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Abstract

Purpose—The goals of the present study were to apply a generalized regression model and support
vector machine (SVM) models with Shape Signatures descriptors, to the domain of blood—~brain
barrier (BBB) modeling.

Materials and Methods—The Shape Signatures method is a novel computational tool that was
used to generate molecular descriptors utilized with the SVM classification technique with various
BBB datasets. For comparison purposes we have created a generalized linear regression model with
eight MOE descriptors and these same descriptors were also used to create SVM models.

Results—The generalized regression model was tested on 100 molecules not in the model and
resulted in a correlation r2=0.65. SVM models with MOE descriptors were superior to regression
models, while Shape Signatures SVM models were comparable or better than those with MOE
descriptors. The best 2D shape signature models had 10-fold cross validation prediction accuracy
between 80-83% and leave-20%-out testing prediction accuracy between 80-82% as well as
correctly predicting 84% of BBB+ compounds (n=95) in an external database of drugs.

Conclusions—Our data indicate that Shape Signatures descriptors can be used with SVM and
these models may have utility for predicting blood—brain barrier permeation in drug discovery.

Keywords

blood—brain barrier; principal component analysis; regression; shape signatures; support vector
machine

INTRODUCTION

Over the past decade we have witnessed a growing number of studies that have used
computational methods to predict absorption, distribution, metabolism and excretion (ADME)
properties (1-3). One of the key aspects of ADME profiling is to determine whether a molecule
is likely to cross the blood—nbrain barrier (BBB) which may be desired or not depending on
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the therapeutic target (4) and traversing it is a major obstacle in drug discovery (5). The BBB
is acomplex physiological barrier that contains endothelial cells and helps in maintaining brain
homeostasis. The BBB also expresses numerous efflux transporters such as P-glycoprotein,
(P-gp) (6), multidrug resistance proteins (MRPSs) as well as uptake transporters such as the
glucose transporter and amino-acid transporters that can also influence whether a drug is
absorbed in the brain and central nervous system (CNS). Experimentally testing libraries of
compounds for BBB permeation very early on in drug development is essential but is very time
consuming and expensive. Hence the development of in silico models of BBB penetration has
gained considerable interest since the mid 1990s (7). Computational modeling of BBB data is
an area of research which has been extensively studied with many techniques. These include
the very simplest using a small number of interpretable physicochemical descriptors such as
calculated logP and polar surface area, to those using large numbers of descriptors and
statistical methods including linear regression techniques, neural networks and higher level
classification models such as support vector machine (SVM) or other sophisticated machine
learning approaches (Supplemental Table I). Several reviews have summarized the state of the
art over the years for both in vitro (4) and in silico approaches to the BBB, including much of
the earlier work (1,8,9). Most of the datasets used to date are primarily either those from rat or
mouse in vivo studies with logBB data or using large datasets of drugs or drug-like molecules
that are known to be active in the CNS (BBB+) or not active in the CNS (BBB-) of animals or
humans. This binary data is also widely used to create classification models. Notwithstanding
the fact that much of the BBB data have been accumulated over the years into slightly larger
databases (Supplemental Table I) with subsequent mixing of data types, there have been some
impressive attempts at model creation and testing (8,9). Our analysis of 32 of these studies,
which is comprehensive to date, suggests that 19 of them utilize an external test set, while most
perform some form of internal validation (such as leave ‘n’ out, or leave one out, Supplemental
Table ).

The majority of BBB models include some descriptors relating to hydrogen bonding,
lipophilicity, molecular size, molecular charge, shape and flexibility and in some cases these
have been related as simple rules (8,10). The effect of molecular shape has been rarely assessed
with different conclusions (11-14). A new approach called Shape Signatures has recently been
proposed that utilizes molecular shape-dependent signatures as the basis for molecular
recognition (15). The Shape Signatures method employs a customized ray-tracing algorithm
to explore the volume enclosed by the surface of a molecule, then uses the output to construct
compact histograms (‘Shape Signatures’) that encode for molecular shape, polarity, and other
biorelevant properties (Fig. 1). The method has been successfully used for a number of drug
discovery programs for database similarity searching (15-19) and has several advantages over
other approaches including being alignment independent and enabling rapid 3D searching. The
goals of the present study were to apply the Shape Signatures approach to the domain of BBB
modeling using SVM and compare it to regression models using different test sets and,
additionally, to validate the models with a database of FDA approved drugs.

MATERIALS AND METHODS

Data Compilation

The quality of computational models is directly influenced by the quality of the datasets.
However, compiling diverse datasets with known experimental logBB values is complex due
to different experimental conditions and measurements. Even more difficult is to derive a
boundary condition to classify BBB+ and BBB— based on logBB values. Initially we have used
the published datasets with our methods (20-25) to either create regression or classification
models. We have also compiled meta-databases from this published literature (20-25). The
first database was assembled using chemicals with measured values of logBB (20-22,24,25)
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carefully chosen from these multiple sources (datasets tabulated and summarized in Table I).
For each of these datasets, the structures with experimental logBB >0 were labeled as BBB+
and those with logBB <0 as BBB-. In addition, since the original datasets contained several
identical molecules, it was decided to retain a single copy of a compound in the process of
building new databases for regression and classification analysis from different sources. The
data for the same compound from different sources were generally comparable.

The second database included a single dataset compiled by Li etal. (23). These authors assigned
molecules with logBB >-1 to the class of BBB+ compounds and those with logBB <-1 to BBB-,
and for each molecule its class attribute was reported in a binary format (either BBB+ or BBB-).
The final database was used for making predictions with the models and was assembled from
a database of the FDA approved drugs derived from the Clinician’s Pocket Drug Reference
(26) (SCUT database) that has been used for several pharmacophore database searching
projects (27,28). All of the above databases have been provided as supplemental files.

Molecular Descriptors

The chemical composition of the lipid bilayer imposes certain characteristic features among
molecules that have to penetrate through these membranes. Several published models include
a variety of descriptors ranging from those that account for hydrophobicity to hydrophilicity,
volume and mass (8). No single molecular descriptor has been solely shown to reliably
influence the model for drug transport across the BBB. Therefore in this study, we have
evaluated the performance of a number of molecular descriptors on their ability to be used to
predict logBB values and further to classify the compounds into BBB+ and BBB- based on
these values. We have chosen to use a set of molecular descriptors for a simple linear regression
model that aims at predicting the logBB values. For the regression model, eight independent
molecular descriptors namely logP, TPSA, logS, mass, volume, number of rotatable bonds,
number of oxygen atoms, and number of nitrogen atoms were chosen. The values for the
molecular descriptors were calculated for all the compounds in the three databases using the
Molecular Operating Environment (MOE, Chemical Computing Group, Montreal, Canada)
quantitative structure activity relationship (QSAR) and modeling program. In addition we have
used a shape based descriptor method called “Shape Signatures” for an SVM based
classification model for the BBB+ and BBB- set. The performance of both these sets has been
validated using published datasets compiled from literature.

Regression Model

A simple linear regression model was developed using the Xu-training dataset (21) that
consisted of 78 unique chemicals with continuous logBB data. The regression analysis was
performed using routines from the Statistical Toolbox of MATLAB (Version 6). The model
was validated using the Kitchen-100 dataset (25) (Table I) that contained 100 unique chemical
compounds with continuous logBB data. Further, the regression model was used to predict the
logBB values for other published datasets listed in Table I.

Shape Signatures Method

The Shape Signatures method relies on a customized ray-tracing algorithm (15), which
explores the volume enclosed by the solvent accessible surface of a molecule. During the first
step of the algorithm, the three-dimensional structure of a single lowest energy conformer of
the molecule is generated by CORINA (Molecular Networks GmbH, Nagelsbachstr. 25, 91052
Erlangen, Germany. http://www.mol-net.de) and partial charges for each atom are assigned
according to the Gasteiger—Marsili scheme (29). The second stage consists of constructing a
solvent accessible surface (SAS) around the molecule and generating its triangulated
representation by the SMART algorithm (30). In the third step, the ray-tracing process is
executed inside the cavity bound by the SAS which encompasses the molecule. The ray of
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light, emitted initially from a randomly chosen point on the interior lining of the molecular
compartment, travels inside the cavity and as it strikes the opposite face, is reflected and
propagated in the direction determined by the law of optical reflection. For each reflection
point, the value of the truncated Coulomb potential or the molecular electrostatic potential
(MEP), and the lengths of the incident and reflected ray segments are recorded. The procedure
terminates after 100,000 reflections. According to our previous work (31), this number was
found sufficient for the trajectory of the ray to fully explore the entire volume of a typical drug-
like molecule. The output is then used to construct two compact one- and two-dimensional
histograms (‘signatures’) that encode molecular shape and polarity respectively (Fig. 1). In
particular, all recorded ray segments are binned by their length into a one-dimensional
histogram with the predefined bin width of 0.5 A (Fig. 1b). In addition, a second histogram is
also constructed, for the values of MEP (with a step of 0.05¢/A) and the associated total length
of the two path segments joined by the reflection point, resulting in a two-dimensional
histogram (Fig. 1c). Both the histograms are normalized. Once generated, these histogram
based fingerprints (‘signatures’) can be used to compare any two small molecules. Shape
similarity between a pair of molecules is assessed by comparing their 1D signature (Fig. 1b),
whereas matching the 2D signatures of the two structures compares their overall molecular
shapes and MEP (Fig. 1c). This process is fast and efficient, and it eliminates tedious and
subjective atom-based alignment of the molecules.

The Shape Signatures method benefits from its ability to capture the true three-dimensional
structure of the molecules. The method has already proven successful for a number of drug
discovery programs when used for database similarity searching (15-19,31). Recently, the
Shape Signatures method has been extended into the domain of predictive modeling. In
particular, it was demonstrated that Shape Signatures can be employed to generate ensembles
of three-dimensional molecular descriptors useful for classifying compounds with respect to
their experimentally tested activity at the 5-HT,g receptor and the hERG channel (31). It was
found that the Shape Signatures based models performed as well as or even better than more
traditional classification models with 2D molecular descriptors. The fact that one- and two-
dimensional Shape Signatures collectively account for the molecular characteristics of shape
and polarity that are key for successful transport across the blood—brain barrier, invites
examination of this methodology as a potential predictor of the blood—brain barrier
permeation capability of virtually any drug-like chemical.

Shape Signatures Molecular Descriptors

Following our previous work (31), for each compound in this study, the heights of the bins of
the associated 1D and 2D Shape Signatures histograms constituted two sets of distinct
molecular descriptors related to this particular structure: the first based exclusively on
molecular shape and the second reflecting both molecular shape and polarity. Despite being
represented as 1D and 2D histograms, these Shape Signatures fingerprints are inherently three-
dimensional molecular descriptors since they encode the 3D conformation and polarity of the
molecule.

Support Vector Machine (SVM) Classification Procedure

In recent years, SVM has become a method of choice among different supervised classification
methods for a broad variety of binary classification problems. This technique was built on the
structural risk minimization principle (32,33), and is now widely recognized for its ability to
solve highly non-trivial classification problems (23,31,34-37). The central idea of the method
isto project the original descriptor vectors to a higher dimensional feature space where a clearer
division between the two classes of data becomes feasible. In such a high-dimensional feature
space, a linear SVM routine is applied next to optimally position the separating hyperplane

between the instances from the two classes. Minimization of the expected generalization error
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for the test datasets is achieved by finding a separating hyperplane with the maximal margin.
In this work, we used a well tested and freely available program LIBSVM (C-SVM) (38). We
utilized the radial basis function kernel, whose parameter y and the penalty term C was
determined in each case via a simple grid search procedure by the 10-fold cross validation.

For every dataset, the associated library of Shape Signatures was generated and prepared for
the classification analysis. Several SVM classification models trained on the data from the two
BBB databases were applied to predict the blood—»brain penetration capabilities of the
molecules in the SCUT database. Prior to performing this, the SCUT derived dataset was
screened for redundancy against the other two training sets (the full lists of compounds for
each data class are available in the Supplementary Table II).

Data Analysis

RESULTS

The prediction power of both the regression model and each SVM model was evaluated by
computing the following statistical indicators. The average number of correctly predicted BBB
+ compounds in the test set (BBB+) = (BBB+,e/BBB+1), the average number of correctly
predicted BBB- molecules in the test set (BBB-) = (BBB-1,e/BBB-ot) and the total prediction
accuracy (Q) = ((BBB+rye + BBB-tre)/(BBB+ot + BBB-to1)). These measures are equivalent
to the standard statistical indicators: sensitivity (SE), specificity (SP) and overall accuracy
(Q), respectively (34). In addition, following our previous study (31) and the work of Ung et
al. (39), we report the values of Matthew’s correlation coefficient (40)

_ [ BBB+ye X BBB—(qye — BBB+() X BBB—py]
[(BBBc0) (BBB+ s+ BBB 1) (BBB 1) (BBB s+ BBB )| "

The Matthew’s correlation coefficient is another measure of the overall prediction
performance. For a perfect classification, when BBB+¢, and BBB-¢, are both zero, the value
of C=1, while for a random performance, C would be close to zero since in this case, BBB
+true = BBB+¢, and BBB- e = BBB-¢,. A negative value of C would suggest worse than
random performance.

Development of Generalized BBB Regression Models

The linear regression BBB model developed with eight interpretable molecular descriptors,
calculated with MOE, is described below:

10g BB (preq)= 0.3408 x log P — 0.0192 * TPSA+0.2503
#*a_nN+0.1467 * a_n0+0.1069 = log §
—0.0011 * mass — 0.0001 * volume
—0.0602 = #rot.bonds ()

Where: a_nN is number of nitrogen atoms, a_nO is number of oxygen atoms, TPSA is
topological polar surface area, logS is solubility and logP is a water / octanol partition
coefficient and measure of hydrophobicity, and # rot. bonds is the number of rotatable bonds.

The model was built using the data for 78 molecules from the training set of Hou and Xu
(21), with an r2=0.70 (Fig. 2). The model was further validated using the dataset from Kitchen
et al. (25) on a set of 100 molecules with an r2=0.65. These results are comparable to the
respective test set correlations in earlier publications (r=0.79 [r?=0.62] (21) and r~0.7 [r2=0.49]
(25)). The generalized regression model described here was also used to predict the BBB
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permeation of other published molecules (Table II). The overall prediction accuracy ranged
from 59% to 93% irrespective of the number of compounds in the set. The values of the
Matthews correlation coefficient were greater than zero (C value ranged between 0.340 and
0.866), showing that the model performed very well and better than random in all cases.
Subsequent classification using the generalized model on the BBB+ and BBB- datasets was
also performed. The results from this classification showed that the model performed well for
the BBB- datasets with a classification rate between 75% and 96%. However, the results from
the BBB+ sets were moderate, between 45% and 92%.

In order to further understand these results, we performed a Principal Component Analysis
(PCA) of the datasets based on the eight molecular descriptors, with reference to the molecules
from the Xu training set. PCA is a useful tool in exploratory data analysis. Principal components
(PC) are linear combinations of the original variables constructed and organized in such a way
so that the first principal component PC1 attempts to maximally explain the variance in the
data. Geometrically, it defines the direction in which the data is maximally spread. The next
PC2 is orthogonal to PC1, and tries to maximally explain the residual variance not explained
by PC1. PC3, which is now orthogonal to both PC1 and PC2, in turn is set to maximally explain
the variance not explained by the first two principal components, and so forth. Based on the
PCA comparison, it is clear that there is a partial overlap of the chemical space covered by the
Xu set used to initially derive the regression model (Fig. 3b). The PCA analysis shows a number
of the BBB+ molecules outside the area covered by the Xu set, whereas the BBB- molecules
seem to be generally closer to these initial training set molecules (Fig. 3b). Although this PCA
analysis is rather qualitative, it provides confirmation that predictions outside the chemical
space of a model could be unreliable. The poor performance of some of the BBB+ molecules
could also be due to the molecules’ larger size and higher flexibility that might well influence
the logBB values in the regression model.

Generalized BBB Regression Models Used to Predict the SCUT Database

The performance of the generalized regression model was further assessed by predicting the
BBB permeability of molecules from the SCUT database of FDA approved drugs. After
removing those molecules in the model training set, the compounds were first classified based
on their functionality (knowledge based method) as possible BBB+ and BBB- categories (for
example an antidepressant would be categorized as BBB+ while an antihypertensive drug
would be classified as BBB-). Similarly, for the rule based classification, using the five simple
rules namely, (a) if ¥(N + O) atoms<5, (b) ClogP-(N+0)>0, (c) PSA<60-90 A2, (d) mass<450
and (e) 1<logD<3 (8,9) the SCUT database of compounds were classified into BBB+ and BBB-
molecules. Only molecules that strictly obeyed all the five rules were categorized as BBB+
(74 molecules) and the remaining compounds in the SCUT database were classified as BBB-
(315 molecules). Of the 389 total molecules, the knowledge based scheme found 95 compounds
to be BBB+ and the rest of the compounds (293) to be BBB-. Further, the generalized regression
model was applied to classify the SCUT database of compounds (Supplemental Table I1). The
logBB values were predicted using the generalized regression model and a cutoff of logBB=0
was used to classify the compounds into BBB+ and BBB- categories. The model performed
with an overall accuracy of 77% and a correct prediction rate of 88% for BBB- and 45% for
BBB+ molecules, when compared to the knowledge based classification of the molecules based
on the known therapeutic indications. However, these results could be severely biased due to
the nature of the compound classification.

SVM Classification Models for BBB

The datasets used to generate a number of the SVM models presented in this study are detailed
in Table I. In the process of constructing the Shape Signatures histograms for each molecule
from the aforementioned datasets, it was observed that 2D Shape Signatures normally included
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several hundred non-zero bins/descriptors and the resulting data matrix usually had a high
degree of redundancy. Therefore, based on our previous experience (31), before building the
SVM models we reduced the dimensionality of the original data matrices using the
unsupervised forward selection (UFS) method of Livingstone and co-workers (41). The UFS
routine was designed specifically to eliminate redundancy and decrease multicollinearity of
the input data, and has been demonstrated to be useful for a number of QSAR (41) and SVM
classification (41) studies. In each case, the output data matrix contained less than 100 data
columns. For each dataset in Table 111, two types of the SVM models were built and validated.
The first set included models resulting from a straightforward 10-fold cross validation
conducted on the entire datasets. The prediction accuracy of these models were assessed first
by calculating the overall accuracy rates Qgross, Which show the average fractions of correctly
predicted molecules (combined BBB+ and BBB-) from the test sets. Second, the classification
models produced in a series of leave-20%-out SVM runs were assessed as follows. For each
Shape Signatures database, approximately 20% of the compounds from the database were
randomly selected and assigned to the hold-out test set while the remainder of the data (~80%)
constituted the training set. The selection was carried out to approximately preserve the correct
proportion of BBB+ and BBB- chemicals in both sets. Each SVM classification model was
then generated with the training set and applied to predict class attributes of the compounds in
the test set. Next, a set of statistical indicators of prediction accuracy were computed and stored.
This procedure was repeated 100 times, each time with a different composition of the test and
training sets. For each model, the reported final statistical measures were averaged over the
number of repetitions. The predictive power of each SVM model in this group was evaluated
by computing the statistical indicators such as the average Q value and the Matthews correlation
coefficient C (Table I1I). It was found that both models performed similarly in terms of 10-
fold cross validation prediction accuracy 80-83%, leave-20%-out testing prediction accuracy
80-82% and C values 0.53-0.63.

For comparison, we have also used the same eight MOE descriptors derived in the generalized
regression model (described above), to generate SVM models with the Li and combined
datasets. These generally performed comparably well although with lower Matthew’s
correlations than observed with Shape Signatures descriptors (Table 111). Perhaps equally
interesting is the comparison between the regression model (Table 11) and the SVM model
(Table I11) using the same MOE descriptors. This analysis reveals that the SVM models produce
a dramatic improvement in the predictions for the BBB+, BBB- and Matthews correlation,
especially for the combined dataset.

Comparison between SVM Classification Results Based on 1D and 2D Shape Signhatures

Based on the Q¢ qss Values we have demonstrated that the classification models based on 2D
Shape Signatures descriptors (Qc¢ross 80—-83%) which encode for molecular shape and polarity,
performed slightly better than those constructed using 1D Shape Signatures descriptors
(Qcross 73-79%) which account exclusively for molecular size and shape (Table 1V). This
would also be expected based on past studies of molecular requirements for BBB penetration.
Due to the unique physicochemical structure of the blood—brain membrane, for a molecule
to penetrate the BBB the right balance between the molecular shape and distribution of atomic
charges is required. Hence, the models that take into account both of these properties are
expected to be generally more accurate.

Classification of the SCUT Database Using Shape Signature Based SVM Models

Finally, we attempted to classify molecules from the reduced SCUT database (27,28) (389
structures) using the Shape Signatures SVM models described in the previous sections
(Supplemental Table I1). As was noted before, we ensured this dataset did not contain structures
present in either of the training sets and represents an application of the models to a group of
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molecules of medical importance. It should be considered that the experimental logBB values
for many of these structures have not been documented so far in the literature, therefore the
reported predictions for these compounds using the generalized regression model, the rule
based model and SVM classifications model is the first effort to classify the SCUT database
compounds as BBB+ or BBB- chemicals. Using our knowledge of the therapeutic targets and
reported side effects of these molecules, we were able to ascertain the likely BBB+ or BBB-
nature of the molecules. But as mentioned above, it is certainly possible that BBB- may be
misclassified. Prior to using the classification models we assessed the chemical space covered
by the structures from the training and test (SCUT) sets to evaluate whether they overlapped.
As described above, we subjected the utilized molecular descriptors from both sets to PCA
using the 2D Shape Signatures descriptors for the two mixed datasets, namely Combined-
SCUT (Fig. 4a) and Li-SCUT (Fig. 4b). The PCA analysis shows that ~80% of the variance
is explained in the space of the first three principal components and there is a significant overlap
between the regions of chemical space occupied by the molecules from these three datasets
using these descriptors. When analyzing the SVM results for the SCUT database we also need
to consider that for the Combined and Li datasets the dividing boundaries between BBB+ and
BBB- were set differently. For the Combined dataset (logBB=0) and for the Li dataset
(logBB=-1). Based on the SVM models, the 10-fold cross validation models performed better
in predicting the BBB+ category of compounds using either the combined or the Li datasets
for training. However, for the prediction of the BBB- category, the leave-20%-out models
performed marginally better than the 10-fold cross validation for both training sets.

Consensus Prediction for SCUT Database

Finally, a consensus ‘model’ was built based on the six different models (described above) for
prediction of BBB permeation of the SCUT database. The results from the consensus model
are described in Table V. In order to arrive at a consensus, all the models were assessed with
equal weight and a decision was made based on a majority vote (4/6) (Supplemental Table I1).
Based on the consensus model, 53 of the 95 compounds (56%) were correctly categorized as
BBB+ and 204 of 295 compounds (69%) were correctly categorized as BBB-. In all, 257 out
of 389 (66%) compounds were correctly classified for BBB permeation in comparison with
the knowledge based classification scheme.

DISCUSSION

The use of regression based BBB models was first proposed by Van de Waterbeemd and Kansy
(42) followed by many others with varying molecular descriptors (Supplemental Table I).

However, all these models perform well with their respective small training and test datasets
and generally fail (or are less predictive) when tested against other more diverse datasets. This
could be due to the fact that the compounds belong to a different region of chemical space and
the models have an inherent descriptor independent value that is tuned to span only the chemical
space of the original test sets (8). In order to overcome the inherent disadvantages of regression
models, we first propose a simple generalized regression model (see Eq. (2)) that has been built
based only on the values of eight standard molecular descriptors with no added constants.

The choice of the molecular descriptors was based on a few simple rules derived from the
physiological features governing cellular permeability. These are:

a. Inclusion of hydropathic descriptors that span both the hydrophilic and hydrophobic
nature of bilayers (logP, TPSA, a_ nN and a_nO in Eq. (2)) (43,44).

b. Inclusion of logS based on the hypothesis that water soluble compounds have a high
probability of passing across the BBB (45,46).
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c. Molecular weight and size of the compound should be a rate limiting factor for BBB
permeation (47).

d. A high level of flexibility (large number of rotatable bonds) of the compound should
be a deterrent for BBB permeation (44).

The influence of each of the above molecular descriptors has been validated in previous
regression models (22,24,25,43,48-50). However, we have assessed the total effect of all these
descriptors in our generalized regression model. When used to predict an external set of 100
molecules the correlation was very comparable to those described for other more sophisticated
models (10). Moreover, extensive testing of the equation with different datasets (Table 1)
suggested that the prediction accuracy would indicate the regression equation is generalizable.
However this model performed less well with BBB+ molecules which may be due to the
chemical space these represent (with the eight descriptors used) in the test sets compared to
the training set. These results were in sharp contrast to the general prediction trend for BBB-
molecules (including the SVM based models reported here), since they tend to be biased
towards BBB+ molecules. This generalized model was further applied to classify compounds
from an independent dataset of FDA approved drugs (SCUT database). The regression model
performed better than the rule based model for both the BBB+ and BBB- categories (Table V),
although again the prediction rate was better for the BBB- category. Overall, the regression
model could correctly predict 77% of the compounds from the SCUT database for BBB
permeation. The predictions with the regression model were also slightly better than using the
simple rule base model (73% correct overall), which also only predicted 34% of BBB+
molecules. This would suggest the additional value of using regression or SVM methods which
perform far better at predicting this class.

In order to understand the effect of molecular shape and size in more detail we further classified
the datasets using a more sophisticated statistical method namely SVM, using the shape
signature based descriptors. We found that 2D Shape signature descriptors slightly
outperformed 1D Shape descriptors with the SVM algorithm. Additionally Shape Signatures
also performed slightly better than SVM models developed with the MOE descriptors used in
the regression model (as we have shown previously with other datasets (31)). SVM models
with these eight descriptors were also superior to the regression models at classification of the
two datasets. Using either 10-fold cross validation or leave-20%-out testing the Shape
Signatures SVM maodels had greater than 80% prediction accuracies. Li et al. (23) reported a
number of classification studies using a range of classifiers from logistic regression to SVM.
Two types of SVM procedures were presented which differ in the way the set of molecular 1D
to 3D molecular descriptors were selected from the original pool of 199 (41). The first group
of SVM models used all 199 descriptors while the second set utilized the advanced recursive
feature elimination (RFE) program. This procedure selects the most informative subset of
molecular descriptors. Upon comparing our results (Table I11) with the predictions of Li et
al., we note the following. Our SVM models based on 2D Shape Signatures molecular
descriptors (shape + charges) perform at the same level as their SVM classifications when used
without the RFE feature selection (SE=89.9%, SP=64.3%, Q=79.1% and C=0.52). This
observation certainly validates the applicability of the Shape Signatures derived molecular
descriptors for predicting BBB permeation capability. However, according to Li et al. the best
performing SVM model is the RFE—SVM approach which provided slightly better results on
average SE=88.6%, SP=75.0%, Q=83.7% and C=0.64 than the less advanced UFS data
reduction scheme which we have used.

Both the generalized regression model and the Shape Signatures SVM models were used to
classify the FDA approved small molecule drugs from the SCUT database. The shape signature
descriptor space for this set of molecules was compared to the SVM model training set and
found to overlap closely (Fig. 4), providing some confidence in the applicability or domain of
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this model to this particular test set. The performance of the rule based and the regression
models for the BBB+ category was low as opposed to the BBB- category, which had an average
success rate of ~88% (Table V). The results from the SVM prediction was opposite to the
regression and rule based methods, with the predictions in the BBB+ category faring better
than the BBB- category. If we were only interested in the BBB+ compound prediction accuracy
(which we have the most confidence in as these molecules are known to be centrally active
based on their therapeutic use, enabling us to create the knowledge based model), the 10-fold
CV (Li dataset) model performs very well with 84% correct predictions for the 95 molecules.

A consensus model was built for prediction of the SCUT database classifications. The results
from the equally weighted consensus model show that 56% of the BBB+ and 69% of the BBB
— category of compounds could be predicted correctly. These results essentially average the
predictions across the models and do not improve upon the individual models as has been noted
before (25), however we could envisage the use of more sophisticated scoring or weighting
schemes (or the use of the leave-20%-out Li dataset SVM model and the regression model
alone) to predict BBB+ and BBB-, respectively.

An objective of our research was to examine the quality of a novel set of molecular descriptors
derived from molecular Shape Signatures (15-19). These descriptors are inherently three-
dimensional and a relatively new addition to the other 2D/3D descriptor collections used in
predictive QSAR modeling (51,52). We have now extended the Shape Signatures methodology
to molecular classifiers for a physicochemical property, namely BBB penetration. Given the
simplicity and physical transparency of the Shape Signatures representation, our results
described herein are encouraging for the applicability of this method. The Shape Signatures
method is capable of encoding of these main features in a compact and practical form, which
underlies the versatility of its usage. Because the procedure does not require either a direct 3D
molecular alignment or grid generation, the algorithm is also relatively fast and efficient.
Models based on Shape Signatures histograms can accommodate various chemical
compositions. Due to the universal character of the Shape Signatures histograms, once
generated they can be used for a variety of tasks which require molecular recognition and at
the molecular level no model refitting is necessary in going from one problem to another.

In summary, the present study suggests new approaches for assigning drugs to BBB
classifications using (either in combination or alone) a generalized regression equation with
MOE descriptors or SVM models using the novel Shape Signatures descriptors. These models
may be valuable for providing predictions of BBB permeability that may overcome some of
the limitations of previous models in terms of their generalizability and the chemical space
covered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ADME absorption, distribution, metabolism and excretion

BBB blood—brain barrier

CNS central nervous system

MEP molecular electrostatic potential

MOE molecular operating environment

PCA principal component analysis

P-gp P-glycoprotein

QSAR quantitative structure activity relationship

RFE recursive feature elimination

SAS solvent accessible surface

SVM support vector machine

TPSA topological polar surface area

UFS unsupervised forward selection
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Fig. 2.
Correlation of predicted logBB values (x-axis) versus the experimental logBB values (y-axis)
for compounds from Xu-training set. The regression equation model resulted in an r2=0.70.
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a Results of the PCA analysis on the Xu—Combined dataset conducted in the space of eight
molecular descriptors computed with MOE (PC1=54%, PC2=26%, PC3=10%). b Results of
the PCA analysis performed on the Xu-Li dataset conducted in the space of eight molecular
descriptors computed with MOE (PC1=52%, PC2=27%, PC3=11%). Black circles: molecules
from Xu’s dataset. Red circles: BBB+ compounds from Combined (a) and Li’s (b) datasets.

Blue circles: BBB- compounds from Combined (a) and Li’s (b) datasets.
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Results of the PCA analysis conducted in the space of 2D Shape Signatures (shape + charges)
molecular descriptors on the Combined—SCUT and Li—SCUT datasets. a PC1 vs PC2 for
the Combined SCUT dataset (PC1=55%, PC2=12%, PC3=9%). Black circles: 351 compounds
from Combined dataset. Red circles: 95 BBB+ compounds from SCUT. Blue circles: 294
BBB- compounds from SCUT. b PC1 vs PC2 for the Li-SCUT dataset (PC1=63%, PC2=11%,
PC3=8%). Black circles: 378 compounds from Li dataset. Red circles: 95 BBB+ compounds
from SCUT. Blue circles: 294 BBB- compounds from SCUT.
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Datasets Used for this Study are Listed by the Author’s Name along with the Total Number of Compounds

Dateset Compounds of BB of BB Reference
Xu-training 78 41 37 (21)
Kitchen-100 100 45 55 (25)
Kitchen-181 181 91 90 (25)
Garg 159 83 76 (20)
KC291 269 155 114 (22)
Liu 61 26 35 (24)
Li 376 250 126 (23)
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Table IV

Results of SVM Classifications Based on 1D (Shape Only) and 2D (Shape + Charges) Shape Signatures
Molecular Descriptors

QCTOSSa (%)
1D Shape Signatures 2D Shape Signatures
Dataset (shape only) (shape + charges)
Combined (continuous) 77 83
Li (discrete) 73 80

a . A .
For each dataset, Qcross Was estimated from 10-fold cross validations performed on the entire dataset
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