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Abstract
Prenatal exposures such as polycyclic aromatic hydrocarbons (PAH) and early postnatal
environmental exposures are of particular concern because of the heightened susceptibility of the
fetus and infant to diverse environmental pollutants. Marked inter-individual variation in response
to the same level of exposure was observed in both mothers and their newborns, indicating
susceptibility might be due to genetic factors. With the mother-child pair design, existing methods
developed for parent-child trio data or random sample data are either not applicable or not
designed to optimally use the information. To take full advantage of this unique design which
provides partial information on genetic transmission and has both maternal and newborn outcome
status collected, we developed a likelihood-based method that uses both the maternal and the
newborn information together and jointly models gene-environment interactions on maternal and
newborn outcomes. Through intensive simulation studies, the proposed method has demonstrated
much improved power in detecting gene-environment interactions. The application on a real
mother-child pair data from a study conducted in Krakow, Poland suggested four significant gene-
environment interactions after multiple comparisons adjustment.
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Introduction
The impact of environmental exposures on childhood health is a crucial and understudied
area of research. There has been growing evidence showing marked inter-individual
variation in response to the same level of prenatal or postnatal environmental exposures in
mothers and their newborns, which indicates susceptibility due to genetic factors. Complex
childhood disorders including physical development problems, neurodevelopment disorders
and childhood asthma are believed to result from interactions between multiple genetic
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factors and environmental factors. To better understand the causes of childhood disorders in
children and the impact of early-life exposures from common urban pollutants on childhood
disorders, the mother-child design has been applied [Wang et al., 2008]. Conventionally,
association designs such as case-control designs, case-parents designs or case-only designs
are utilized to detect gene-environment interactions [Schaid 1999; Umbach and Weinberg
2000; Khoury and Flander 1996; Albert et al., 2001]. There has been much methodological
research conducted on detecting gene-environment interactions under these designs [Yang
and Khoury 1997; Thomas 2004; Dempfle 2008]. The population-based case-control design
has gained its popularity due to its cost-efficiency and feasibility for late-onset diseases but
has been criticized for possibly inducing spurious association due to population stratification
[Risch 2000]. The case-parents design, as a family-base design, controls well against
population stratification. The case-only design was proposed to avoid possible bias due to
inappropriate definitions of “control” but relies heavily on the assumption that the gene and
the environmental exposure are independent in the population [Khoury and Flanders 1996;
Albert et al., 2001]. However, with mother-child pair data when paternal information is
completely missing, existing methods developed for case-control, case-parents and case-
only designs are either not applicable or not designed to optimally use information from
such studies. The current genetic analysis of the mother-child pair data has mainly used
standard linear regression or logistic regression approaches that ignore the interrelationship
between mothers and their newborns, which is not the most efficient use of information
[Wang et al., 2008]. Most recently, researchers have worked on methodology development
with case-mother/control-mother designs [Shi et al., 2008; Chen et al., 2009; Chen et al.,
2009]. However, no work has been done on prospective cohort designs with mother-child
pairs. Therefore, to take full advantage of this unique design with mother-child pairs that
provides partial information on genetic transmission and has both maternal and newborn
outcome status collected, we developed a likelihood-based method that uses both the
maternal and the newborn information together and jointly models gene-environment
interactions on maternal and newborn outcomes. The proposed method is able to take into
account the dependence between maternal and newborn genotypes as well as the
dependence between their phenotypes. Through extensive simulation studies and an
application to the Krakow mother-child pair data, we demonstrated that the proposed
method outperformed a naïve method that ignored the interrelationship between mothers and
newborns in detecting gene-environment interactions.

The development of this likelihood-based method for the mother-child pair design was
motivated by two parallel ongoing studies being conducted in NYC and Krakow, Poland
with a mother-child pair design, in which pregnant women were recruited and monitored
with personal air samples and their newborns were followed. In both studies, pregnant
women were eligible if they were not currently smoking, registered at prenatal health care
clinics, had lived at the present address for at least a year before the initial interview, were ≥
18 years of age, had no history of illicit drug use, pregnancy-related diabetes, or
hypertension, and had a valid estimate of gestational age [Anderson et al., 2000; Perera et
al., 2004]. During the 2nd or 3rd trimesters pregnancy, the women carried a backpack
containing a portable personal exposure air monitor during the day and kept it near the bed
at night during a consecutive 48-hour period for PAH measurements, a widespread class of
pollutants commonly found in air, food, and drinking water [International Agency for
Research on Cancer 1983]. PAHs bind covalently to DNA to form PAH-DNA adducts, an
indicator of DNA damage. Carcinogen- DNA adducts represent a critical step in the
carcinogenic pathways and thus can be considered an informative biomarker of cancer risk
[Bulay and Wattenberg 1971; Rice and Ward 1982; Vesselinovitch et al., 1975]. We applied
the proposed method to detect gene-environment interactions on PAH-DNA adduct
detectable/non-detectable from the Krakow study. The binary outcome under investigation
was the presence of detectable PAH-DNA adducts. Four significant gene-environment
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interactions were identified after adjusting for multiple comparisons. The proposed method
is readily applicable to detect gene-environment interactions on other childhood disorder
outcomes once the data collection is finished.

Material and Methods
Assume a bi-allelic marker with a high-risk allele A and a low-risk allele a, which have
frequencies p and 1 − p, respectively. Here the high-risk allele is the minor allele (defined as
the less common allele in the cohort). For a prospective design with sample units being
mother-child pairs, we have both genetic information and outcome status collected for
mothers and their children. PAHs inhaled by the pregnant women can be transferred to the
fetus. Therefore, prenatal maternal monitoring provides an estimate of fetal exposure. The
likelihood of observing a set of n independent mother-child pairs with prospective outcome
status from a prospective cohort study is:

where Gm and Gc stand for the maternal and newborn genotypes; E stands for the
environmental exposure of both mother and newborn; and Dm and Dc stand for the outcome
status of mother and newborn, respectively. In deriving this likelihood, we assume that 1)
maternal genotypes are independent from their exposures to common urban pollutants; 2)
the child's outcome status is determined by his/her genotype, prenatal environmental
exposure and their interaction as well as the maternal outcome status; and 3) the maternal
outcome status is determined by maternal genotype, environmental exposure and their
interaction. Hardy-Weinberg equilibrium and random mating are also assumed. We could
write the log-likelihood as:

where Gp ∈ (Gc, Gm) stands for paternal genotypes that are compatible to the maternal and
child genotypes observed. Logistic model is applied to model maternal penetrance Pr (Dm =
1|Gm, E) and child penetrance Pr (Dc = 1|Gc, E, Dm) with gene-environment interactions:

where β0c and β0m are intercepts; βGm and βGc are the regression coefficients representing
the main effects of the genetic polymorphism on the maternal and newborn outcomes,
respectively; βDm is the regression coefficient representing the main effect of the maternal
outcome status on the newborn outcome status; βEm and βEc are the regression coefficients
representing the main effects of the environmental exposure on the maternal and newborn
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outcomes, respectively; and βGmE and βGcE are the regression coefficients representing the
gene-environment interaction effects on the maternal and newborn outcomes, respectively.
Here E is the binary indicator for the environmental exposure for both mother and newborn;
Gm and Gc are the maternal and newborn genotype codings which depend on the genetic
model studied. Under the dominant genetic model, Gm or Gc = 1 for genotypes AA and Aa,
Gm or Gc = 0 for genotypes aa. Under the recessive genetic model, Gm or Gc = 1 for
genotypes AA, Gm or Gc = 0 for genotypes Aa and aa. Under the additive model, Gm or Gc
= 2 for genotypes AA; Gm or Gc = 1 for genotypes Aa, and Gm or Gc = 0 for genotypes aa.

To test the null hypothesis of no interaction between genetic polymorphisms and
environmental exposures on the outcomes, we test the null hypothesis H0 : βGcE = βGmE = 0.
The corresponding alternative hypothesis is H1 : at least one of βGcE, βGmE is not 0. We use
the likelihood ratio test with 2 degrees of freedom (dfs) to test the null hypothesis.

Note that the two intercepts β0c and β0m are not free parameters. Instead, they are
determined by the population prevalences of the studied outcome in the maternal cohort,
pDm, and that in the newborn cohort, pDc. This is comparable with the procedure used in our
previous work on gene-gene interactions in the association and linkage studies [Wang and
Zhao 2003; Wang and Zhao 2007]. We can obtain β0c and β0m by solving the following two
equations,

The same logistic model is used to model maternal and newborn penetrances Pr (Dm = 1|Gm,
E) and Pr (Dc = 1|Gc, E, Dm). Note that β0m is determined first by the first equation and is
then plugged in the second equation to solve for β0c.

Results
Simulation Studies: Type I Error and Power

In this section, using simulations under a variety of models, the performance of the proposed
method is compared to that of a naïve method [Wang et al., 2008]. The naïve method
ignores the interrelationship between mothers and their newborns but treats the maternal
outcome status and the newborn outcome status as independent outcomes. The naïve method
simply applies three separate logistic regression models, and therefore is termed the“3-logit
naïve method” for the rest of this paper:
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The first logistic regression models maternal outcomes over Gm × E interaction; the second
models newborn outcomes over Gc × E interaction; and the third models newborn outcomes
over Gm × E interaction with the reasoning that maternal genotypes modulate effects of
PAHs on fetus growth. Note that this reasoning is not directly used in the proposed method,
but is indirectly incorporated by assuming maternal outcome influences child's outcome. If
any one of the three gene-environment interactions is significant using the Wald test to test
if the regression coefficient of the interaction term to be 0 with 1 df at the Bonferroni
corrected significance level (to adjust for the fact that three tests are conducted), we
conclude that the genetic polymorphism significantly interacts with the environmental
exposure on the outcomes.

Simulation Parameters
In the simulation studies to evaluate power and Type I error rate, the total sample size was
fixed at N = 500 mother-child pairs. To mimic the NYC and Krakow studies on the outcome
of PAH-DNA adduct detectable/non-detectable, we considered population prevalences in
mother and newborn cohorts are both 30% and 60% (the PAH-DNA adduct detectable rate
was about 60% in both mother and newborn cohorts in the Krakow study), the probability of
environmental exposure is PPAH = 0.3, and 0.5, and different minor allele frequency (MAF)
is p = 0.1, 0.2, and 0.3. Simulation scenarios when pDm was not equal to pDc were also
considered. The main effects of the maternal and newborn genetic polymorphism on the
maternal and newborn outcomes, the main effect of environmental exposure on both
maternal and newborn outcomes, and the main effect of the maternal outcome status on the
newborn outcome status were fixed at ORGm = 1.5, ORGc = 1.5, ORE = 1.5, and ORDm =
1.5. Therefore, the corresponding regression coefficients in the logistic models for
penetrances are all log(1.5). Different levels of the maternal and/or newborn gene-
environment interaction effects on the maternal and newborn outcomes were considered
ranging from low to high, ORGc×E = 1.0, 1.5, 2.0, 3.0, 4.0, and ORGm×E = 1.0, 1.5, 2.0, 3.0,
4.0. Scenarios where either only maternal genotype interacts with the environment or only
newborn genotype interacts with the environment were also considered.

Simulation Setup
Each simulated study included N mother-child pairs. We simulated N maternal genotypes
and N paternal genotypes based on the population allele frequencies and the assumptions of
Hardy-Weinberg equilibrium and random mating. Newborn genotypes were generated based
on Mendelian transmission and generated parental genotypes. However, paternal genotypes
were discarded. Environmental exposures of mothers and newborns were generated based
on a binomial distribution with pre-specified proportion of exposure. Under selected
parameter settings, for a mother-child pair, with simulated genotypes and environmental
exposure, their outcome statuses were generated based on the maternal and newborn
penetrances Pr (Dm = 1|Gm, E) and Pr (Dc = 1|Gc, E, Dm). The tests of interest (the proposed
method and the 3-logit naïve method) were performed using the simulated data and the
procedures were repeated 10,000 times to evaluate the Type I error rates and 1,000 times to
evaluate powers.
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Type I error
In order to evaluate the Type I error rate for the proposed test, simulation was used to
generate data under the null hypothesis of no interaction between genetic polymorphisms
and environmental exposure, H0 : βGcE = βGmE = 0, i.e., H0 : ORGcE = ORGmE = 1. The
simulation procedure was repeated 10,000 times. Type I error rates of the proposed method
and the 3-logit naïve method were then estimated by the proportions of times that the null
hypothesis of no interaction between genetic polymorphisms and the environmental
exposure was rejected by these two methods. The Bonferroni correction was applied in the
3-logit naïve method to declare significance. Table 1 displays the Type I error rates to detect
gene-environment interactions with the proposed method and the 3-logit naïve method under
the dominant genetic model when different MAF and population prevalence were assumed.
Table 3 displays the results under the additive genetic model. In both cases, the nominal
Type I error rate 0.05 was well controlled for both the proposed method and the 3-logit
naïve method. The closeness of the estimated values of 0.05 indicates a better performance.

Power
Table 2 displays powers to detect gene-environment interactions with the proposed method
and the 3-logit naïve method under the dominant genetic model and simulation parameters
specified previously. The same power results under the scenarios where the effects of gene-
environment interactions on maternal and newborn outcomes were the same were also
plotted in Figure 1. Power was assessed with 1,000 simulations. It is clear that the proposed
method consistently shows higher powers on all scenarios considered. Especially when the
MAF is low and the maternal and newborn population prevalences were high. When pDm
and pDc were both set at 60% to mimic the PAH-DNA adduct detectable rate in Krakow,
Poland and when the MAF was set at 0.1, the 3-logit naïve method barely has any power
even with the large effect size of the gene-environment interaction on both maternal and
newborn outcomes, while the proposed method can achieve 70% power when the effect size
is large. We observed a power increase of more than three-fold with the proposed method
when the population prevalence was 60% and the genetic variant was rare with MAF equal
to 0.1. When the genetic variant is common and population prevalence is 60%, the proposed
method has a power gain ranging from a little less than 20% when the interaction effect was
large to about 50% when the interaction effect was modest. Similarly, when the maternal
and newborn population prevalences were both set at 30%, the proposed method has a
power gain ranging from less than 5% when the interaction effect was big to almost 40%
when the interaction effect was modest across all three levels of MAF considered (Table 2).
That is, the power gain of the proposed method is greater when the effect size of gene-
environment interaction is relatively modest. For the scenarios where there is gene-
environment interaction on either maternal outcome or newborn outcome but not both, the
proposed method also has consistently higher power than the 3-logit naïve method.
Moreover, we notice that the power for both methods increases as MAF increases from rare
to common as expected yet the proposed method enjoys a greater gain in power.

Similar patterns were observed when assuming an additive genetic model and different
levels of the maternal and newborn population prevalences. As displayed in Table 3, the
proposed method consistently demonstrates higher power than the 3-logit naïve method
when PAH exposure was 30%. Similar power increases were also observed when PAH
exposure was 50% (data not shown).

Real Data Application
The proposed method was applied to detect gene-environment interactions on PAH-DNA
adduct detectable/non-detectable using the mother-child pair data from the Krakow study.
Seventeen common genetic polymorphisms in candidate genes that play important roles in
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the metabolic activation of PAHs and PAH detoxification were selected (Table 4). The data
set was previously analyzed on the continuous PAH-DNA adduct levels using a similar
naïve method with three linear regression models [Wang et al., 2008]. Some significant
gene-environment interactions were observed but none remains significant at the 0.05
significance level after multiple comparisons adjustment. Also note that the method of
Alexandrov et al. [1992], which uses the HPLC–fluorescence method to detect B[a]P-DNA
adducts (a proxy for PAH-DNA adducts [Lederman et al., 2004]) in maternal blood
collected within 1 day postpartum, and umbilical cord blood collected at delivery [Perera et
al., 2004] has a coefficient of variation of 12% and a lower limit of detection of 0.25 adducts
per 108 nucleotides. Samples below the limit of detection were assigned a value midway
between the limit of detection and zero (0.125 adducts per 108 nucleotides) in previous
analyses. We reanalyzed the data with the proposed method on the binary outcome PAH-
DNA adduct detectable/non-detectable.

The data set consists of 307 mother-child pairs that have complete phenotype and
environmental exposure information. Different cut points for the PAH summary measures
were applied to obtain a binary PAH exposure, defined as PAH high or PAH low, in order to
optimize the results. The PAH-DNA adduct detectable rate in both mothers and newborns in
the Polish data is around 60%. To adjust for multiple comparisons, the q-value procedure
based on the false discovery rate (FDR) was applied [Storey and Tibshirani 2003]. Based on
our understanding of the biological basis of PAH-DNA adduct detectable/non-detectable, we
considered that a dominant model might be the most appropriate.

Table 5 presents the q-values and estimates of the gene-environment interactions of 17
markers using both the proposed method and the 3-logit naïve method. For each marker, the
most significant q-value among the three from the three logit models was displayed together
with the regression coefficient estimate of the gene-environment interaction term in the
corresponding model. We observed the same pattern in q-values using the two methods, but
the proposed method outperformed the 3-logit naïve method in general for this data set. Note
that the 40% PAH cut point gave the most optimal results (that is, 40% PAH high vs. 60%
PAH low) although all the PAH cut points tried suggested the better performance of the
proposed method. Therefore, Table 5 displays results with environmental exposure defined
as 40% PAH high vs. 60% PAH low. Four markers, CYP1A1-109, CYP1A1-06, CYP1A1-14,
and GSTT2-03 significantly interact with the environmental exposure at the 0.05 FDR level
after multiple comparisons adjustment with the proposed method while no significance was
observed at the 0.05 FDR level after multiple comparisons adjustment with the 3-logit naïve
method. The same marker, CYP1A1-14, was previous observed to interact with the
environmental exposure on the continuous PAH-DAN adduct measures at the 0.05
significance level before multiple comparisons adjustment, but did not remain significant
after multiple comparisons adjustment. We observed the same pattern in the estimates of the
gene-environment interactions using the two methods as well. For example, at the marker
CYP1A1-109 that remained significant after multiple comparisons adjustment, one of the
three models from the 3-logit naïve method that models maternal outcome over Gm × E
interaction showed the most significant result among the three, while the proposed method
also had bigger estimated effect of maternal genotype by environment interaction on the
maternal outcomes than the estimated effect of newborn genotype by environment
interaction on the newborn outcome, i.e., β ̂GmE > β ̂GcE. Similar patterns were observed on
the other three markers that significantly interact with the environmental exposure at the
0.05 FDR level.

The proposed method is readily applicable to other outcomes such as mental development
problems or asthma from both the NYC study and the Krakow study once the data collection
is finished. We expect the proposed method to have even greater power than the 3-logit
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naïve method for the complex outcomes mentioned above as the effect sizes for the complex
outcomes are usually small to modest.

Discussion
In this study, we proposed a likelihood-based method to detect gene-environment
interactions with the mother-child pair design. The development of this method was
motivated by the two parallel ongoing studies being conducted in NYC and Krakow, Poland
where the purpose of the studies is to understand the impact of environmental exposures on
childhood health. Pregnant women were recruited and their newborns were followed up.
Marked inter-individual variation in response to the same level of exposure was observed,
indicating susceptibility might be due to genetic factors, i.e., the existence of gene-
environment interactions. Therefore, we focused our study on modeling gene-environment
interactions. As existing methods are either not applicable or not designed to optimally use
the information from such mother-child pair designs, we developed a likelihood-based
method that uses both the maternal and the newborn information together and jointly models
gene-environment interactions on maternal and newborn outcomes. Under this likelihood
framework, one can also model data combined from parent-child trios and mother-child
pairs using the proposed method. The proposed method imposes an underlying assumption
that gene and environment are independent. Although we believe this assumption to be
appropriate for the proposed model which is for prospective cohort studies, we need to be
cautious with such an assumption for case-control studies. In this prospective cohort study,
eligible pregnant women living in the targeted geographic areas were recruited. If this is a
case-control study and subjects were recruited based on some disease status, and the disease
status is related to the genetics and environment, the assumption of gene and environment
being independent might be violated, which can lead to biased parameter estimates of gene-
environment interactions [Mukherjee and Chatterjee, 2008].

The simulation results illustrated the feasibility and power of the proposed method. The
proposed method that jointly models gene-environment interactions on maternal and
newborn outcomes has higher power to detect gene-environment interactions than the 3-logit
naïve method that models gene-environment interactions on maternal and newborn
outcomes separately. In the application to the real data on PAH-DNA adduct detectable/non-
detectable from the Krakow study, although similar patterns were observed using both the
proposed and the 3-logit naïve methods, the proposed method suggested four significant
interactions at the 0.05 FDR level after adjusting for multiple comparisons while the 3-logit
naïve method suggested no significant interaction after adjusting for multiple comparisons at
the 0.05 FDR level. As data on early postnatal exposures are also being collected in both the
NYC and the Krakow studies, the proposed method (here used prenatal exposures involving
maternal-fetal transfer) can be easily adapted to model the postnatal exposure where
different environment exposure measures for mother and newborn will be entered in the
model.

We concentrated only on the mother-child pairs with complete phenotype and environmental
exposure information. Note that there is missingness in phenotypes, prenatal environmental
exposure measures, and genotypes. Methods that could impute missing genotypes and
phenotypes may be applied [Scheet and Stephens 2006; Marchini et al., 2007; Browning and
Browning 2007]. In addition, measurement errors may exist in PAH measures and PAH-
DNA adduct measures. An extension of the currently proposed method to detect gene-
environment interactions with measurement error incorporated and with the missing data
problem considered will be our future study. Moreover, we did not consider dependence
among markers but treated them as independent markers, which has been previously found
in simulation studies to produce reasonable results and may lead to conservative estimation
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of the FDR [Storey and Tibshirani 2003; Fernando et al., 2004]. We have implemented the
proposed method in R, and the R program is available upon request from the first author.
We are preparing to extend the current method which focuses only on the interactions
between a single marker and an environmental exposure to a method that models the
interactions between environment and multiple markers, especially multiple markers from
one candidate gene.
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Figure 1.
Power to detect gene-environment interactions for the proposed method and the 3-logit
naive method under the dominant genetic model when MAF was set at 0.1, 0.2, and 0.3,
population prevalence was set at pDm = pDc = 30% and pDm = pDc = 60%, environmental
exposure was set at 30%, and the effects of gene-environment interactions on maternal and
newborn outcomes were set the same ranging from odds ratio of 1.0 (for Type I error) to 4.0.
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Table 1

Type I error rates to detect gene-environment interactions at the 0.05 significance level for the proposed
method and the 3-logit naïve method under the dominant genetic model when MAF was set at 0.1, 0.2, and
0.3, population prevalence was set at pDm = pDc = 0.3 and pDm = pDc = 0.6, and environment exposure was
set at 30%. The total sample size was fixed at N = 500 mother-child pairs. The simulation procedure was
repeated 10,000 times.

Pop Prev MAF* Proposed Method 3-logit Naïve Method

pDm = 0.3
pDc = 0.3

0.1 0.046 0.043

0.2 0.042 0.043

0.3 0.042 0.042

pDm = 0.6
pDc = 0.6

0.1 0.046 0.043

0.2 0.051 0.043

0.3 0.046 0.042

*
Minor Allele Frequency
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