
Analysis of coupled model uncertainties in source-to-dose
modeling of human exposures to ambient air pollution: A PM2.5

case study

Halûk Özkaynaka,*, H. Christopher Freyb, Janet Burkea, and Robert W. Pindera
aU.S. Environmental Protection Agency, National Exposure Research Laboratory (E205-01),
Research Triangle Park, NC 27711, USA
bNorth Carolina State University, Dept. of Civil, Construction and Environmental Engineering,
Raleigh, NC, USA

Abstract
Quantitative assessment of human exposures and health effects due to air pollution involve detailed
characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these
three components on a consistent spatial and temporal basis taking into account linkages and
feedbacks. The current state-of-practice for such assessments is to exercise emission, meteorology,
air quality, exposure, and dose models separately, and to link them together by using the output of
one model as input to the subsequent downstream model. Quantification of variability and uncertainty
has been an important topic in the exposure assessment community for a number of years. Variability
refers to differences in the value of a quantity (e.g., exposure) over time, space, or among individuals.
Uncertainty refers to lack of knowledge regarding the true value of a quantity. An emerging challenge
is how to quantify variability and uncertainty in integrated assessments over the source-to-dose
continuum by considering contributions from individual as well as linked components. For a case
study of fine particulate matter (PM2.5) in North Carolina during July 2002, we characterize
variability and uncertainty associated with each of the individual concentration, exposure and dose
models that are linked, and use a conceptual framework to quantify and evaluate the implications of
coupled model uncertainties. We find that the resulting overall uncertainties due to combined effects
of both variability and uncertainty are smaller (usually by a factor of 3–4) than the crudely multiplied
model-specific overall uncertainty ratios. Future research will need to examine the impact of potential
dependencies among the model components by conducting a truly coupled modeling analysis.
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1. Introduction
Human exposures to atmospheric pollutants can be quite complex due to the spatial and
temporal nature of emissions, meteorology and human activities. Variations in both the ambient
pollution concentrations and behavioral factors influence individuals contact with pollutants
found indoors and outdoors. Traditionally, different types of models have been used to provide
the critical linkages between pollutant emissions from natural and anthropogenic sources,
concentrations in various media, human exposures to indoor and outdoor pollutants and the
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delivered dose to the body resulting from contact with these pollutants. In order to support its
actions to protect human health and the environment, the U.S. Environmental Protection
Agency (EPA) uses a wide range of models in linking air pollution emissions to ambient
concentrations to human exposures and to delivered pollutant dose to human respiratory
system. However, each modeling component within the source—concentration—exposure—
dose continuum contributes imprecision to predictions depending on the complexity of the
underlying environmental, personal exposure or biological condition represented by each
model. Uncertainty is also introduced because of processes or information only available at a
higher spatial or temporal scale and lack of compatibility of the scales of each model.
Probabilistic human exposure models developed by EPA for air pollution, such as the SHEDS-
PM, Stochastic Human Exposure and Dose Simulation model for Particulate Matter (PM),
incorporate the inherent variability and uncertainty information in the model inputs, parameters
and results (Burke et al., 2001). In contrast, air emissions and concentrations models by EPA,
such as the Sparse Matrix Operator Kernel Emissions (SMOKE), National Mobile Inventory
Model (NMIM), and Community Multiscale Air Quality (CMAQ) (Byun and Schere, 2006)
models are mechanistic models that simulate environmental processes in a deterministic
fashion. Previous studies as summarized by Hanna et al. (2005) have focused on the
uncertainties in concentrations estimated by air quality models. However, these studies do not
propagate the uncertainties to exposure and dose models. One of the key challenges in
conducting an integrated source-to-dose modeling is the difficulty of quantifying coupled
model uncertainties. Here we examine the topic seldom addressed, namely the impact of
cascading modeling errors, when outputs from models are used as inputs into other models, in
a sequential manner. We make some simplifying assumptions by ignoring small but possible
interdependencies or feedbacks between the different models that are being coupled. Since
each of the individual models used to predict emissions—concentrations, concentrations—
exposures and exposures—dose relationships have unique characteristics, our proposed
methodology explicitly characterizes the relative importance of variability vs. uncertainty for
each of these models in performing an integrated source—dose modeling analysis. We
demonstrate the application of our approach for conducting coupled model uncertainty analysis
through a case study on source-to-dose modeling of population exposures to ambient PM2.5
(Particulate Matter <2.5 microns in aerodynamic diameter) in North Carolina during July 2002.

2. Methodologies for estimating modeling uncertainties
2.1. Sources of variability and uncertainty

Models are hypotheses regarding how a system behaves in response to changes in its inputs.
Model development involves choices regarding what to include and at what level of detail.
Sources of uncertainty include measurement error, statistical sampling error, non-
representativeness of data, and structural uncertainties in scenarios and models. Scenarios are
assumptions regarding the factors that define the scope of the assessment, such as the averaging
time, geographic and temporal scale, exposed population of interest, and others. If the modeling
approach omits any of the elements of the scenario of interest, then the estimates could be
biased. Model uncertainty is influenced by the extent of verification and validation, whether
the model is extrapolated beyond the range of its evaluation, and whether there are alternative
theories upon which alternative modeling approaches could be developed (e.g., Cullen and
Frey, 1999).

Variability arises from true heterogeneity across people, places, or time. Variability is an
inherent property of the system being modeled. Some types of variability cannot be reduced
(e.g., characteristics of individuals vary with respect to age and gender). In these cases,
variability can be stratified into more homogeneous subgroups and an analysis can focus on
the strata of most interest. In other cases, it may be possible to control or alter the range of
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variability (e.g., lowering peak values of ambient pollutant concentration by controlling
emissions). Some variation arises because of stochastic processes, such as turbulent eddy
diffusion. Knowledge of variability is critical to decision making regarding risk management,
such as regarding how to reduce variations in exposures or reduce the frequency and magnitude
of high exposures.

In some cases, variability and uncertainty might be difficult to separate (e.g., stochastic
variability that also leads to lack of knowledge regarding the true average concentration for a
short time period at a specific location) or it may not be necessary to separate them (e.g., if one
were to estimate exposure for a randomly selected individual). Here, our goal is to explicitly
consider factors that lead to spatial and temporal variations in ambient concentration, exposure,
and dose as variability, and factors that lead to lack of knowledge regarding the true value of
concentration, exposure, and dose at a given time and location as uncertainty.

Uncertainty arises because of lack of knowledge regarding factors affecting exposure or risk.
Typically, there is a trade-off between the value of additional information (i.e., in terms of
ability to make a decision with less potential for error) versus the potential downside risks of
decision making under the current state of knowledge.

2.2. Variability and uncertainty in individual model predictions
In modeling ambient PM2.5 concentrations, air quality models incorporate emissions and
meteorological data in characterizing complex atmospheric physical and chemical processes
by mathematical parameterization. Ambient PM2.5 levels are influenced by direct emissions
of particulate matter, as well as, emissions of precursors such as NOx, VOCs, SOx, and
ammonia. For anthropogenic emission sources, inter-source variability in emissions arises
because of differences in design, feedstocks, ambient conditions, and maintenance practices.
The uncertainty in an inventory depends on the geographic area, averaging period, time of year,
types of emission sources, and other factors (NARSTO, 2005). In addition to emissions, there
are also uncertainties in the structure of air quality models, including the formulation of the
advection, dispersion, gas-phase chemistry, aerosol thermodynamics, mass-transfer and
deposition processes.

Uncertainties in the exposure and dose model predictions, such as those based on the SHEDS-
PM model, are also influenced by parameter and structural model uncertainties. Common input
or parameter uncertainties with the SHEDS-PM model, include imprecision in: (a) the
parameters used to estimate concentrations in the various locations individuals spend time
(outdoors, indoors and in vehicles), such as indoor infiltration, deposition, and emission rates
for PM and information on the type and use of mechanical ventilation; (b) the mobility and
time-activity information for the different population cohorts, and (c) the parameters for
estimating pulmonary deposition of size-specific PM by age, gender, activity level and
susceptibility status. Even though current probabilistic human exposure or dose models
incorporate the important behavioral and physical processes influencing exposures to PM of
outdoor origin (Burke et al., 2001; Georgopoulos et al., 2005), due to lack of appropriate data,
structural uncertainties with these models have not been adequately evaluated. However, model
intercomparisons would be valuable for providing estimates of structural model uncertainties
for these types of models (Driver and Zartarian, 2008).

2.3. Estimating coupled model uncertainties
Fig. 1 demonstrates the informational connections between the main components of an
integrated source-to-dose assessment. For example, the assessment of emissions needs to be
based on influential factors (e.g., human activity) as well as support downstream analysis of
air quality impacts. Emissions need to be estimated at spatial and temporal resolutions, and for
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appropriate speciation of chemicals and agents of health concern, that support downstream
analysis of air quality impacts. However, there is also coupling between key inputs to both the
emissions and air quality assessment, such as meteorological or climatologic factors that affect
both emissions and pollutant transport and transformation (e.g., temperature, humidity,
barometric pressure, rain, snow, storms, etc.).

Furthermore, air quality can also affect human activity. For example, modification of human
behavior in response to air quality advisories would lead to changes in activity, which could
affect emissions, air quality, and exposure, and which in turn could affect dose and risk
characterization. Likewise, there is a critical need to properly integrate the air quality and
exposure components. Human activities, as well as building ventilation practices may change
as a function of season, outdoor temperature and meteorology. Although many of these linkages
between temperature, meteorology, human activity and exposures may be modest, nevertheless
there is some possibility of significant interdependencies among them. However, this issue has
not yet been addressed fully. Finally, in terms of producing appropriate modeling results for
sub-acute or chronic health effects applications, averaging time(s) other than the 24-h averages
considered here may be needed.

Ideally, uncertainties resulting from coupling multiple models should be studied by performing
a joint sensitivity and uncertainty analysis of the different models included within the integrated
modeling framework. At this time, however, the state-of-the-art models for each of the
emissions, air quality, exposure and dose components have not yet been directly coupled, even
for providing deterministic point estimates. Therefore, the approach taken here is to assess the
typical ranges and distributions of variability and uncertainty for the air quality, exposure, and
dose components individually within a linked source-to-dose modeling analysis, over the
shaded area shown in Fig. 1. To simplify our analysis, an assumption is made that there are no
structural uncertainties in the scenario, and that model uncertainties can be quantified
probabilistically in terms of precision and accuracy of the model output.

The air quality model estimates hourly average ambient PM2.5 concentrations that were
aggregated to daily-average values for specific grid cells based on input data for emissions,
meteorology, chemistry, and initial and boundary conditions. The air quality model produces
an estimate of concentration at a given location and time. The exposure model produces an
estimate of inter-individual and intra-individual variability in exposure that is dependent, in
part, on ambient concentrations and the averaging time used. The dose model produces an
estimate of dose that is dependent on the estimated exposure for each individual. The estimated
dose is based on coupling of the air quality (C), exposure (E), and dose (D) models, which is
represented conceptually, as:

(1)

where,

C = daily-average ambient concentration from the output of an air quality model (μg/
m3);

E/C = the ratio of daily-average exposure to daily-average ambient concentration, based
on an exposure model;

D/E = the ratio of average daily dose to daily-average exposure, based on a dose model.

In the simplified situation in which each of these three models components contributes both
variability and uncertainty, the overall variability and uncertainty in dose is a multiplicative

Özkaynak et al. Page 4

Atmos Environ. Author manuscript; available in PMC 2009 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



combination of the three components (denoted by the Variable Xi in Eqs. (2)-(4) below). For
independent Xi, the variance in the dose, Var(Y), can be linearly approximated based on Taylor
series expansion, as:

(2)

where,

Y = Output of coupled model framework (i.e. Dose)

Xi = Outputs of individual models in a coupled framework (e.g., C, E/C, D/E)

Thus, the basic conceptual framework for estimating the overall variability and uncertainty
used in this analysis can be expressed as:

(3)

or

(4)

where, X1, X2, X3 are the normalized variables (i.e., each variable value divided by its arithmetic
mean) corresponding to C, E/C and D/E, respectively; and ε1, ε2 and ε3 are the associated
prediction error terms.

In Eq. (4) the variances of the Xi terms represent variability and the variances of the ε3i terms
represent uncertainty. Multiplicative errors are assumed since prediction errors are often
proportional to the magnitude of the quantity being measured.

Based upon typical ranges of variability and uncertainty associated with each of the three model
components, a numerical simulation was conducted in which both variability and uncertainty
were quantified for each component and propagated to the output using a two-stage Monte-
Carlo methodology. Analytical probability distributions, mainly lognormal or normal
distributions are fit to represent the variability or the uncertainty for each of the three coupled
modeled variables. The best statistical fits for the variability distributions were found to be
lognormal distributions. For uncertainty distributions we assumed multiplicative normal
distributions with mean equal to 1, except for cases in which the coefficient of variation (CV)
was greater than 0.3, where we chose a lognormal distribution. The CV is equivalent to the
standard deviation (σ) divided by the arithmetic mean. To avoid estimating negative values for
highly uncertain quantities, lognormal distributions were used in these cases. Since the
variables are normalized first, all of the variability distributions have arithmetic means of 1
and are thus represented, as:

(5)

where,

xg denotes the geometric mean

σi or σεi denote either the geometric or arithmetic standard deviations of the underlying
variability and the uncertainty distributions.
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In conducting our coupled uncertainty calculations we used Crystal Ball Version 7.0 software
to simulate over 100,000 iterations of variability and uncertainty simulations using the fitted
normal or lognormal distributions with arithmetic mean = 1, and the calculated CV (in this
case equal to σ since the mean is equal to 1 for the normalized data).

3. Model descriptions and inputs
3.1. Air quality model

The Community Multiscale Air Quality (CMAQ) model was used to simulate the PM2.5
concentrations using an Eulerian grid structure. The model inputs include chemical emissions
and the results from a numerical weather simulation model. CMAQ simulates advection,
dispersion, gas-phase chemistry, aerosol thermodynamics and mass-transfer, and deposition.
We simulated the time period from June 24, 2002 to July 30, 2002. The first seven days were
excluded from the analysis to eliminate sensitivity to initial conditions. The spatial domain
included most of the Eastern United States at a 12 km horizontal resolution and 14 vertical
layers up to 100 mbar. Meteorological inputs are from the PSU/NCAR mesoscale model, also
known as MM5 (Grell et al., 1994). Emissions were generated using the SMOKE emissions
processing system (http://www.smoke-model.org/version2.3.2/html/ch02s16.html).
Emissions data for motor vehicles are from MOBILE 6 (http://www.epa.gov/otaq/m6.htm);
power plant emissions were from Continuous Emission Monitors
(http://www.epa.gov/camddataandmaps/). Biogenic volatile organic carbon and NOx
emissions were simulated using BEIS v.3.13 (Schwede et al., 2005) and are derived using the
same meteorological fields as the air quality simulations. All other emission sources were from
the 2001 National Emission Inventory (http://www.epa.gov/ttn/chief/net/critsummary.html).

A variety of different physical and chemical parameterizations were available for CMAQ and
the models used to generate the inputs. An ensemble of these modeling options was used to
approximate the uncertainty inherent in the structure of the model. We selected a subset of
twelve different model configurations known to have the largest impact on air quality
simulation (Hogrefe et al., 2001; Gilliam et al., 2006), including three configurations of the
planetary boundary layer/land surface model, two convective mixing schemes, and two
chemical mechanisms. The combinations of planetary boundary layer model (PBL) and land
surface model (LSM) are the Asymmetric Convective Model (PBL) (Pleim and Chang,
1992) and Pleim—Xiu LSM (Xiu and Pleim, 2001), the Medium Range Forecast PBL (Hong
and Pan, 1996) and Noah LSM (Ek et al., 2003), and the Mellor—Yamada—Janjic PBL (Janjic,
1994) and Noah LSM (Ek et al., 2003). The two convective mixing schemes are Kain—Fritsch
(Kain, 2004) and the Grell Cumulus Convective Scheme (Grell, 1993). We selected the Carbon
Bond IV (Gery et al., 1989) and Carbon Bond 2005 (Sarwar et al., 2008) chemical mechanisms.

3.2. Exposure and dose model
The Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-
PM) uses a probabilistic approach to simulate the time-series of inhalation exposure and dose
for individuals that demographically represent a population of interest based on PM
concentrations supplied as input to the model. The generation of the time-series involves
stochastic processes utilizing numerical Monte-Carlo sampling techniques to characterize the
variability within an individual over time and between individuals across a population.
Uncertainty in the model output is estimated by incorporating the knowledge- or measurement-
based uncertainty associated with the inputs through multiple iterations of the model. The
overall structure of the SHEDS-PM model has been described in detail elsewhere (Burke et
al., 2001; Georgopoulos et al., 2005). The SHEDS-PM model estimates the contribution of
PM from ambient or outdoor air separately from the contribution of PM from other sources
(e.g., smoking). This separation is maintained throughout the exposure and dose calculations,
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producing results for the daily-averaged exposure and total daily dose due to PM from outdoor
sources (ambient PM exposure and dose) versus that due to indoor PM sources (non-ambient
PM exposure and dose) for each simulated individual.

The daily-average PM2.5 concentrations in North Carolina from CMAQ for a one month time
period (July 1–30, 2002) described above were used as the input PM2.5 concentration data for
SHEDS-PM (version 3.5). The 12 × 12 km2 gridded data from CMAQ was interpolated to the
census tract centroids of all 1563 census tracts within North Carolina. A representative
population for the simulation was generated using demographic proportions for each census
tract from US Census 2000 data (gender, age, employment status, and worker commuting
census tract). One percent of the total population of North Carolina (all gender—age
combinations) was simulated for a total of 81,266 individuals across all of the census tracts in
North Carolina. This translated to a total of 2,437,980 person-days over the 30-day simulation
period, which was determined to be a large enough sample size to produce numerically stable
results for variability.

Each simulated individual was randomly assigned a longitudinal time-series of location and
activity information for the 30-day simulation using human activity diaries from EPA’s
Consolidated Human Activity Database (CHAD) (http://www.epa.gov/chadnet1/). Diaries
were randomly assigned to each simulated individual from those matching gender, age, and
employment status from available CHAD diaries collected during the summer season (defined
as June, July and August). A different CHAD diary was assigned for each individual for
weekdays, Saturdays, and Sundays. The PM2.5 concentration for each individual’s CHAD
diary locations was calculated using the interpolated CMAQ concentration for their home
census tract, and distributions of indoor/outdoor PM2.5 concentration relationships for different
diary locations (home, office, school, store, restaurant/bar, other indoor, and in vehicles). A
mass balance equation was used to calculate indoor PM concentrations for the home location
that included parameters for air exchange, penetration, and deposition, as well as emission
strengths for indoor PM sources (e.g., cooking). PM concentrations for the other indoor
locations were calculated using equations developed from regression analysis of available
indoor and outdoor measurement data for offices, schools, stores, and restaurants/bars as
described in Burke et al. (2001) that accounted for both the ambient and non-ambient
contributions to PM levels in these indoor locations. For vehicles, both the elevated roadway
concentrations and removal efficiency for PM were accounted for in the regressions. The
impact of commuting was included for employed individuals, using a database of home-work
census tract commuting proportions from the US Census 2000 to randomly assign the
individual to a different census tract during diary activities corresponding to “work”. The PM
concentration for the work census tract was used to calculate the location concentration during
work activities only.

Daily-average PM2.5 exposure for each individual was estimated using the calculated PM2.5
concentration and time spent in different locations from the assigned CHAD diary locations.
Total daily PM2.5 deposited dose was also estimated for each simulated individual using the
PM2.5 exposure, activity level-specific inhalation rates based on the activities in the assigned
diaries (McCurdy, 2000), and cumulative deposition to various regions of the respiratory tract
based on empirical equations from the ICRP model (ICRP, 1994). A bimodal particle size
distribution was simulated for PM2.5 based on data for the eastern US (US EPA, 2004). A
density of 1 g/cm3 was used to convert particle counts by size to mass.
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4. Results
4.1. Variability and uncertainty in the concentration predictions

CMAQ PM2.5 model results for July 2002 were examined in multiple ways. We calculated
both spatial and temporal CDFs (cumulative distribution functions) and CVs (Coefficient of
Variation or standard deviation divided by the arithmetic means) based on the baseline
ensemble member or mean of the 12 ensembles across the nearly 1000 model grid cells in
North Carolina. We did not observe any significant variation in the temporal CVs in NC. We
also assessed whether spatial variability differs from one day to another (or by day of the week).
In order to match the specifications of the SHEDS model these values were also interpolated
at 1563 census tract centroids in North Carolina. The overall (i.e., across all 30 days and 1563
census tracts) normalized concentration values were fit well by a lognormal distribution with
a CV of 0.52. A similar fit of 30-day averages of model results by each of the 100 counties
resulted in a lower variability CV of 0.18.

For quantifying the CMAQ model uncertainties we performed inter-ensemble comparisons, as
well as, comparing the model results with the 32 daily-average PM2.5 concentrations observed
at Air Quality System (AQS) monitoring stations (http://www.epa.gov/air/data/aqsdb.html) in
North Carolina. We compared model CDFs to corresponding measurement data from the 32
monitoring stations operating in North Carolina during the study period. A typical comparison
for Raleigh area is shown in Fig. 2. Approximately 10 days of daily-average PM2.5 data were
available from each station. We estimated the distribution of the percentage difference in
modeled versus measured values. Based on the inter-ensemble analysis we found the CMAQ
model uncertainties to be about CV = 0.15. However, as shown in Fig. 2, the observed value
does not always fall within the ensemble range; there are sources of uncertainty beyond the
differences in model representation. This ensemble does not comprise a probability sample,
and thus may not represent the entire range of possible outcomes. To generate a more
comprehensive estimate of uncertainty, we calculated the model error when compared to the
observed values (Hanna and Davis, 2002). The CV of the model error is 0.30 and is calculated
as:

(6)

where, σ is the standard deviation of the model error and μ is the arithmetic mean of the
observations.

The resulting variability and uncertainty CVs were used as the base case during coupled model
runs (Table 1). Since the model prediction uncertainties varied somewhat by time period or
geographic location, we also chose a range of low, mixed and high uncertainty values shown
in Table 1. Fig. 3a shows the overall variability in the predicted CMAQ PM2.5 concentrations.
The variability in PM2.5 concentrations between dates is also shown in this figure. For example,
the 95th percentile for PM2.5 concentrations across North Carolina on each of the 30 days in
July 2002 ranged from 11 to 48 μg/m3. As part of ongoing work, the use of data fusion and
Bayesian model averaging techniques are being used to make combined inferences from both
model predictions and monitored data.

4.2. Variability and uncertainty in the exposure and dose predictions
SHEDS-PM produced distributions of personal exposures to PM2.5 as well as PM2.5 dose for
North Carolina during July 2002. Summary statistics for the daily PM2.5 concentration,
exposure, and dose across all simulated individuals over the 30-day simulation are shown in
Table 2. The SHEDS-PM model results for ambient PM2.5 exposure and dose were used to
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provide the exposure to concentration (E/C) and dose to exposure (D/E) ratios needed for the
coupled model uncertainty analysis described above. These ratios were analyzed in a number
of different ways to understand the variability in the results. Fig. 3b and c show variability
distributions for the SHEDS-PM2.5 E/C and D/E ratios, respectively, for all individuals
combined as well as for selected age groups that illustrate the variability within and between
age groups. Differences between age groups were greater for the D/E ratios than for the E/C
ratios, indicating that physiological differences across ages impacts the variability in PM2.5
dose. Statistical frequency distributions were then fit to the normalized E/C and D/E values by
each of the three metrics of interest (i.e., overall, county and individual) as shown in Table 1.
The base case overall variability distribution for E/C was best fit by a normal distribution with
a CV of 0.23. The base case overall D/E variability distribution was best fit by a lognormal
distribution with a CV of 0.53. When the SHEDS-PM results were averaged by county the
variability in both the E/C and D/E ratios was quite low (CV of 0.01 and 0.03 respectively).
When averaged by individual over 30 days, the variability in the E/C and D/E ratios was similar
to that overall (CV of 0.12 and 0.46 respectively), indicating that inter-individual differences
were a major contributor to the overall variability.

The uncertainty distributions were derived from both the results from the 2-D Monte-Carlo
parameter uncertainty analysis runs and from the comparison of predicted SHEDS results with
measured total personal PM exposures for a PM panel study conducted in Raleigh, NC (Burke
et al., 2002). The parameter uncertainty values were found to be fairly small, around CV = 0.15
(Fig. 4). Furthermore, the measured vs. predicted for total PM2.5 exposures were also small
for the Raleigh PM panel data (around CV = 0.15). However, since we needed the uncertainty
for the E/C ratios in this analysis we calculated the sum of the two variances for E and C in
estimating a CV of 0.30 for E/C as a base case. We were not able to perform a parameter
uncertainty analysis for the dose module of the SHEDS model at this time. We assumed for
the base case overall uncertainty simulations can be represented by a normal distribution with
a CV of 0.40. In order to examine the impact of likely ranges in our base case assumptions, we
also added four more uncertainty specifications to address the likely ranges in the uncertainty
specifications (i.e., low, two mixed and a high case) as shown in Table 1.

4.3. Variability and uncertainty in coupled model predictions
Table 3 provides the results from the coupled model uncertainty analysis for each of the base
and alternative simulation cases described above. These case studies assume that either there
is no bias (systematic error) or that such biases have been corrected in a prior step. For each
analysis we provide three different measures of either variability or uncertainty combined.
Specifically, three ratios are calculated using the various points (A, B, C, D) selected from the
50th or 95th percentiles of the simulated variability or uncertainty distributions shown in Fig.
5a, as follows:

Özkaynak et al. Page 9

Atmos Environ. Author manuscript; available in PMC 2009 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The variability ratio represents the ratio of 95th percentile of variability to central tendency
(i.e., 50th percentile of uncertainty for the 50th percentile of variability). The uncertainty ratio
represents the ratio of 95th percentile of uncertainty for the central tendency to central tendency.
The overall uncertainty ratio is a measure of the combined effect of both variability and
uncertainty, and represents the ratio of 95th percentile of uncertainty for the 95th percentile of
variability to central tendency. Table 3 provides for each of the case studies evaluated how this
and other variability or uncertainty ratios change as models are sequentially combined. Note
that these results are expressed in a nondimensional form relative to a mean value for each
selected output. Namely, C alone (only one individual model), then C and E/C coupled (two
models coupled) and then C and E/C and D/E combined (three models coupled). Fig. 5a—c
shows how the base case variability and uncertainty distributions expand as three models are
sequentially coupled together. For the base case simulations the overall uncertainty ratio
increases from 3.2 to 4.5 and then to 8.7 when all three models are coupled. The latter value
is still about 3 fold less than the “crude uncertainty ratio” of 29.3, if one were to crudely estimate
this overall ratio simply by multiplying each model’s overall ratios together. Table 3 also shows
that coupled model uncertainties can be greater than the base case if the assumed uncertainties
in each of the models are higher than the base case simulations. The high uncertainty case study
yields an overall uncertainty ratio of 18.4 compared to a corresponding “crude uncertainty
ratio” of 80.7. In general, however, the coupled model uncertainties, across all simulation case
studies, are usually about 3–4 times less than the corresponding crude ratios. For the three
models combined, we found a nearly perfect linear fit (R2 = 0.98) to these data, represented by
the regression model:

(7)

5. Summary and conclusions
Understanding the influence of variability and uncertainty in model inputs and structure is
important for characterization of the accuracy and precision of model results. Most of the
environmental, exposure and dose models used in the analysis of source-to-dose relationships
for environmental pollutants are quite complex. These models rely upon many types of
physical, chemical, behavioral or biological information with varying degrees of inherent
variability or uncertainty. In addition to understanding the nature and impact of these various
sources of variability or error within each model, it is also essential to understand how these
errors propagate, as multiple models are linked together in an integrative assessment. We
studied this problem by focusing on human exposures to ambient PM, which is relevant not
only to the investigations of health effects of PM but to many other chemical-specific exposure
or risk assessments. Our case study of PM in North Carolina combined three distinct types of
models: concentration, exposure and dose models. We used a 2-Dimensional Monte-Carlo
simulation methodology to numerically calculate the propagation of errors, when one, two or
three models are combined. We found that as more models are coupled together both the
variability and uncertainty in the resulting model predictions increases. However, for the
models that we selected, the increase in either the variability or in the uncertainty ratios
separately, were found to be small (factor of 2 or less). On the other hand, the increase in the
joint variability and uncertainty or the overall uncertainty ratio was somewhat higher (about
factor of 2–3). In comparison, crude uncertainty ratios, where individual overall model
uncertainties are directly multiplied, were much greater (about a factor of 3–4) than our
predicted overall uncertainty ratios. These findings are generally consistent with statistical
expectations when either basic normal or lognormal distributions are linearly multiplied or
added.
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These results have important implications for integrative assessments that need to estimate the
overall accuracy and precision in the predictions when multiple models are combined. We
recommend that a special effort be made to estimate the variability, uncertainty and overall
uncertainty ratios for each of the models used in the chain of calculations. In particular, the
overall ratio is a good measure of a conservative range of errors associated with each of the
models. Short of repeating the simulations performed here, we suggest using an estimate based
on Eq. (6) or an approximate factor of 2–3 (as opposed to the crude uncertainty ratio of about
a factor of 5) to estimate the likely range of overall coupled model uncertainties, when three
models are linked together.

We recognize also some of the limitations of our analysis. In particular, potential relationships
or feedbacks between the various models or model elements may result in collinearities among
the different variables. However, the numerical simulation approach adopted here can be used
to explore the impact of such correlations by using correlated draws. A more complicated future
analysis may attempt to differentiate the sources of uncertainties in modeled ambient
concentrations, such as due to emissions, meteorology, transport, transformation and
deposition. In this paper we studied modeling uncertainties dealing with exposures to ambient
PM only. The study of exposures to both indoor and outdoor PM would pose similar additional
complexities due to the fact that the total exposures/ambient concentration variable will be
correlated with ambient concentrations. The simulations for exposures to total PM would
necessarily have to incorporate such dependencies or correlations explicitly. In general,
chemicals with indoor or multiple sources will require a more complex analysis of factors
influencing the underlying variability and uncertainty distributions and the resulting modeling
errors. However, most of these are tractable problems which can be addressed with currently
available numerical analysis tools. Finally, we recommend performing a set of truly coupled
modeling analyses, in order to evaluate our results by jointly characterizing the variability and
uncertainties in the overall model predictions.

6. Disclaimer
The United States Environmental Protection Agency through its Office of Research and
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Fig. 1.
Factors relevant to linking source-to-dose models (shaded area indicates focus of this paper).
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Fig. 2.
Ensemble CMAQ simulated and observed concentrations near Raleigh, NC. Large deviations
on July 3–9 are due to wildfire events that are not captured by the emission inventory.
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Fig. 3.
Variability in the modeled daily-average: concentrations (a), exposure/concentration ratios (b),
and dose/exposure ratios (c).
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Fig. 4.
Distribution for parameter uncertainty in the SHEDS-PM daily-average exposure/
concentration ratios.
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Fig. 5.
Two-dimensional probabilistic representation of variability and uncertainty in outputs of: air
quality concentration model (a), coupled concentration and exposure models (b) and coupled
concentration, exposure and dose models (c) for base case variability and base case uncertainty
assumptions.
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Table 1

Coefficients of variation for variability and uncertainty for alternative input assumptions used in coupled model
uncertainty analysis.

Description Case C E/C D/E

Variability
(Base)

Base (overall) 0.52 0.23 0.53

Alternative-1
(county average)

0.18 0.01 0.03

Alternative-2
(individual average)

0.17
(census tract)

0.12
(individual)

0.46
(individual)

Uncertainty Base 0.3 0.3 0.4

Low 0.25 0.2 0.3

High 0.45 0.4 0.5

Mixed-1 0.25 0.3 0.5

Mixed-2 0.3 0.3 0.3

Numbers shown in bold are treated as lognormal distributions others are fit to normal distributions.
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Table 2

Summary statistics for daily PM2.5 concentration, exposure and dose for North Carolina during July 1–30, 2002.

PM2.5 Variable Mean Std. dev.

Ambient concentration (μg/m3) 17.22 9.05

Exposure (μg/m3)

 Total 14.40 8.21

 Ambient 10.96 6.34

Dose (mg)

 Total 0.286 0.257

 Ambient 0.196 0.169
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