed within a smooth muscle cell (Chalmers, Olson, MacMillan,
Rainbow, & McCarron, 2007). For example, recent RT-PCR results have indicated that RyR2
and RyR3 are expressed in cultured myocytes from rat mesenteric artery (Berra-Romani,
Mazzocco-Spezzia, Pulina, & Golovina, 2008) or vas deferens (Ohno, Ohya, Yamamura, &
Imaizumi, 2009), although the ratio of the two isoforms can change with proliferation. In
contrast, uterine smooth muscle expresses two splice variants of RyR3 that are differentially
expressed in nonpregnant and pregnant myometrium, although their functional significance
has been recently questioned (Noble, Matthew, Burdyga, & Wray, 2009). It appears that
expression of a functional long form of RyR3 is responsive to caffeine and cADP ribose,
whereas expression of a non-functional short form can inhibit the function of the long-form
when they are concomitantly expressed (Dabertrand, Fritz, Mironneau, Macrez, & Morel,
2007). At the end of pregnancy, the relative expression of RyR3 long form appears to increase
suggesting physiological regulation of RyR3 alternative splicing may be important in
regulating uterine contractility at the end of pregnancy.

In smooth muscle that undergoes action potential driven phasic contraction (e.g., smooth
muscle of the uterer, the periodicity of Ca2+ sparks appear to be functionally coupled to
pacemaker ionic currents that, collectively, set the rhythm of the firing of action potentials
(Burdyga & Wray, 2005; S. Q. Wang et al., 2002; Wray, Burdyga, & Noble, 2005). By contrast,
RyRs expressed in arterial and urinary bladder smooth muscles are co-localized with and tightly
coupled to large conductance Ca2+-activated potassium channels (BKCa) that mediate
spontaneous outward currents (STOCs) (Herrera & Nelson, 2002; Jaggar et al., 1998; Nelson
et al., 1995; Perez, Bonev, Patlak, & Nelson, 1999). Voltage-activated Ca2+ entry into arterial
smooth muscle is primarily responsible for enhancing tone. However, an important
consequence of the co-localization and tight functional coupling between RyRs and BKCa is
that activation of sub-plasmalemmal RyR-mediated Ca2+-induced Ca2+ release efficiently
enhances STOCs thereby hyperpolarizing the surface membrane and shutting off voltage-
dependent Ca2+ entry (Nelson et al., 1995). Therefore, activation of RyRs play a pivotal
physiological role in arterial smooth muscle relaxation and the abnormal RyR-BKCa coupling
have been shown to cause hypertension and left ventricular hypertrophy (Amberg, Bonev,
Rossow, Nelson, & Santana, 2003; Brenner et al., 2000; Pluger et al., 2000).

2.4.1. Cellular toxicity of PCBs to smooth muscle—Exposure of uterine smooth
muscle cells isolated from gestation day 10–pregnant rats to non-coplanar PCB 4 (2,2′-
dichlorobiphenyl) was shown to inhibit contractility and synchronization (Chung & Loch
Caruso, 2005). These effects on contractility were initially attributed to MAPK-mediated
phosphorylation of connexin 43 that resulted in inhibition of myometrial gap junctions.
However, additional studies revealed that antioxidants could reverse the inhibitory influence
of PCB on contraction and synchronicity without restoring gap junction function (Chung &
Caruso, 2006), suggesting other mechanisms are involved. Paradoxically, complex PCB
mixtures significantly stimulated uterine contraction frequency with the least chlorinated
mixture, Aroclor 1242, being most potent. The actions of micromolar Aroclor 1242 on uterine
smooth muscle contractility seem at least in part mediated by enhanced Ca2+ entry through a
nifedipine-sensitive pathway (Bae, Stuenkel, & Loch-Caruso, 1999; Wrobel, Kaminski, &
Kotwica, 2005). Aroclor 1260 did not exhibit significant effects on rat uterine strips in vitro
(Bae, Mousa, Quensen, Boyd, & Loch-Caruso, 2001; Tsuneta et al., 2008). However
subsequent to microbial metabolism, a partially dechlorinated mixture dominated by ortho-
substituted PCBs with ≤4 chlorines substituents increased uterine contraction frequency over
7-fold. Exposure of bovine myometrial cells to A1248 initially increased the spontaneous force
of contractions but with longer exposures (≥24hr) was inhibitory (Wrobel et al., 2005). Non-
coplanar PCB-153 (2,2′,4,4′,5,5′-hexachlorobiphenyl) increased the spontaneous and
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oxytocin-evoked frequency of myometrial contractions, and these effects were greater in cells
isolated before than after ovulation. On the other hand, PCB 153 delayed or inhibited oxytocin-
stimulated rise in intracellular Ca2+ concentration without altering cell viability (Wrobel et al.,
2005; Wrobel & Kotwica, 2005). Ortho-substituted PCBs and their metabolites were found to
reduce proliferation of myometrial cells originating from pregnant women exposed in vitro
(Bredhult, Backlin, & Olovsson, 2007).

The mechanisms responsible for the seemingly paradoxical effects of PCBs on uterine smooth
muscle contractility (decreased contractility produced by PCB 4 vs. enhanced contractility
induced by an ortho-rich mixtures and PCB153) are currently not understood. Collectively
these results suggest that non-coplanar PCBs, especially lightly chlorinated congeners, are most
active toward altering myometrial contractility through a mechanism involving altered Ca2+

signaling.

2.5. PCB Developmental Neurotoxicity
2.5.1 RyRs in the Nervous System—Neurons have an extensive ER membrane system
that extends deep into the soma to envelope the nucleus and out into proximal regions of the
dendrites and axon. Specialized regions of the ER closely appose the plasma membrane and
are present in more distal aspects of the neuron such as growth cones, axon terminals and
dendritic spines. As in non-neuronal cells, Ca2+ release from neuronal ER stores can be evoked
by stimulation of RyRs or IP3Rs, and both receptor types can couple to the activation of
neurotransmitter-gated receptors and voltage-gated Ca2+ channels on the plasma membrane.
This organization enables the ER to function not only as a buffer and source of Ca2+ in axonal
and somatodendritic compartments but to also discriminate between different types of neuronal
activity and integrate Ca2+-dependent signaling between the plasma membrane, cytosol and
nucleus (Bardo, Cavazzini, & Emptage, 2006; Berridge, 2006). Ca2+ spark-like events arising
from both RyRs and IP3Rs in nerve growth factor-differentiated PC12 cells and cultured
hippocampal neurons exhibit different kinetic properties than their counterparts found in
cardiac muscle, with greater spatial width and significantly longer duration (Koizumi, Bootman
et al., 1999; Koizumi, Lipp, Berridge, & Bootman, 1999). Long lasting local Ca2+ signals
spreading several microns, called “syntillas” have been measured within presynaptic terminals
of basket cells of the cerebellum (Collin, Marty, & Llano, 2005), and in peptidergic terminals
of murine hypothalamic neurons and neuroendocrine (chromaffin) cells (De Crescenzo et al.,
2006; De Crescenzo et al., 2004; ZhuGe et al., 2006). Syntillas observed in hypothalamic
neuronal terminals are triggered by membrane depolarization and are restricted near the inner
leaflet of the plasma membrane. RyR1s anchored to the ER in very close proximity to
plasmalemmal L-type voltage dependent Ca2+ channels engage in a form of voltage-induced
Ca2+ release (VICaR) that is similar to muscle EC coupling (De Crescenzo et al., 2006).

High-affinity [3H]ryanodine-binding sites are expressed in rat brain microsomal fractions from
cerebral cortex, cerebellum, hippocampus and brainstem (Zimanyi & Pessah, 1991) and form
caffeine sensitive Ca2+ channels (McPherson et al.,1991). All three RyR isoforms are expressed
in the central nervous system (CNS) but are differentially distributed between specific brain
regions, cell types and subcellular localizations, reflecting their participation in specialized
functions. In situ hybridization studies of mouse brain (Mori, Fukaya, Abe, Wakabayashi, &
Watanabe, 2000) indicate that during embryogenesis, RyR1 is predominantly expressed in the
rostral cortical plate whereas RyR3 is prominent in the caudal cortical plate and hippocampus.
However, from postnatal day 7 into adulthood, RyR2 expression is upregulated and RyR3
expression downregulated so that RyR1 and RyR2 are more highly and broadly expressed than
RyR3. In the postnatal brain, RyR1 expression is most prominent in the dentate gyrus and
Purkinje cell layer but this isoform has also been detected in the caudate/putamen nuclei,
olfactory tubercle, olfactory bulb, and cortex. RyR2 is the major isoform expressed in many
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brain regions and RyR2 transcripts have been observed in the hippocampus, cerebellum, medial
habitual nuclei, amygdala, cortex and more anterior brain regions including granular cell layer
of the olfactory bulb. In the cerebellum, RyR2 mRNA specifically localized to the granular
cell layer. RyR3, which accounts for about 2% of the total RyR protein in the brain (Murayama
& Ogawa, 1996), shows distinctive patterns of expression in several structures of mouse brain.
RyR3-specific antibodies appeared to preferentially stain the granular layer in the cerebellum
even though the signal intensity was less than RyR2. Immunocytochemical studies have also
detected RyR3 in the hippocampus and sporadic patterns of RyR3 staining have been reported
in the thalamus and the caudate/putamen nuclei.

Detailed in situ hybridization (Furuichi et al., 1994; Giannini, Conti, Mammarella, Scrobogna,
& Sorrentino, 1995; Mori et al., 2000) and immunocytochemical (Hertle & Yeckel, 2007)
studies of the distribution of RyR isoforms in the hippocampus of rodent brains indicate that
RyR1 is enriched in the stratum oriens, stratum pyramidale and stratum radiatum of CA1 and
CA3 subfields of hippocampus. The densest RyR1 immunolabeling localized to the somata of
pyramidal cells within the stratum pyramidale and portions of their apical dendrites in the
stratum radiatum (Hertle & Yeckel, 2007). By contrast, RyR1 has relatively lower expression
in dentate gyrus. RyR2 is primarily expressed in the cells of the dentate gyrus and in the stratum
lucidum of CA3 with weaker staining in pyramidal cells in stratum pyramidale and within
stratum radiatum of CA1 (Hertle & Yeckel, 2007; Lai et al., 1992). RyR2 is localized in axons
to a greater degree than in dendrites, and is most densely distributed in the hippocampal mossy
fiber pathway and in axon bundles traversing the cortical laminae (Hertle & Yeckel, 2007;
Seymour-Laurent & Barish, 1995). RyR3 immunoreactivity was detected in all hippocampal
subfields but was stronger in CA1 than CA3. Intense RyR3 immunoreactivity was detected
along the dentate gyrus/hilus border and within the hilus.

RyR expression has also been documented in non-neuronal cells of the CNS. Diffuse staining
of the hippocampal neuropil indicates that RyR3 is expressed in astrocytic processes (Matyash,
Matyash, Nolte, Sorrentino, & Kettenmann, 2002), and separate studies of cultured glial cells
derived from rodent brain confirmed RyR expression in not only astrocytes (Matyash et al.,
2002; Straub & Nelson, 2007) but also oligodendrocytes (Haak et al., 2001; Weerth, Holtzclaw,
& Russell, 2007). These studies further indicated that astrocytes (Matyash et al., 2002) and
oligodendrocyte progenitors (Haak et al., 2001) express RyR3 but not RyR1 or RyR2. In
oligodendrocyte progenitor, RyR3 and IP3R type 2 were shown to have a differential
distribution within their processes that might explain differences in local and global Ca2+

signals mediated by these two channel types, and their functional interactions appear to
determine the spatial and temporal characteristics of Ca2+ signaling in these cells. In contrast,
human microglia cultured from both fetal and adult brain samples express mRNA for RyR1
and RyR2, whereas RyR3 mRNA can be detected only in fetal microglial cells. RyR expression
has also been examined in peripheral nervous system (PNS) neurons. Transcripts encoding
RyR2 and RyR3 but not RyR1 have been detected in sympathetic ganglia isolated from adult
rats and ganglionic levels of RyR3 but not RyR2 mRNA decline with advanced age
(Vanterpool, Vanterpool, Pearce, & Buchholz, 2006). Immunohistochemical studies of dorsal
root ganglia (DRG) revealed immunoreactivity for RyR3 but not RyR1 or RyR2 (Lokuta,
Komai, McDowell, & Valdivia, 2002; Ouyang et al., 2005) in these sensory neurons.

2.5.2. RyR-Mediated Mechanisms in Neurodevelopment—Given that RyRs are
expressed in both presynaptic and postsynaptic sites in virtually all brain areas (Hidalgo,
2005; Nozaki et al., 1999; Ogawa & Murayama, 1995) as well as in CNS glial cells and PNS
neurons, it is perhaps not unexpected that experimental evidence indicates that RyRs contribute
to fundamentally important aspects of neuronal excitability and use-dependent synaptic
plasticity (Berridge, 1998; Kennedy, 2000; Korkotian & Segal, 1999; Matus, 2000; Segal,
2001). In axon terminals, RyRs mediate spontaneous, evoked and facilitated neurotransmission
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(Collin et al., 2005; De Crescenzo et al., 2006; T. W. Dunn & Syed, 2006; Q. Liu et al.,
2005; Shimizu et al., 2008) and regulate the mobilization and recycling of synaptic vesicles
(Levitan, 2008; Shakiryanova et al., 2007). RyRs localized to the somatodendritic domain
influence the intracellular encoding of neural activity and are implicated in modulating both
neurochemical (Bardo et al., 2006; Berridge, 2006) and structural (Segal, Korkotian, &
Murphy, 2000) aspects of synaptic plasticity. Diverse neurochemical changes associated with
dendritic synaptic plasticity have been shown to rely on RyR function, including: 1) activity-
dependent postsynaptic translation (Jourdi et al., 2009) and secretion (Kolarow, Brigadski, &
Lessmann, 2007) of neurotrophins, 2) modulation of Gq-coupled receptor function by stress
peptides and hormones (Riegel & Williams, 2008); 3) activity-dependent enhancement of
glutamate responses and the associated increase of GluR1 within spines mediated by
synaptopodin, an actin-binding protein that co-localizes with RyRs within the spine apparatus
of hippocampal neurons (Vlachos et al., 2009); and 4) sequential activation of CaM kinases,
CREB and transcription of genes encoding Ca2+-regulated proteins triggered by repetitive or
prolonged depolarization of hippocampal neurons (Deisseroth, Heist, & Tsien, 1998). RyRs
similarly function in peripheral neurons to regulate the release of (Cong, Takeuchi, Tokuno,
& Kuba, 2004; W. Huang, Wang, Galligan, & Wang, 2008; Ouyang et al., 2005) and response
to (Brain, Trout, Jackson, Dass, & Cunnane, 2001; Locknar, Barstow, Tompkins, Merriam, &
Parsons, 2004) neurotransmitters and neuropeptides, and their function underlies the exocytotic
release of glutamate from astrocytes (reviewed in Reyes & Parpura, 2009). Changes in
postsynaptic efficacy are also associated with morphological changes in dendritic spines. Pulse
application of caffeine, a RyR agonist, has been reported to cause a rapid and significant
increase in the size of existing dendritic spines in mature cultures of hippocampal neurons and
this effect is blocked by antagonizing concentrations of ryanodine (Korkotian & Segal,
1999), supporting the involvement of RyR in mediating activity-dependent changes in dendritic
spine morphology.

Consistent with the demonstrated role of RyRs in neurotransmission and synaptic plasticity at
the cellular level, ligands that directly modulate RyR, such as ryanodine, alter functional
aspects of neuroplasticity including long term potentiation (LTP) (Y. Wang, Wu, Rowan, &
Anwyl, 1996) and long term depression (LTD) (Y. Wang, Rowan, & Anwyl, 1997) in the
hippocampus. FK506 and rapamycin, which deregulate RyR2 by dissociating the RyR2/
FKBP12/12.6 complexes also inhibit LTD (Li, Kato, & Mikoshiba, 1998). Thus, RyRs appear
to play a critical role in use-dependent plasticity that underlies the early stages of associative
memory. Earlier evidence suggested that RyR2 through its interaction with calexcitin might
also alter Ca2+ signaling over a longer time frame, implying a critical role for RyRs in the
consolidation phase of associative memory (Alkon, Nelson, Zhao, & Cavallaro, 1998). Most
intriguing is work showing a tight correlation between acquisition of spatial learning and
selective up-regulation of RyR2 in the dentate gyrus and CA3 (Cavallaro et al., 1997),
implicating RyR2 in storage phases of associative memory (Alkon et al., 1998). Additional
studies demonstrate that mice with targeted deletion of RyR3 have deficits in contextual fear
conditioning but improved spatial learning in the Morris water maze task (Futatsugi et al.,
1999; Kouzu et al., 2000). Interestingly, comprehensive behavioral phenotyping of RyR3
knockout mice revealed decreased social interaction, hyperactivity and mildly impaired
prepulse inhibition, whereas no measurable impairments in motor function and working and
reference memory tests were detected (Matsuo et al., 2009).

A recent discovery is that RyRs also function as a key element of the output pathway from the
molecular circadian clock in neurons of the suprachiasmatic nucleus (SCN).
Electrophysiological and calcium mobilization experiments indicate that RyR activation by
administration of caffeine or 100 nM ryanodine increased the firing frequency of SCN neurons,
whereas inhibition of RyRs by dantrolene or 80 μM ryanodine decreased firing rate, suggesting
that RyRs are involved in the circadian rhythmicity of SCN neurons (Aguilar-Roblero,
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Mercado, Alamilla, Laville, & Diaz-Munoz, 2007). Subsequent behavioral studies
demonstrated that RyR activation induced a significant shortening of the endogenous period,
whereas RyR inhibition disrupted circadian rhythmicity. In both experiments, the period of
rhythmicity returned to basal levels upon cessation of pharmacological treatment (Mercado et
al., 2009). In light of these studies, it is interesting to note that it had been reported some 25
years earlier that PCBs interfered with rhythmic pituitary-adrenal function in rats (J. D. Dunn,
Carter, & Henderson, 1983).

Dynamic changes in intracellular Ca2+ concentrations play a crucial role in not only neuronal
excitability and synaptic plasticity but also in cell proliferation and differentiation, cell
movement, and cell death (Cline, 2001; Moody & Bosma, 2005; Spitzer, Root, & Borodinsky,
2004; Zheng & Poo, 2007). Thus, it might be predicted that RyRs function to regulate diverse
aspects of neurodevelopment, and emerging evidence supports that prediction. Early reports
that RyRs are upregulated during NGF-induced differentiation of adrenal chromaffin cells
(Jimenez & Hernandez-Cruz, 2001) suggested the possibility that RyRs mediate the CICR
necessary for neurogenesis and neuronal differentiation. In support of this hypothesis, it was
recently shown that activation of L-type Ca2+ channels, GABAA receptors or RyRs promoted
neuronal differentiation, while inhibition of these channels/receptors had the opposite effect
on mouse embryonic stem (ES) cells (Yu et al., 2008). Moreover, the activity of intracellular
Ca2+ signaling, expression of the neuronal transcription factor NeuroD and the rate of
neurogenesis was significantly inhibited in neuronal cells derived from embryonic stem cells
obtained from RyR2 deficient mice relative to wild-type controls even in the presence of L-
type Ca2+ channel and GABAA receptor activation. Apoptosis is another neurodevelopmental
process that is essential to normal brain development (Dikranian et al., 2001; Martin, 2001),
occurring in proliferative zones and in postmitotic cells in both the fetal and postnatal brain
(White & Barone, 2001). The spatiotemporal pattern of apoptosis in the developing CNS is
tightly regulated and disruption of either the timing or the magnitude of apoptosis in a given
brain region can alter cell number and thus connectivity, causing deficits in higher order
function even in the absence of obvious pathology (Barone, Das, Lassiter, & White, 2000;
Martin, 2001; Sastry & Rao, 2000). Increased Ca2+ and ROS are significant triggers of
apoptosis, and RyR activation a critical component of apoptotic signaling pathways (Berridge,
Lipp, & Bootman, 2000; Carmody & Cotter, 2001; Ermak & Davies, 2002; Ravagnan,
Roumier, & Kroemer, 2002; Robertson, Chandra, Gogvadze, & Orrenius, 2001).

RyRs have also been implicated in regulating morphogenetic processes in the developing
nervous system. Specifically, RyR3 has been shown to be necessary for astrocyte migration
(Matyash et al., 2002), and for axonal growth cone responses to nitric oxide (Welshhans &
Rehder, 2007) or activation of cell adhesion molecules (Ooashi, Futatsugi, Yoshihara,
Mikoshiba, & Kamiguchi, 2005). With respect to the latter, in the presence of RyR3-mediated
CICR, growth cones exhibited attractive turning, but in the absence of RyR3-mediated CICR,
Ca2+ signaling elicited growth cone repulsion. The authors suggest on the basis of these
observations that the source of Ca2+ influx, rather than its amplitude or the baseline Ca2+ level,
is the primary determinant of the direction of axonal growth cone turning. Based on
pharmacological inhibition studies, RyRs have also been implicated in regulating Ca2+-
dependent neurite outgrowth (Arie et al., 2009) in DRG neurons, a cell type that extends only
axons, as well as activity-dependent dendritic growth and retraction in retinal ganglia neurons
(Lohmann, Finski, & Bonhoeffer, 2005; Lohmann, Myhr, & Wong, 2002). A generalization
emerging from studies of activity-dependent dendritic growth is that Ca2+ exerts bimodal
effects on dendritic structure. Thus, increased intracellular Ca2+ has been linked to both
dendritic growth and to dendritic retraction (reviewed in Lohmann & Wong, 2005; Redmond,
Kashani, & Ghosh, 2002; Segal et al., 2000). Two possibilities have been proposed to explain
why Ca2+ signaling stimulates dendritic growth in some cases while inhibiting dendritic
plasticity in others. First, Segal et al. (2000) suggest that moderate and/or transient increases
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in intracellular Ca2+ cause growth of dendritic branches and spines, whereas large Ca2+

increases cause destabilization and retraction of these dendritic structures (Fig 13). Consistent
with this possibility, relatively sustained increases in intracellular Ca2+ versus transient
changes in Ca2+ influx activate different Ca2+-dependent signaling pathways with distinct
effects on dendrites (Redmond et al., 2002; Wilson, Kisaalita, & Keith, 2000). The second
possibility is that dendritic responses to Ca2+ differ with neuronal maturation such that early
in development, increased Ca2+ promotes dendritic growth, while later in development,
increased Ca2+ functions to stabilize dendritic structure (Lohmann & Wong, 2005). While
pharmacological manipulation of RyRs has been shown to influence activity-dependent
dendritic morphogenesis, the specific isoforms associated with any specific effect have yet to
be determined.

In addition to regulating neurodevelopment and physiological processes in the central and
peripheral nervous system, RyRs are also implicated in Ca2+ dysregulation associated with cell
toxicity, aging and neurodegeneration (reviewed in Thibault, Gant, & Landfield, 2007). The
model that has been proposed is that aging and/or pathological changes occur in both L-type
Ca2+ channels and RyRs and these interact to abnormally amplify Ca2+ transients. In turn, the
increased transients result in dysregulation of multiple Ca2+-dependent processes ultimately
accelerating functional decline. Diverse pathogenic stimuli, including HIV-1 Tat (Norman et
al., 2008), amyloid-beta and prion peptides (Ferreiro, Oliveira, & Pereira, 2008) as well as
mutations associated with neurodegeneration such as the presenilin (PS2) mutation (S. Y. Lee
et al., 2006) activate apoptotic or excitotoxic pathways via RyR-dependent mechanisms that
increase intracellular Ca2+ levels in neurons. Consistent with this model, two recent reports
confirm a role for interactions between presenilins and RyRs in regulating release of calcium
from both pre-synaptic and post-synaptic ER (C. Zhang et al., 2009; S. Chakroborty,
Goussakov, Miller & Stutzmann, 2009). This interaction is perturbed in 3xTg-AD mice such
that RyR-evoked Ca2+ release in CA1 pyramidal neurons is markedly increased resulting in
altered synaptic homeostasis of these neurons relative to wildtype mice (Chakroborty et al.,
2009). Interestingly, the RyR2 isoform was found to be selectively increased more than fivefold
in the hippocmpaus of 3xTg-AD mice relative to controls and the authors propose this as the
mechanism to explain the deviant, yet functional calcium signaling evident in presymptomatic
3xTg-AD mice long before the onset of AD histopathology. RyR-dependent Ca2+ release from
presynaptic internal stores is also required for ethanol to increase spontaneous γ-aminobutryic
acid release onto cerebellum Purkinje neurons (Kelm, Criswell, & Breese, 2007), and the
imbalance between excitatory and inhibitory circuits that underlies NMDA receptor-mediated
epileptiform persistent activity is blocked by inhibition of the ryanodine receptor (W.-J. Gao
& Goldman-Rakic, 2006). These observations support the hypothesis that factors that alter
RyR expression and/or function have the potential to interfere with normal neurodevelopment
and neuronal function.

2.5.3. Experimental evidence of RyR-mediated mechanisms of PCB
neurotoxicity—Of the various adverse effects associated with PCBs, developmental
neurotoxicity has emerged as a particularly vulnerable endpoint (Carpenter, 2006; NIEHS,
1999; Schantz et al., 2003). Population-based studies have consistently demonstrated that PCBs
negatively impact neuropsychological function in exposed children (Carpenter, 2006; Korrick
& Sagiv, 2008; Schantz et al., 2003). PCB exposure has been positively correlated with
decreased IQ scores, impaired learning and memory, lower reading comprehension, attentional
deficits and psychomotor dysfunction (Y. C. Chen et al., 1992; Grandjean & Landrigan,
2006; Jacobson et al., 1992; Koopman-Esseboom et al., 1996; Roegge & Schantz, 2006; Rogan
& Ragan, 2007; Schantz et al., 2003; P. W. Stewart et al., 2008). Comparable cognitive and
psychomotor behavioral deficits are observed in primate and rodent models following
developmental PCB exposures (Rice, 1998; Schantz, 1996; Schantz, Levin, Bowman,
Heironimus, & Laughlin, 1989; Schantz, Moshtaghian, & Ness, 1995; Tilson, Jacobson, &
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Rogan, 1990; Tilson & Kodavanti, 1998). More recently, it has been postulated that exposure
of the developing brain to PCBs may also influence the susceptibility of the adult brain to acute
stressors and neurodegeneration (Lein, Kim, Berman, & Pessah, In press). This hypothesis is
derived in part from a mortality study of 17,000 workers occupationally exposed to PCBs that
revealed an increased incidence of PD in female subjects (Steenland et al., 2006) and findings
of a positive correlation between PCB exposure and depression and impaired memory and
learning among adults 49–86 years of age living in Michigan and exposed to PCBs via
consumption of Great Lakes fish (Schantz et al., 2001) and adults 55–74 years of age living
along regions of the Hudson River in New York that have been heavily contaminated with
PCBs (Fitzgerald et al., 2008). In the latter study, the PCB body burdens of affected individuals
were similar to those of the general population, suggesting persistent neuropsychological
effects from prior exposures. Whether early-life exposures to PCBs increase susceptibility to
neurodegenerative processes that contribute to dementia and motor deficits is difficult to
determine from these studies because the critical exposure period could not be identified.
However, several recent studies using experimental animal models support this possibility.
The first set of studies utilized a well-established model of focal cerebral ischemia, middle
cerebral artery occlusion (MCAO) in rats, to demonstrate that exposure to Aroclor 1254 in the
maternal diet throughout gestation and lactation confers neuroprotection against focal ischemic
stress in the adult brain (Dziennis et al., 2008). Congener-specific analyses of tissues harvested
from adult animals immediately following MCAO indicated no difference in PCB levels
between control and PCB-exposed brains, suggesting that PCB effects on stroke outcome may
reflect PCB interactions with developmental processes. In the second set of studies,
developmental PCB exposure was shown to influence seizure susceptibility in the weanling
and young adult rat. Seizure susceptibility was assessed by quantifying the threshold for
seizures induced by flurothyl (bis-2,2,2-triflurothyl ether), a convulsive drug used to
investigate seizure susceptibility in rodents (Ferland & Applegate, 1998; Szot et al., 2001) and
the response to pentylenetetrazole (PTZ), which kindles seizures within 15–20 injections of
initially subconvulsive doses in rats (Corda et al., 1991). Exposure to PCB 95 in the maternal
diet from gestational day 5 through weaning on postnatal day 21 significantly decreased seizure
thresholds in animals challenged with flurothyl on postnatal day 35 and caused faster kindling
with PTZ on postnatal day 60–83 (Lein et al., In press). Considered collectively, these studies
support the possibility that exposure of the developing brain to PCBs may elicit persistent
changes in the brain that influence the susceptibility of the adult brain to subsequent stressors.

How developmental PCB exposure causes persistent neuropsychological impairment in either
children or adults has yet to be resolved. Several lines of evidence suggest mechanisms
independent of the AhR. First, congener-specific analyses of brain tissues from human subjects
(Corrigan, Murray, Wyatt, & Shore, 1998) and experimental animals (Dziennis et al., 2008;
D. Yang et al., 2009) exhibiting neuropsychological impairment associated with exposure to
complex PCB mixtures indicate enrichment of non-coplanar ortho-rich congeners. Second,
studies utilizing purified congeners have consistently demonstrated developmental
neurotoxicity associated with non-coplanar ortho-rich congeners (Fonnum et al., 2006; P. R.
S. Kodavanti, 2005; Mariussen & Fonnum, 2006; Schantz et al., 2003; Tilson & Kodavanti,
1998). For example, perinatal exposure to PCB 95 has been shown to persistently alter
cognitive and psychomotor activity in rodent models (Schantz, Seo, Wong, & Pessah, 1997)
as well as LTP in hippocampal slice cultures ( P. W. Wong, Joy, Albertson, Schantz, & Pessah,
1997), and to alter the ratio of excitatory to inhibitory neurotransmission in the developing
auditory cortex (Kenet et al., 2007) and hippocampal slice cultures (Kim, Inan, Berman, &
Pessah, 2009).

The mechanisms underlying the neurotoxic effects of non-coplanar PCBs are only partially
understood. Biological activities associated with ortho-rich and hydroxyl metabolites of ortho-
poor PCBs include: 1) endocrine disruption, specifically weak estrogenicity (Safe, 2004),
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enhanced insulin (Fischer et al., 1999) and arachidonic acid secretion (Bae, Peters-Golden et
al., 1999), and disruption of the hypothalamic-pituitary-thyroid axis (Knerr & Schrenk,
2006; Zoeller, 2005; Zoeller et al., 2000); 2) reduced levels of dopamine and other biogenic
amines in the brain and in cultured neurons (Mariussen & Fonnum, 2006; Seegal, 1996); and
3) increased levels of reactive oxygen species (ROS) and intracellular Ca2+ in neurons (P. R.
S. Kodavanti, 2005; Mariussen & Fonnum, 2006). There is evidence that non-coplanar PCBs
may induce increases in intracellular Ca2+ by several mechanisms, including influx of
extracellular Ca2+ through L-type voltage-sensitive Ca2+ channels or the NMDA receptor
(Inglefield & Shafer, 2000; Mundy, Shafer, Tilson, & Kodavanti, 1999) or via release of
intracellular Ca2+ stores subsequent to activation of IP3Rs (Inglefield et al., 2001) or RyR (P.
W. Wong, Brackney et al., 1997); however, RyR activation is the most sensitive of these
mechanisms (P. W. Wong, Brackney et al., 1997; P. W. Wong, Joy et al., 1997; P. W. Wong
& Pessah, 1996). It is interesting to note that these mechanisms may not be mutually exclusive
since RyR activation is known to interact with IP3R and with both L-type voltage-sensitive
Ca2+ channels and the NMDA receptor (see section 2.5.4.), and low μM concentrations of non-
coplanar PCBs have been shown to enhance significantly the sensitivity of primary cultured
neurons to NMDA- and AMPA-elicited Ca2+ signals (Gafni et al., 2004), revealing a functional
link between PCB amplification of RyR signaling and sensitivity to excitatory amino acids.

The causal relationship between these biological activities of non-coplanar PCBs and the
neuropsychological deficits associated with PCB developmental neurotoxicity remains a
pressing question in the field. It has been postulated that these biological activities contribute
to the developmental neurotoxicity associated with non-coplanar PCBs by interfering with the
patterning of neuronal connectivity in the developing brain (Gilbert, 2000; Seegal, 1996).
Critical determinants of neuronal connectivity include neuronal apoptosis (Barone et al.,
2000; Martin, 2001; Sastry & Rao, 2000) and dendritic morphogenesis (Kennedy, 2000; Matus,
2000). Altered patterns of neuronal apoptosis not only impact neuronal connectivity in the
developing brain, but also influence the susceptibility of the adult brain to subsequent
environmental insults or aging (Barlow, Cory-Slechta, Richfield, & Thiruchelvam, 2007;
Langston et al., 1999). The shape of the dendritic arbor determines the total synaptic input a
neuron can receive (Purpura, 1967; Purves, 1975, 1988), and influences the types and
distribution of these inputs (Miller & Jacobs, 1984; Schuman, 1997; Sejnowski, 1997). Altered
patterns of dendritic growth and plasticity are associated with impaired neuropsychological
function in experimental models (Berger-Sweeney & Hohmann, 1997) and are thought to
contribute to diverse disorders of neurodevelopmental origin (Connors et al., 2008; Pardo &
Eberhart, 2007; Zoghbi, 2003) as well as neurodegenerative diseases (de Ruiter & Uylings,
1987; Flood & Coleman, 1990; Jagadha & Becker, 1989). Each of the biological activities
associated with non-coplanar PCBs have been shown to influence neuronal apoptosis and to
contribute to the dynamic control of dendritic growth; however, to date, experimental evidence
linking these activities to PCB-induced alterations in neuronal connectivity has been reported
only for RyR-dependent mechanisms.

PCBs have been shown to induce caspase-dependent apoptosis in primary cultures of
hippocampal neurons (Howard et al., 2003). Neuronal apoptosis was induced by A1254 and
non-coplanar PCB 47 but not by coplanar PCB 77. Aroclor 1254 contains predominantly ortho-
rich PCBs with significant activity at the RyR (P. W. Wong, Brackney et al., 1997; P. W. Wong
& Pessah, 1996), and SAR studies identified PCB 47 as a RyR-active congener and the coplanar
PCB 77 as a congener with negligible activity at the RyR (Pessah et al., 2006). Further evidence
that RyR activation mediated the pro-apoptotic activity of PCBs includes the inhibition of PCB-
induced apoptosis by FLA 365, a selective RyR antagonist (Chiesi, Schwaller, & Calviello,
1988; Mack, Zimanyi, & Pessah, 1992) but not by antagonists previously shown to block PCB-
mediated Ca2+ flux through L-type voltage-sensitive channels, NMDA receptors, and IP3Rs
in cultured neurons.
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Recent evidence suggests that PCBs may also interfere with neuronal connectivity in vivo.
Developmental exposure to A1254 was observed to enhance basal levels of dendritic growth
but block experience-dependent dendritic growth in the cortex and cerebellum of weanling rats
(P. J. Lein et al., 2007; D. Yang et al., 2009) (Fig 14), and developmental exposure to PCB 95
was reported to disrupt the balance of neuronal inhibition to excitation in the developing rat
auditory cortex (Kenet et al., 2007). Several lines of evidence suggest that PCB sensitization
of RyRs contributes to the effects of these compounds on neuronal connectivity. First, these
changes in neuronal connectivity are associated with exposure to non-coplanar PCB congeners
with high affinity for the RyR. Second, PCB-induced changes in dendritic growth and plasticity
are coincident with increased [3H]ryanodine binding sites and RyR expression in the brains of
untrained animals and inhibition of training-induced RyR upregulation. Moreover, the dose-
response relationship for PCB effects on dendritic growth and plasticity were similar to that
of PCB effects on RyR expression but not to that of PCB effects on thyroid hormone levels or
sex-steroid-dependent developmental endpoints (D. Yang et al., 2009). Increased RyR
expression in brain tissues has also been associated with PCB-induced changes in gene
expression (Royland & Kodavanti, 2008; Royland, Wu, Zawia, & Kodavanti, 2008) and
locomotor activity (Roegge et al., 2006). In vitro studies confirmed a link between PCB
sensitization of RyR and effects on dendritic arborization. PCB 95, a congener with potent
RyR activity, but not PCB 66, a congener with negligible RyR activity, promoted dendritic
growth in primary cortical neuron cultures and this effect was blocked by pharmacological
antagonism of RyR activity (D. Yang et al., 2009). The downstream mechanisms by which
PCB sensitization of the RyR influences dendritic arborization have yet to be established, but
it is postulated these involve modulation of Ca2+-dependent signaling pathways linked to
activity-dependent dendritic growth and plasticity. Activation of a CaMK-CREB-Wnt
signaling pathway has recently been demonstrated to link neuronal activity to transcription of
gene products that regulate dendritic growth (Wayman et al., 2006) (Fig 15); and activity-
dependent translation is mediated by the serine-threonine protein kinase mammalian target of
rapamycin (mTOR) (Gong, Park, Abbassi, & Tang, 2006; Jaworski, Spangler, Seeburg,
Hoogenraad, & Sheng, 2005; Kumar, Zhang, Swank, Kunz, & Wu, 2005; Takei et al., 2004).
RyR activation has been shown to cause sequential activation of CaM kinases, CREB and
transcription of genes encoding Ca2+-regulated proteins (Deisseroth et al., 1998); translation
mechanisms of activity-dependent growth are Ca2+-dependent; and PCB effects on RyR-
mediated Ca2+ signaling require interactions with FKBP12 (Gafni et al., 2004; P. W. Wong et
al., 2001; P. W. Wong & Pessah, 1997), which regulates mTOR activity (reviewed in (J. Chen
& Fang, 2002)).

These data linking a direct molecular effect of PCBs (RyR activation) to disruption of specific
neurodevelopmental events (neuronal apoptosis and dendritic growth and plasticity) provide
the first evidence of a receptor-based mechanism for PCB developmental neurotoxicity. This
not only provides a powerful means for predicting which of the 209 possible congeners within
the PCB family present the greatest risks to neurodevelopment, but also supports the
development of mechanism-based tools for screening other chemical classes of environmental
health concern, such as PBDEs. Human polymorphisms in RYR genes are linked to
environmentally triggered disorders including malignant hyperthermia (MH) (Gronert, Pessah,
Muldoon, & Tautz, 2004), cardiac arrhythmias (Wehrens, Lehnart, & Marks, 2005), and
sudden death (Laitinen et al., 2004), suggesting the testable hypothesis that individuals with
mutation(s) in one or more CRU proteins exhibit increased susceptibility to developmental
neurotoxicity resulting from low-level environmental exposures to non-coplanar PCBs. In
support of this hypothesis, we recently showed that non-coplanar PCB 95 is significantly more
potent and efficacious in disrupting cation regulation of MH mutation R615C-RyR1 compared
to wild type RyR1 (Ta & Pessah, 2007). Considered together, these observations identify non-
coplanar PCBs with high RyR activity as candidate environmental risk factors in
neurodevelopmental disorders and provide insight regarding potential gene-environment
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interactions that influence susceptibility to environmentally triggered neurodevelopmental
deficits.

2.5.4. RyRs as a point of convergence in PCB neurotoxicity—While emerging
evidence clearly identifies RyRs as critical molecular targets in PCB developmental
neurotoxicity, other biological activities have been ascribed to non-coplanar PCBs, including
increased intracellular levels of ROS (Fonnum et al., 2006; Mariussen & Fonnum, 2006),
disruption of thyroid hormone signaling (Crofton, 2008; Zoeller, 2007) and decreased levels
of dopamine (Mariussen & Fonnum, 2006). Are these biological activities causally related to
PCB developmental neurotoxicity, and if so, do they represent divergent or convergent
mechanisms of PCB developmental neurotoxicity?

In the case of PCB disruption of thyroid hormone signaling, animal studies have shown that
reductions in circulating TH levels with developmental exposure to PCBs are associated with
low frequency hearing loss and damage to cochlear hair cells, especially outer hair cells
(Goldey, Kehn, Lau, Rehnberg, & Crofton, 1995; Lasky, Widholm, Crofton, & Schantz,
2002). Since TH is necessary for normal cochlear development (Uziel, 1986), the loss of hair
cells has been considered the indirect consequence of TH deficiency during critical periods of
development. However, the profile of cochlear damage following PCB exposure is not entirely
consistent with models of hypothyroidism, and TH replacement in PCB-exposed rats only
partially reversed hearing deficits (Crofton, Ding, Padich, Taylor, & Henderson, 2000; Crofton
& Zoeller, 2005; Goldey & Crofton, 1998; Sharlin, Bansal, & Zoeller, 2006). Additional
evidence that an alternative, TH independent, mechanism contributes to PCB ototoxicity was
recently presented (Powers BE, 2009). Interestingly, these effects on cochlear development
are produced primarily by non-coplanar PCBs (Kostyniak et al., 2005; Powers, Widholm,
Lasky, & Schantz, 2006), and all three RyR isoforms are differentially expressed throughout
the organ of Corti, including inner and outer hair cells, and within spiral ganglion neurons
(Grant, Slapnick, Kennedy, & Hackney, 2006; Morton-Jones, Cannell, Jeyakumar, Fleischer,
& Housley, 2006). RyR1 is the major isoform expressed in the outer hair cells where it is co-
localized with nicotinic cholinergic receptors at “synaptic cisterns” resembling triadic
junctions that are essential for engaging excitation-contraction coupling in skeletal muscle
(Lioudyno et al., 2004). RyR1 channels tightly couple Ca2+ release from ER stores in response
to cholinergic input to the outer hair cell thereby regulating Ca2+-activated potassium currents
that are necessary for long-term survival of olivocochlear fibers and synapses (Murthy et al.,
2009). RyRs expressed in inner hair cells functionally couple to Ca2+-activated potassium
channels (Beurg et al., 2005), whereas in spiral ganglion neurons, RyRs are functionally
coupled to somatic AMPA-type glutamate receptors (Morton-Jones, Cannell, & Housley,
2008). These observations suggest the possibility that the cochlea represents a direct target of
RyR-active PCBs, and that RyR-dependent mechanisms work in parallel or in series with TH-
dependent mechanisms to cause ototoxicity.

Emerging evidence from diverse areas of research raises the intriguing possibility that RyR
sensitization contributes to other known biological activities of PCBs. For example, it has been
demonstrated that PCBs activate the RyR causing release of Ca2+ from the ER (P. W. Wong
& Pessah, 1997), which in turn can increase production of ROS (Ermak & Davies, 2002;
Ravagnan et al., 2002) (Fig 16). This might be a reciprocal interaction in that ROS can directly
modulate the channel activity of the RyR (Feng, Liu, Allen, & Pessah, 2000; I. N. Pessah,
2001). An interesting speculation is that RyR-dependent mechanisms also contribute to the
decreased levels of circulating thyroid hormone associated with PCB exposure. The thyroid
gland is a major target organ of the sympathetic nervous system, and sympathetic neurons
express RyRs (Vanterpool et al., 2006) and neurotransmitter release from sympathetic neurons
is regulated by RyR activity (Cong et al., 2004). Conversely, since thyroid hormone regulates
RyR expression in at least the heart (Dillmann, 2002; Hudecova, Vadaszova, Soukup, &
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Krizanova, 2004; Jiang, Xu, Tokmakejian, & Narayanan, 2000), perhaps PCB effects on
thyroid hormone signaling are mediated in part by changes in RyR expression.

Similarly, emerging evidence regarding a role for RyRs in regulating dopamine homeostasis
suggests the possibility that PCB sensitization of RyR contributes to the effects of PCBs on
dopamine. Several mechanisms are currently postulated to contribute to dopamine reductions
seen following PCB exposure, including inhibition of tyrosine hydroxylase and L-aromatic
acid decarboxylase (Angus & Contreras, 1996; Angus et al., 1997), two of the enzymes
involved in the synthesis of dopamine, decreased striatal levels of the dopamine transport
(DAT) (Caudle et al., 2006) and selective activation of oxidative stress-related pathways in
dopaminergic neurons (D. W. Lee & Opanashuk, 2004). Ryanodine induces dopamine release
from striatal dopaminergic neurons and this effect is significantly attenuated in striatal slices
isolated from RyR3 null mice (Wan, Moriya, Akiyama, Takeshima, & Shibata, 1999). More
recently, it has been demonstrated that pharmacological manipulations of RyR activity alter
somatodendritic dopamine release (Patel, Witkovsky, Avshalumov, & Rice, 2009) as well as
action potential- and NMDA receptor - evoked Ca2+ signaling (Cui, Bernier, Harnett, &
Morikawa, 2007; Harnett, Bernier, Ahn, & Morikawa, 2009) in midbrain dopaminergic
neurons, and that internal Ca2+stores are necessary for the abnormal release of dopamine via
reverse transport through the dopamine transporter caused by amphetamine and
methamphetamine (Goodwin et al., 2009). Collectively these observations provide biological
plausibility to the intriguing speculation that RyR sensitization may be a convergent
mechanism of PCB developmental neurotoxicity.

2.6. Convergent mechanism for non-coplanar POPs: Toward an alternative TEF
The observation that RyRs play a critical role in diverse tissue types and in numerous cellular
processes raises an interesting challenge in light of emerging data identifying RyRs as a direct
molecular target in PCB neurodevelopmental toxicity. What factor(s) determine the specificity
of PCB toxicity? Why do PCBs seem to preferentially target the developing nervous system?
Certainly the timing of exposure will influence the biological outcomes of PCB exposures, as
will pharmacokinetic parameters such as dosage, the metabolites produced, and distribution of
PCBs within the body. But other factors that could be equally important include expression
patterns of RyRs and the complement of accessory proteins that comprise the calcium release
unit as well as the antioxidant capacity of the cell. Alternatively, perhaps the developing
nervous system is not the only preferential target, and we have simply missed toxic effects of
PCBs on peripheral target organs (muscle, cochlea, pancreatic beta cells, etc) because little
attention has been paid to these endpoints. Given the role of the RyR in a number of peripheral
tissues where PCBs have been shown to have effects, at least in vitro, understanding how PCBs
impact these peripheral targets and their implications for human and animal health and risk
assessment seem warranted.

Another interesting hypothesis that emerges from consideration of the structure-activity
relationship of PCB interactions with the RyR is whether the RyR functions as a target for
other toxicants that possess non-coplanar structures. Obvious candidates are the
polybrominated diphenyl ethers (PBDEs) (Fig. 17). Recently Dingemans and coworkers
reported that the 6-hydroxyl metabolite of BDE-47 (20–120 μM) rapidly influences
intracellular Ca2+ homeostasis in PC12 cells, which can be at least partially accounted for by
release from the ER store (Dingemans et al., 2008). Preliminary evidence that certain PBDE
congeners and their metabolites directly alter RyR function has emerged (K. Kim, Marsh,
Bergman, LaSalle & Pessah, 2009). Careful consideration of the 3-dimensional structure of
these and related environmental contaminants concerning human health may reveal other RyR
ligands. One such candidate, triclosan (Fig 17), has been shown in pilot studies to alter Ca2+

signals in a RyR-dependent manner (Anh et al, 2008). Another candidate, bisphenol A (Fig.
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17), remains untested. Whether the effects of non-coplanar compounds that are capable of
altering subtle aspects of RyR function are additive remains to be established. However, based
on results obtained with non-dioxin-like PCBs, the potential for toxiciological significance is
clear. The SAR data available for PCB interactions with RyRs, and the identification of a RyR-
based mechanism of neurodevelopmental toxicity, suggest the utility of developing an
alternative TEF strategy for non-dioxin-like PCBs based on their relative RyR activity. This
strategy has great appeal for assessing the risk of neurodevelopmental toxicity associated with
exposure to mixtures of PCBs and has the flexibility to adjust to emerging data about exposures
to existing and new non-coplanar compounds and their metabolites based on RyR activity.
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Fig 1.
Coplanar structure of dioxin and two examples of dioxin-like PCBs. Non-dioxin-like PCBs
have ≥ 2 chlorine substitutions in the ortho-position that introduce steric hindrance thereby
promoting non-coplanar geometry, as typified by PCB 95 and PCB 153. 3-D projections were
calculated using the Molecular Dynamics Tool of ChemIDplus Advanced (Nat. Lib. Med.).
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Fig 2.
Relative concentration of 28 non-coplanar PCBs needed to double [3H]ryanodine binding to
ryanodine receptor type 1 (RyR1; black bars) and their corresponding occurrence in Fox River
fish, marsh sediments, and human serum (red bars). PCBs in parentheses are co-eluting
congeners.
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Fig 3.
Several proteins interact with RyRs to regulate their function as high conductance Ca2+

channels in striated muscle. The large cytoplasmic assembly (“junctional foot”) interacts with
ion channels in the plasma membrane, cytoplasmic signaling proteins, and cytoplasmic
enzymes that regulate phosphorylation and redox sensing. The transmembrane assembly that
anchors RyRs to the ER/SR interacts with proteins that fine tune communication with the
Ca2+ stores within the SR/ER lumen. For clarity, interactions have been left out of the
schematic.
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Fig 4.
(A) Electron micrograph of the T-tubule/SR junction of negatively stained skeletal myotubes.
Arrows indicate the position of densely staining “junctional feet” that are the large cytoplasmic
domain of a row of RyR1s that span the junctional space between the two membranes (adapted
from (Protasi, Franzini-Armstrong, & Allen, 1998)). (B) 3-D model of the relative orientation
of four CaV1.1 (i.e., α1s) L-type Ca2+ channel subunits (brown) and RyR1 (green) based on
cyroEM reconstruction studies (adapted from (Wolf, Eberhart, Glossmann, Striessnig, &
Grigorieff, 2003).
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Fig 5.
Skeletal myotubes acutely exposed to 5μM PCB 95 exhibited significantly higher Ca2+

transient amplitudes evoked by low frequency (0.1Hz) electrical pulse trains (A&B; p<0.05)
and a failure to recover their original baseline (i.e., resting Ca2+ level) compared to the
corresponding control period when solvent (DMSO) alone was perfused (Ctrl). (C) Responses
to 10 s electrical pulse trains of 2.5 or 5Hz resulted in significantly higher transient amplitudes
compared to the corresponding control (Ctrl) period. Ectopic Ca2+ transients (red arrows) are
frequently observed soon after electrical stimuli ceased in the PCB exposed myotubes and were
not observed in control. Adapted from (Cherednichenko, 2009).

Pessah et al. Page 53

Pharmacol Ther. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 6.
(A) 3-D structure of RyR1 in the closed state at 10Å resolution showing the location of the
FKBP12 docking site near domain 9 (adapted from (Samso, Feng, Pessah, & Allen, 2009).
(B) PCB 95 triggered Ca2+ release from skeletal junctional SR is inhibited by pre-incubating
with rapamycin that disrupts the FKBP12/RyR1 complex (adapted from (Wong & Pessah,
1997)
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Fig 7.
PCB 95 directly stabilizes the fully open (conducting) conformation of the RyR1/FKBP12
channel complex reconstituted in the bilayer lipid membrane preparation, whereas EGTA fully
closes the channel (left and middle panels). Right panels show the corresponding structural
shifts calculated from cryoEM reconstruction of single hydrated particles showing the main
constrictions along the ion pathway in the closed and open states. The cytosolic constriction
(cc) relaxes and the inner branches (ib) become more separated in the open state. Adapted from
(Samso et al., 2009)

Pessah et al. Page 55

Pharmacol Ther. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 8.
Bastadin 5 showing “eastern: and “western” dibromocatechol ethers (red boxes) that are the
putative pharmacophores for RyR1. The structure of the antibacterial triclosan is shown in the
lower right.
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Fig 9.
Bastadin 5 in the presence of a ryanodine concentration that blocks RyR1 channels reduces
resting Ca2+ to a greater extent in cells expressing missense mutations that confer MH
susceptibility to humans than in cell expressing wild type RyR1 (Wt). *p<0.05 adapted from
(T. Yang et al., 2007)

Pessah et al. Page 57

Pharmacol Ther. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 10.
Dose response relationship of selected PCBs towards enhancing the binding of [3H]Ry to RyR1
showing the importance of ortho-substitutions (non-coplanarity (left panel) and substitutions
at the para position.
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Fig 11.
Correlation between the PCB concentration needed to double [3H]Ry binding to RyR1 and the
initial rate of PCB-induced Ca2+ efflux from SR vesicles (data for each congener were
normalized to respective parameters obtained with PCB 95). BZ numbers are given, Adapted
from (Pessah et al., 2006).
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Fig 12.
(A) PCB 136 is chiral because the asymmetric distribution of chlorines prevents
interconversion of its (+) and (−) atropisomers. Upon separation, (−) PCB 136 was found to
be active towards enhancing the activity of RyR1 (B) and RyR2 (C), whereas (+) PCB 136
was not active. Adapted from (Pessah et al., 2009)
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Fig 13.
Proposed relationship between intracellular Ca2+ concentration and dendritic growth. Adapted
from (Segal, Korkotian, & Murphy, 2000).
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Fig 14. Developmental A1254 exposure interferes with normal dendritic growth and experience-
dependent dendritic plasticity
Dendritic morphology was analyzed among P31 rats trained in the Morris water maze (Maze)
and among littermates identically housed and exposed but not trained (Non-Maze). As seen in
representative camera lucida drawings of the basilar dendritic arbor of cortical neurons,
developmental exposure to A1254 at 1 or 6 mg/kg/d in the dam’s diet throughout gestation and
lactation significantly increased dendritic arborization relative to vehicle controls (0 mg/kg/d
A1254). Maze training significantly increased dendritic complexity among animals in the
control group but this experience-dependent plasticity was blocked among animals in the
A1254 treatment groups with a more pronounced effect observed in the lower treatment group.
Data are presented as the mean±SEM (N=17–21 neurons per group). The percent changes in
dendritic length were calculated using data obtained from 17–21 neurons per treatment group.
The percent change in dendritic length as a function of maze training was calculated as the
difference in dendritic length of neurons in maze-trained animals versus non-maze-trained
animals divided by the dendritic length of neurons in maze-trained animals multiplied by 100.
*p<0.05; **p<0.01; ***p<0.001. From (D. Yang et al., 2009)
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Figure 15.
Activity increases intracellular Ca2+ via NMDA receptor activation and calcium-induced
calcium release, which alters dendritic growth via transcriptional or translational mechanisms.
The former involves CaMK I activation and enhanced CREB-dependent Wnt transcription;
Wnt binds the Frizzled receptor to activate downstream effector molecules β-catenin, JNK and
Rac. The latter involves Ca2+-dependent activation of mTOR, which relieves repression of
initiation factor-4E by 4EBP1. mTOR is regulated by FKBP12, which is targeted by non-
coplanar PCBs.
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Fig 16. Mechanisms by which non-coplanar PCBs might induce apoptotic DNA fragmentation
Specific noncoplanar PCBs may directly activate the ryanodine receptor (RyR) causing release
of Ca2+ from endoplasmic reticular (ER) stores. Increased cytoplasmic Ca2+ activates caspases
resulting in apoptosis. Increased cytoplasmic Ca2+ may also cause increased mitochondrial
Ca2+ influx, which increases generation of reactive oxygen species (ROS) thereby promoting
caspase-dependent apoptosis. Alternatively, or in addition, PCBs may generate ROS directly,
which then increase cytoplasmic levels of Ca2+ via activation of RyRs. Blocking the L-type
voltage-sensitive Ca2+ channel with verapamil or the NMDA receptor with APV does not have
any effect on PCB-induced DNA fragmentation, suggesting that, in this model system,
extracellular calcium is not involved in the apoptotic signaling pathway.
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Figure 17.
3-D projections of Bisphenol A, triclosan, and 2,2,′,4,4′-tetrabromodiphenylether (BDE-47).
3-D projections were calculated with the Molecular Dynamics Tool of ChemIDplus Advanced
(Nat. Lib. Med.).
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