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Abstract
Biological systems can be modeled as networks of interacting components across multiple scales. A
central problem in computational systems biology is to identify those critical components and the
rules that define their interactions and give rise to the emergent behavior of a host response. In this
paper we will discuss two fundamental problems related to the construction of transcription factor
networks and the identification of networks of functional modules describing disease progression.
We focus on inflammation as a key physiological response of clinical and translational importance.
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Introduction
Almost 40 years ago a pioneering symposium was held at Case Western University to assess
past developments and future potential of systems approaches in biology. Eloquently
Mesarovic presents two important roles systems theory could play in biology: (i) to develop
general systems models that can be used as “the first step toward arriving at a more detailed
representation of the biological system”, and (ii) to provide “a basis for communication
between different fields since the formal concepts of behavior (adaptation, evolution,
robustness etc.) are defined in a precise manner and in setting of minimal mathematical
structure reflecting, therefore, the minimal degree of special features of the real-life system
from which the formal concept has been abstracted” (Mesarovic 1968).

Since then, Systems Biology, loosely defined as the systematic study of complex interactions
in biological systems, has emerged as a new and exciting discipline (Kitano 2002; Kitano
2002). The Chemical Engineering community in general, and the Process Systems Engineering
group in particular, have made significant contributions by proposing innovative use of ideas,
theories, algorithms and tools developed over the years for the analysis of complex process
systems to biological systems. The contributions from the research groups of Professors Doyle,
Floudas, Hatzimanikatis, Henson, Ierapetritou, Kaznessis, Mantzaris, Maranas, Pallson,
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Parker, Sahinidis, Stephanopoulos are too numerous to list individually here. This list is by no
means complete, and we wish to apologize to those who were unintentionally left out. However,
the main point we wish to convey is that systems engineering, be it through either modeling
or optimization, has contributed to, both, the development of novel algorithms as well as
advancing our fundamental understanding of biological systems.

Central to the analysis of biological systems, and to the work of the researchers mentioned
earlier, is the concept of the “network” defined as an interconnected group of systems (Barabasi
and Oltvai 2004). Networks are, potentially, characterized by a critical property characteristic
of complexity: emergence. In the context of a biological system the implication is that the
macroscopic response (phenotype) of a system is the result of propagating information, in the
form of disturbances, across an intricate web of interacting modules (Vazquez, Dobrin et al.
2004). However, in biological systems a form of “nested complexity” emerges where networks
of interactions form a complexity pyramid (Oltvai and Barabasi 2002). At the lowest level,
molecular components of a cell, such as genes, RNA, proteins, and metabolites, are interacting.
The interactions define elementary building blocks organized into pathways and regulatory
motifs, which in turn are integrated, through appropriate interactions, intro interacting modules
that eventually give rise to an organism’s response. The emergent behavior of a biological
system, whether it relates to the control of the expression of a single gene (Babu, Luscombe
et al. 2004) or the manifestation of a disease (Calvano, Xiao et al. 2005) is the result of the
coordinated action of network elements. As such deciphering the connectivity and the
dynamics of emerging network architectures becomes a critical question in the analysis of
biological systems.

In this paper we will discuss systems-based approaches that aim at exploring the emergence
of interaction networks at the (low) level of interaction of transcription factors and the (high)
level of interacting signaling and regulation components that give rise to an overall systemic
response. We focus our analysis on a critical physiological response, namely, inflammation.

Deciphering the Complexities of Transcription Factor Networks
Biological systems dynamically adapt and evolve driven by an intricate machinery that
integrates external signals and activates internal mechanisms through a complex web of
interacting transcription factors. Cellular systems can therefore be considered as non-linear
dynamical systems that exhibit emerging behaviors and are guided by, yet to be determined,
regualtory mechanisms (Huang, Eichler et al. 2005). Quantification of these mechanisms will
provide a major impetus to scientific research as it would provide a rational basis for designing
and optimizing desired responses. Reverse engineering regulatory networks based on high-
throughput gene expression measurements is an active area of research (Liang, Fuhrman et al.
1998; D’Haeseleer, Liang et al. 2000; Chua, Robinson et al. 2004; Timothy S. Gardner
2005). However, despite the advent of large-scale transcriptional studies, single perturbation
studies at low temporal resolution measurements do not reveal the inherent complexity of
cellular dynamics. This is due to our limited ability to understand and control the internal
transcriptional machinery directing cells toward target phenotypes (Levine and Davidson
2005). A novel and unique microdevice, the Living Cell Array (LCA) has been proposed to
overcome some of these difficulties (Wieder, King et al. 2005). The Living Cell Array is a
micro-fluidics device which utilizes cells transfected with artificially constructed reporter
plasmids (King, Wang et al. 2007). These reporter plasmids consist of a minimal promoter and
4 repeats of a transcription factor’s consensus sequence as identified via the TRANSFAC
database(Matys, Fricke et al. 2003), and an unstable green fluorescent protein (GFP)
constructed. Therefore, the activation of a given transcription factor is correlated with the
fluorescence of the given cell. In this experimental context, the activation of a given
transcription factor (TF) is performed by utilizing a soluble factor which is known to activate

Foteinou et al. Page 2

Comput Chem Eng. Author manuscript; available in PMC 2010 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that transcription factor. A detailed analysis of a number of critical inflammation specific
transcription factors was therefore performed and the activity of the corresponding
transcription factor recorded at high temporal resolution (Thompson, King et al. 2004).

Given the artificial construction of the reporter genes, the direct effects of a given activator/
transcription factor is clear. It is less clear however what the effects of indirect activation are.
Under all of the different activation conditions, all of the reporter genes appear to be activated
to a certain extent. The primary question is therefore, what the indirect links are. It may be
possible to isolate transcription factors which are tightly coupled, where the activation of one
transcription factor causes the activation of a second transcription factor, or which are
complementary i.e. the activation of one system can be accomplished via the activation of any
one in a set of transcription factors. This essentially allows for the identification of the
mechanism behind the crosstalk and addresses issues such as why blocking a specific regulator
does not always lead to the blocking of a given cellular response. By construction, the LCA
monitors changes in activities of transcription factors in response to constant infusion of soluble
signals. By recording the expression of known gene targets of these TFs one can effectively
evaluate the actual activity of the corresponding TF. The goal of the analysis would be to
identify potential links in activity of TFs and eventually establish a network of interaction based
on these known responses.

The promoter regions for these genes, i.e., the location where TFs bind, were constructed in
such a manner where the direct activation of a given transcription factor will occur by its
corresponding soluble factor simulus, Table 1. However, in spite of this design, it was found
that there was significant cross talk, for instance the activation of the reporter gene for STAT3
is activated by by its specific soluble factor IL6, but also by TNF-alpha. The hypothesis being
explored is that the nonspecific activation of the reporter gene can occur via a secondary
mechanism, i.e. the activation of a given transcription factor may be due to the upstream
regulation of another transcription factor. It is hypothesized that if there is this clear link
between the activities of two transcription factors, then there should be evidence of co-
expression indicating a significant link. Therefore, if the reporter gene is highly co-expressed
over a range of different conditions, then it would suggest that there is a definite link between
the two transcription factors in terms of their activation.

However, while the activities of the transcription factors may be co-expressed under many
conditions, it is also hypothesized that they will not be co-expressed under all conditions;
otherwise the two transcription factors would essentially be redundant. While the raw data of
the LCA dataset represents a three dimensional dataset with genes, conditions, and time
representing the three separate dimensions, the fact that we are looking for co-expressed
transcription factor activity means that the problem can be simplified into two dimension. This
is done by clustering the temporal profiles under each condition such that transcription factors
with similar activities are assigned to the same integer or cluster. After this step has been
performed, in identifying transcription factors that are correlated under some, but not all
conditions, the next step is to identify the factors that are co-expressed under a maximal number
of conditions.

The need to identify transcription factors that are co-expressed under a maximal number of
conditions leads to an interesting problem defined as bi-clustering. In bi-clustering, we are as
interested in identifying related conditions as we are in identifying related genes, or
transcription factors. However, one of the issues associated with bi-clustering is the fact that
the problem itself has been determined to be NP-Hard(Cheng and Church 2000). Thus, due to
the computational complexity of the problem, most of the algorithms that have been developed
to solve bi-clustering are either limited due to constraints which they impose upon the solution
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(Madeira and Oliveira 2005; Prelic, Bleuler et al. 2006), or use heuristics which do not arrive
at globally optimal solutions(Cheng and Church 2000; Yoon, Nardini et al. 2005).

Aside from the use of heuristics that do not yields globally optimal solutions, the most common
constraint that is normally imposed by the different methods is either the lack of overlapping
bi-clusters(Cheng and Church 2000), or in the cases where they are allowed, to limit the
structure of the overlaps(Kluger, Basri et al. 2003). Without overlapping bi-clusters, the
resultant solution essentially returns a set of independent cliques which runs contrary to the
notion that biological networks are highly interconnected(Zhu, Gerstein et al. 2007). What is
needed is a method to isolate not only a single bi-cluster, but also to isolate them in such a
manner, such that arbitrarily overlapping biclusters can be identified. The problem that has
bedeviled the isolation of arbitrarily overlapping bi-clusters where one must remove redundant
overlapping biclusters. Furthermore, finding all over-lapping biclusters requires a method that
can efficiently solve the NP-hard problem rather than the reliance upon heuristics.

To address this question, one would need to evaluate all partially overlapping biclusters in a
rigorous and consistent way and subsequently combine the results to form a network. We have
recently reported a biclustering algorithm (Yang, Foteinou et al. 2007) which addresses this
specific problem by making use of a mixed-integer linear optimization as described in (1)

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

(1h)
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(1i)

(1j)

In short, at every iteration one seeks to identify the maximum number of conditions (k) to
which N TFs can be assigned, i.e., the problem is solved parametrically in N. Because we deal
with long time-series, representing TF activities over time for each perturbation experiment,
we proposed in (Yang, Foteinou et al. 2007) the symbolic transformation of each time course
and the assignment to it of a unique identified. The D(i,k) denotes the “experimental data” in
that it denotes the symbol that has been assigned to each TF profile activity. Thus (1a) defines
the objective maximizing the number of conditions, (1b) sets the number of TF assigned to
each bicluster, (1c–d) search for TF that share similar profile under different conditions.

Once a bi-cluster is identified, the problem is resolved for the same number of conditions with
the inclusion of appropriate cuts that exclude bi-clusters which are subsets of previous ones.
This condition is modeled as in (1e), see Figure 1. As earlier mentioned, while the formulation
in (1) is able to obtain a set of bi-clusters for a given number of conditions, it can be expanded
to find all bi-clusters by solving the problem parametrically. We have demonstrated (Yang,
Foteinou et al. 2007) that this approach was able to identify a complete set of direct and indirect
interactions which formed the basis for creating a direct graph of interacting TFs, Figure 2.
From the bi-clustering result and the associated bipartite network, various interesting
interactions had been found. For instance, it was found that while HSE did not have a specific
activator under the experimental conditions, it showed significant co-expression and activation
from a variety of different activators such as TNF-α and Dexamethasone (Dex). The activation
of the Heat Shock Element normally occurs in temperature above 35 degrees, and yet it was
activated under the administrations of Dexamethasone, IL-6, and Interferon Gamma. While,
HSE was not directly stimulated in the experiment, phenomenon such asthe possible
transduction of the HSE by Interferon Gamma have been previously identified (Saile,
Eisenbach et al. 2004).. On the other hand, the activation of the system by Dexamethasone may
be more of an artifact of the poor data quality. This may be due primarily to the down-regulatory
effects associated with Dexamethasone upon most mediators of inflammation in which the
manifest of repression upon a baseline of no activation shows primarily the effects of noise.
Thus, the correlation of Dexamethasone may be an artifact of the data.

The primary salient characteristic of Figure 2 is the presence of loops such as those that involve
IL6 IFN-γ, and IFN-γ and Dexamethasone. The presence of these loops gives a possible
mechanism by which both IFN-γ and Dexamethasone are responsible for changing the way an
organism responds to inflammatory cytokines, as well as suggesting that there may be a
mechanism for involving a tolerance phenomenon. This effect may be mediated through the
transcription of the glucocorticosteroid receptor or the Interferon Gamma receptor which is
present in the cell(Sanceau, Merlin et al. 1992;Rakasz, Gal et al. 1993). Other identified
feedback loops such as those that involve IL6→TNF-α (Moeniralam, Bemelman et al. 1997),
glucocorticosteorids→IL6 (Barber, Coyle et al. 1993;Takeda, Kurachi et al. 1998), and
IL6→IFN-γ (McLoughlin, Witowski et al. 2003) are evident in Figure 2. We make the
additional hypothesis that the feedback loop IL6→TNF-α is mediated through the activity of
IFN-γ which has not been directly established. However, it has been established that IFN-γ
illustrates non-trivial effects on STAT3 and TNF-α (Raponi, Ghezzi et al. 1997;Kaur, Kim et
al. 2003) making it a possible candidate as the hub which mediates feedback activity. This
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hypothesis shows that the value of the LCA/Biclustering lies not only in the validation of
previously identified links, but also as a method for generating new testable hypotheses.
Additionally, we assert that a bi-clustering algorithm which was both globally optimal as well
allowing for the arbitrary overlapping of bi-clusters is necessary.

Quantifying the Dynamics of the Transcription Factor Network
A widely used assumption is that the dynamics of TF networks can be approximated as a system
of ordinary differential equations with constant coefficients(Gardner, di Bernardo et al.
2003; Dasika, Gupta et al. 2004; Guthke, Moller et al. 2005). While there are undoubtedly
significant nonlinear effects present within biological system, given the lack of sufficient
conditions in the experimental data, this approximation is used to keep the problem well
defined. However, many times, this simple assumption still yields an ill-posed problem in that
there are more variables than equations. In response to this, NIR constrains the number of
connections possible for each gene or transcription factor to the number of conditions measured
(Gardner, di Bernardo et al. 2003), whereas the method proposed by Guthke et al. utilizes
Singular Value Decomposition (SVD) to reduce the number of genes whose profiles need to
be reconstructed. Examining these techniques it is clear that an ideal technique would require
the ability to assess the system under different experimental stimulations as well with high
temporal resolution. Fortunately, the LCA is able to satisfy both of these constraints.

The key advantage of utilizing the LCA is that for each transcription factor measured, it is
reasonably straightforward to add one or more conditions such that the system is fully defined.
This is because each condition represents the stimulation of the system with a stimulatory
soluble factor. It is important to note that in both our formulation as well as the experimental
system, multiple combinations of soluble factors can be utilized as separate conditions.
Therefore, we do not need to make any simplifying assumptions as to the complexity of the
network. Furthermore, given the time resolution, the derivative of each transcription factor’s
activity level can be accurately estimated via smoothing splines (Rice and Rosenblatt 1983).
However, in addition to eliminating the need to place constraints upon the overall complexity
of the system, the high temporal resolution allows us to incorporate additional complexities
into the system. Specifically, it allows us to consider the possibility that the interaction strengths
between two different transcription factors may change over time to reflect other factors that
can alter transcription factor activity aside from concentration. These factors may involve
mechanisms such as Michalis-Menten interactions associated with binding events(Hemberg
and Barahona 2007). Because the input stimulus into the Living Cell Array corresponds to a
constant infusion of an activating soluble factor, we hypothesize that the response of various
simple mechanisms within the cell will have clearly recognizable features shown below.

The overall model associated with this hypothesis is given in (3):

(3)

where D represents the data, D′ represents the calculated derivative of the data after smoothing,
A represents the time varying interaction strength between the different factors (to be
determined), β represents a matrix which indicates which transcription factors a given soluble
factor influences, and s represents the strength of this influence. The index variables i, i′
represents the response of a given factor, j represents the individual condition being modeled,
and t represents time.
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However, because we not only have to establish what the time varying interaction strengths of
the connectivity matrix A are, we also have to establish the underlying connectivity structure,
we have formulated the deconvolution of the dynamics as a mixed-integer linear optimization
problem. This provides the flexibility for us to either incorporate the network architecture
obtained from the previous step, or to identify a structure of a given complexity with the
minimal reconstruction error. The formulation is depicted in Eq (4).

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

Effectively, we minimize appropriate slack variables denoting the deviation of the theoretical
model of (3) from the experimental data. Given that the interaction coefficient A is a function
of time, we capture the details of the temporal dynamics. The remaining of the constraints
established the validity of the networks. As such (4d–e) establish that if a connection is not
present the interaction strength between factors i and i′ should be 0, whereas (4f–g) establish
that each TF interacts with at least one factor. The latter constraints can easily be relaxed. The
final constraint controls the expected complexity of the model by setting a limit on the destined
number of interactions. More details are discussed in (Yang, Yarmush et al. 2009)
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Utilizing the following formulation, it is possible for us to reconstruct the dynamics associated
with the connectivity structure solved in the prior bi-clustering step. The identified dynamics
yield some interesting insights as to the overall mechanisms that work in conjunction with the
architecture. In this result, the interactions of AP1 were discounted because the factor did not
appear to be connected under the solution which were obtained via the bi-clustering formulation
Figure 3. Combining this numerical result it is possible to draw interesting hypotheses how the
different transcription factors interact. We predict that the response of NFkB to external
stimulation appears to have a significant lag event perhaps due to a rate limiting dimerization
event, the loss of GRE activity over time points to a tolerance mechanism coupled with the
clear down-regulation of NFkB by GRE, and possible oscillatory effects associated with ISRE
may be due to its central role in the feedback loop. One of the most interesting observations
from these dynamics is that most of the transcription factors appear to exhibit a significant
level of tolerance under constant stimulation suggesting in all of our cases we are observing
evidence of receptor saturation in response to continued stimuli. Additionally, the fact that such
dynamics were visible even in such a small case suggest that the same framework would yield
useful insights in a more comprehensive system in which all of the interacting transcription
factors were measured.

While there are differences in the connectivity structure as well the solved dynamics, there are
some interesting similarities. For instance, the responses of NFkB to direct stimulation as well
as the response of GRE to direct stimulation contain very similar profiles. Furthermore, while
some of the dynamics appear different such as the response of NFkB to the stimulation of GRE,
they differ in an interesting and coherent manner. In the bi-clustering formulation which does
not consider AP1 as part of the network, the response of NFkB to GRE stimulation appears to
be a mirror of GRE under direct stimulation. However, when we consider the response of AP1,
this response changes from a mirror of GRE stimulation to one that suggests the presence of
an additional feedback component. This suggests to us that while the glucocorticosteroid
receptor can be shown to stimulate NFkB, there is an element in the dynamics which AP1 may
play a significant role. Therefore, it is hypothesized that AP1 may play a role in regulating
NFkB’s response to GRE stimulation.

In this work, we have demonstrated how to identify and quantify network interactions
establishing critical relations between transcription factors. Such models will enable the
characterization of the gene expression process and therefore establish important network
interactions at the level of the cell. We will next consider network interactions at the level of
the host.

Physicochemical Models of Inflammation
Bacterial infection, trauma, surgery and biological stresses in general, induce an acute
inflammatory response, characterized by a cascade of events during which multiple cell types
are deployed in order to locate pathogens, recruit other cells and eventually eliminate the
offenders and restore homeostasis. Under normal circumstances, the inflammatory response is
activated and once the pathogens are cleared, reparative processes begin and the response then
abates (Laroux 2004). However, in some cases anti-inflammatory processes fail, and an
amplified runaway inflammation turns what is normally a beneficial reparative process into a
detrimental physiological state characterized by systemic inflammation. The hypermetabolic
state is characterized by significant alterations in the utilization of amino acids, glucose and
fatty acids, leading to increased resting energy expenditure, a negative nitrogen balance,
hyperglycemia and hyperlactatemia. This results in net muscle protein catabolism with
extensive amino acid deamination and oxidation, as well as “futile cycling” of substrates such
as glucose and fatty acids (Demling and Seigne 2000).
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Depending on the severity of the injury and success of the treatment, hypermetabolism and
other changes associated with the systemic inflammatory response can progress to multiple
organ dysfunction syndrome and sepsis, characterized by significant morbidity and mortality
rates. Despite the growing understanding regarding the cellular and molecular mechanisms of
systemic inflammatory response syndrome (Tetta, Fonsato et al. 2005) and the numerous
animal and human studies that have been undertaken, not many effective therapies exist and
only a few drugs are known to reduce mortality compared with controls in clinical trials, albeit
at low rates (Bernard, Vincent et al. 2001) and the complexity of the response has made
therapeutic strategies elusive(Klaitman and Almog 2003; Riedemann, Guo et al. 2003;
Kerschen, Fernandez et al. 2007). Among these, anti-inflammatory corticosteroid-based
therapies have seen a recent resurgence in intensive care units (Arzt, Sauer et al. 1994; Meduri,
Headley et al. 1998; Annane, Sebille et al. 2002; Annane, Bellissant et al. 2004; Annane,
Bellissant et al. 2004). The difficulty in altering the clinical course of critical patients by
targeting molecular mediators and therapeutic targets is well known (Marshall 2003). However,
the intricacies in translating basic research to clinical practice is recognized as a challenge that
needs to be overcome in order to successfully transfer the information from the pre-clinical to
the clinical stage (Marshall 2005; Marshall, Deitch et al. 2005). As a result there is a growing
interest in deciphering the complexities of the disease in an effort to control and eventually
eliminate its detrimental implications. In order to address these pressing issues we have
undertaken an integrated approach that aims at approaching the problem from different angles
and at different scales. The unifying hypothesis is that the observed response is the outcome
of the orchestrated interactions of critical modules in the form a network.

Inflammation is known to be controlled at the gene expression level (Saklatvala, Dean et al.
2003). Establishing and analyzing the complex networks of transcription factors that regulate
the expression of inflammatory genes is of critical importance. Thus controlling, i.e.,
suppressing the expression of inflammatory genes has been identified as a promising therapy
and can lead to the development of novel anti-inflammatory drugs (Barnes 2006). A critical
enabler in that respect would be to identify the role of the putative networks of regulators of
the expression of inflammatory genes.

The nature of the response has lead researchers to the realization that mathematical models of
inflammation might provide rational leads for the development of strategies that promote the
resolution of the response and the eventual establishment of homeostasis (Seely and Christou
2000). The modeling approaches fall broadly in two categories: those based on explicit dynamic
(Day, Rubin et al. 2006; Reynolds, Rubin et al. 2006) and agent based models (An 2004). The
potential for studying such complex phenomena in a model-based manner opens the possibility
for generating and exploring simultaneously multiple hypotheses for deciphering complex
modes of action and the possibility for proposing combination therapies. However, it is rather
questionable whether isolated elements of the response best characterize complex responses.
Therefore, these approaches require the careful answer to two critical questions: (a) what
constitutes an underlying dynamic response, and (b) what is an appropriate inflammation
model. Therefore, the host inflammatory response can be considered as the emergence response
of a network of interacting elementary response elements (signaling and regulatory).

The resurgence of methods that enable the analysis of such questions is largely enabled by the
tremendous advances in monitoring changes at the cellular level driven primarily by
developments in measuring gene expression at gene-wide scale. With the technology maturing,
what started as a an attempt to classify patterns (Golub, Slonim et al. 1999) of gene expression
has evolved into sophisticated analyses providing semi-mechanistic pharmacogenomic models
(Jin, Almon et al. 2003).
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Extracting Essential Inflammatory Transcriptional Responses
Recently, there is a growing interest in reducing the complexity of the inflammatory response
into a set of key components that are considered to play a critical biological role in the dynamics
of the host response when exposed to various stressors such as infection, trauma, hemorrhage
shock e.t.c. (Chow, Clermont et al. 2005; Lagoa, Bartels et al. 2006). Thus there is emphasis
on reducing the complexity of the models of inflammatory response by identifying a limited
number of time-dependent interactions of key elements that are highly sensitive to specific
modes of initiation and modulation of the response. Such an approach is necessary in system-
level disease processes, like sepsis (Vodovotz, Clermont et al. 2007). A number of excellent
prior studies (Kumar, Clermont et al. 2004; Chow, Clermont et al. 2005; Day, Rubin et al.
2006; Reynolds, Rubin et al. 2006; Vodovotz, Chow et al. 2006) have placed significant
emphasis on simulating inflammation based on the kinetics of well accepted constituents of
the acute inflammatory response. One of the key features of these models is the a priori
postulation of certain components that are consistent with biological knowledge to play a major
role in triggering the inflammatory response; thus, their computational integration can provide
us with significant insight of how such components behave over time empowering their
translational application as predictive controls in clinical settings.

However, one of the big challenges is the systematic identification of such representative
biological features that can sufficiently represent the complex dynamics of a system. As such,
a critical question which emerges is whether we can we identify a representative set of intrinsic
responses that emerge from the dynamic evolution of the inflammatory response. This requires
the decomposition of the non-linear dynamics of inflammation into an elementary set that can
serve as the surrogate for predicting the collective behavior of the system. A possible answer
to this issue can be identified through the analysis of gene expression data which aim at
monitoring the dynamics of the host response to an inflammatory agent. Therefore, given a
high-throughput assay e.g. DNA microarrays, we are interested in extracting the essential
transcriptional dynamics of an endotoxin induced inflammatory response and furthemore
building an in silico model of inflammation which integrates this reduced set of the essential
elements in order to predict the behavior of the entire system through the interplay of its
constituent elements. Decomposing the intrinsic dynamics of the entire system into a reduced
set of responses enables us to both project and understand the complex dynamics of the system
by studying the properties of its essential dynamic parts. Given that the activation of the innate
immune system in response to an inflammatory stimulus involves the interaction between the
extracellular signals with crucial signaling receptor that drives downstream a signal
transduction cascade that leads to a transcriptional effect, we explore the development of an
in silico model that aims at coupling extracellular signals with the essential transcriptional
responses through a receptor mediated response model.

The data analyzed in this section was generated by the Inflammation and Host Response to
Injury Large Scale Collaborative Project funded by the USPHS, U54 GM621119 (Calvano,
Xiao et al. 2005; Cobb, Mindrinos et al. 2005). Human subjects were injected intravenously
with either endotoxin (CC-RE, lot 2) at a dose of 2-ng/kg body weight or 0.9% sodium chloride
(placebo treated subjects). Blood samples were collected before endotoxin infusion (0hr) and
2, 4, 6, 9 and 24 hours after injection as well as for the placebo treated subjects. Cellular RNA
was isolated from the leukocyte pellets and a total of 44,924 probe sets on the Hu133A and
Hu133B arrays were hybridized and analyzed thus generating the expression measurements of
thousands of genes that are activated/or repressed in response to endotoxin.

A model for human endotoxemia
The administration of a low-dose of endotoxin (LPS) to human subjects elicits the complex
dynamics of a transcriptional response altering the expression level of numerous genes. We
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are interested in unraveling a critical set of “informative” temporal responses that are
characterized as the “blueprints” of the orchestrated dynamics of the perturbed biological
system. In doing so we hypothesize that there is a definite underlying mechanism that describes
the emerging dynamic inflammatory response and capturing the essential inflammatory
responses might serve as surrogates for the dynamic evolution of the host response due to
endotoxin stimulus. Based on our prior work, we first apply a micro-clustering approach, which
is based on a symbolic transformation of time series data which assigns a unique integer
identifier (hash value) to each expression motif (Yang, Maguire et al. 2007). Having assigned
the temporal expression profiles to distinct motifs, the next task is to select expression motifs
that would appear to be highly non-random. Having identified the statistically significant
expression motifs from the initial large set of micro-clusters we need to identify a
discriminating set of critical temporal shapes that best characterizes the intrinsic dynamic
response of the system. Due to global nature of the transcriptional measurements and the fact
that we do not a priori select a limited set of responsive genes, the entirety of the transcriptional
response is expected to exhibited a rather Gaussian type of response with not clear defining
responses (Vemula, Berthiaume et al. 2004). We define the TS of the system as the overall
distribution of expression values at a specific time point aiming by quantifying the deviation
of the system at each time point versus a baseline distribution (t=0hr) applying a Kolmogorov
– Smirnov test (Lampariello 2000). Given the aforementioned metric we are interested in
identifying the minimum number of expression motifs which characterize the maximum
deviation of the Transcriptional State of the system. This selection problem defines is a
combinatorial optimization problem for which we apply a stochastic optimization algorithm,
based on simulated annealing (Kirkpatrick, Gelatt et al. 1983).

We identify three critical expression motifs enriched in critical and relevant biological
pathways: (i) Early up-regulation response (Pro-inflammatory component, P). Genes in this
major temporal class are important in Cytokine – Cytokine receptor interaction as well as in
Toll like receptor signaling pathway crucial in activating transcription factors that act
synergistically with proinflammatory transcription factors such as members of NFkB/RelA
family; (ii) Late up-regulation response (Anti – inflammatory component, A): Genes in this
functional class participate in the JAK-STAT cascade which is essential to regulate the
expression of target genes that counter - react the inflammatory response. In addition to this,
it is emphasized (Murray 2007) that a STAT pathway from a receptor signaling system is a
major determinant of key regulatory systems including feedback loops such as SOCS induction
which subsequently suppresses the early induced cytokine signaling and essential activators
for IL10 signaling (Brightbill, Plevy et al. 2000). Moreover, we identified the late increased
expression of IL10RB which is assumed to be indicative of the IL10 signaling cascade; and
(iii) Down-regulation response (Energetic component, E): The down-regulated essential
response is characterized by a set of genes, which are mainly involved in the cellular bio-
energetic processes. In addition to this, a large set of genes, which are essential to Ribosome
biogenesis and assembly (RPL/RPS family) are repressed coupled with those genes, which
participate in protein synthesis machinery, Oxidative phosphorylation and Pyruvate
metabolism. Endotoxin induced inflammation causes the dysregulation of leukocyte
bioenergetics and persistent decrease in mitochondrial activity leads to reduced cellular
metabolism with subsequent decline in organ function (Singer, De Santis et al. 2004). A
restoration of organ function should be associated with an increase in bioenergetics and
metabolic activity (Brealey, Brand et al. 2002) and we are assuming that a persistent shut down
of these genes might lead to multiple organ dysfunction. These transcriptional responses
effectively decompose the overall dynamic and present the constitutive elements of the overall
response. They correspond to the cellular signatures in response to LPS administration and
manifest the integrated systemic response. Notionally, Figure 4 depicts the essential
hypothetical elements of the transcriptional response induced upon recognition of LPS.
Appropriate receptors (Toll-like 4, TLR) recognize the pathogen and as a result an intricate
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cascade of events is initiated which activates appropriate signaling cascades converging in the
activation of transcription factors, such a Nuclear Factor kB (NFkB), which modulate the
expression of a large family of inflammation-specific transcription factors.

Developing an Integrated Inflammation Model
As an external stimulus LPS interacts with its signaling receptor (TLR4) to induce a signal
transduction cascade that will ultimately trigger essential signaling modules for the activation
of pro–inflammatory transcription factors. Such a transcriptional effect can be modeled
applying the basic principle of an Indirect Response Model (IDR) (Krzyzanski and Jusko
1997). The inflammatory stimulus (LPS) is described by a non-linear logistic based function
with growth rate klps, 1 and an elimination rate klps, 2 (Zwietering, Jongenburger et al. 1990).
In human subjects the endotoxin is cleared within the first 2 hrs of post – LPS administration
(Greisman, Hornick et al. 1969). The dynamic profile of the mRNA, R is modeled using an
indirect response differential equation characterized by a production rate (Kin,mRNA,R) and a
degradation rate (Kout,mRNA,R). The measured mRNA, R is characterized by an up-regulation
for the first 4 hrs post-LPS administration and it returns to baseline. As a result the two
parameters are estimated so that we can best fit the available mRNA, R. The surface free
receptor (TLR4) is characterized by the kinetic parameters k1 and k2 that are associated with
the binding interaction between the receptor and the ligand (LPS). These parameters are fixed
based on literature values (Shin, Lee et al. 2007) so that to correspond to a low value of
disassociation constant (KD); however, we do not have available data associated with the rate
of translation ksyn of the mRNA, R to the corresponding surface protein that describes the
dynamic evolution of synthesis of new receptors; hence this parameter is estimated so that the
dynamic profile of the surface free receptor to be qualitatively a down- regulated one; based
on the premise that under the inflammatory stimulus the surface free receptors are occupied.
The equilibrium (LPSR) complex is characterized by the binding parameters k1 and k2 as well
as by the k3 parameter that shows the rate of formation of the activated signaling DR*. The
activated signaling complex (DR*) is proportional to the formed equilibrium complex with a
rate k3 and it decays with rate k4,. Moreover, we are assuming that the essential anti –
inflammatory component will indirectly regulate the activated intracellular signaling
incorporating such a negative effect with a feedback to the production rate of DR*. In addition
to this, the non-linear Hill-type of function serves the purpose of a bistable behavior of the
system (Xiong and Ferrell 2003). Such a bistability is essential characteristic of the non – linear
dynamics of inflammation as it is suggested from various animal studies that an increase in the
dose of the inflammatory stimulus can be responsible for an overwhelming inflammatory
response. Mathematically such a switch in the stable state of the system can be achieved using
positive feedback loops (Tyson, Chen et al. 2003). What is more, the functional form of the
activated signaling (DR*) allows us to model an improper (uncontrolled) TLR4 signaling even
though the inflammatory stimulus (LPS) has been completely eliminated from the system
(Feterowski, Emmanuilidis et al. 2003). At the transcriptional response level the convoluted
activated signal (DR*) indirectly stimulates the production rate of the essential pro-
inflammatory response (P) which quantitatively is expressed by the linear function (HP, DR

*).
We are also assuming that the energetic response variable will be responsible for more
inflammation (HP, E) (Protti and Singer 2007). The essential anti-inflammatory signaling
component is assumed to inhibit the production rate of the pro-inflammatory transcriptional
signature. The essential anti-inflammatory signal (A) is stimulated by the activated pro-
inflammatory response (HA, P) as well as by the other inflammatory component which is the
energetic response (HA, E) and it decays with rate Kout,A. The energetic variable (E) is
stimulated by the pro-inflammatory response (P) and we are also assuming that the crucial anti-
inflammatory component (A) counter-regulates both the inflammatory components which are
the pro-inflammation and the energetic response of the system. We recently demonstrated
(Foteinou, Calvano et al. 2007) that this indirect model properly captures the onset and
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resolution of inflammation but it also predicts a number of responses outside the range of
parameter estimation. This justifies the fundamental assumptions that established the
functional relationships between the individual components that define the architecture and
interactions of the constitutive disease model.

One of the key assumptions underpinning our modeling effort is that intracellular signaling
cascades activating inflammation-specific transcriptional responses can be mathematically
approximated by the lumped variable DR*. In order to introduce a finer level of detail in our
computational model of inflammation we wish to deconvolute and interpret mechanistically
the combined signal DR*. In the original model, DR* represent the event activating the
transcription of the proinflammatory response (P) which in turn initiates the inflammatory
response. As such, DR* is the signal activating, i.e., transcriptionally regulating, the expression
of the pro-inflammatory genes. Thus, the mechanistic equivalent of DR* would be the signaling
cascade that activates pro-inflammatory transcription factors controlling the expression of the
pro-inflammatory genes. Although a large family of transcription factors is known to be
involved in inflammation, we focus on a particular family, NFkB, for two reasons. First, the
nuclear factor kB family is known to be a major player in the inflammatory response
(Saklatvala, Dean et al. 2003) and as such it has been widely studied as a major contributor.
Second, the fact the NFkB plays an important role has led to the development of numerous,
independent, modeling approaches in order to quantify the expected response of its signaling
cascade (Hoffmann, Levchenko et al. 2002). Therefore, we introduce the NFkB signal
transduction cascade as the prototypical module for initiating and controlling the expression
of pro-inflammatory genes. Numerous signaling molecules and reactions participate in the
NFkB signaling pathway (Hoffmann, Levchenko et al. 2002). However, sensitivity analysis
(Ihekwaba, Broomhead et al. 2004) demonstrated that the activity of NFkB is maximally
modulated by a reduced set of basis signaling molecules (IKK, IKBa and NFkB). As such
(Krishna, Jensen et al. 2006) proposed a minimal model of NFkB that accounts for the
propensity of oscillations in the dynamic behavior of NF-kB activity. However, instead of
simulating the kinase activity as a constant parameter and incorporating saturation degradation
rates as discussed in (Krishna, Jensen et al. 2006), we propose to model IKK as a transient
signal. Thus, the cellular surface complex (LPSR) induces the activation of kinase activity
(IKK) with a rate k3, while being eliminated with a rate k4. As it previously state, the non-
linear function of Hill-type, is an essential functional form in order to achieve a bistability
response in the dynamics of the probed system (Rifkind 1967; Lehmann, Freudenberg et al.
1987; Tschaikowsky, Schmidt et al. 1998; Kerschen, Fernandez et al. 2007). In chronic
inflammatory diseases several cytokines might be responsible for perpetuating and amplifying
the inflammatory reaction through the critical node (IKK) (Barnes and Karin 1997). Therefore,
we simulate such an interaction by the presence of a positive feedback loop in the kinetics of
kinase (IKK) activity. Assuming that NFkBn serves as a percentage of its total cytoplasmic
concentration the term (1-NFkBn) denotes the available free cytoplasmic concentration of NF-
kB and herein the nuclear concentration (NFkBn) and nuclear activity are used interchangeably.
The import rate of cytoplasmic NF-kB into the nucleus depends on the availability of its free
cytoplasmic concentration (1- NFkBn) stimulated by the kinase activity (IKK). However, its
degradation rate depends on the presence of its primary inhibitor (IkBa) as the latter retrieves
nuclear concentrations of NFkB by forming an inactive complex in the cytoplasmic region
(Carmody and Chen 2007). The dynamics of the gene transcript of IKBa (mRNA, IKBa) are
characterized by a zero order production rate (Kin,IkBa) and a first order degradation rate
(Kout,IkBa) which is stimulated by NFkB (Barnes and Karin 1997). The protein inhibitor IkBa,
is the product of translation of its gene transcript (mRNA,IkBa) and it degrades at a rate kI,2
which is stimulated by the kinase activity (IKK). Based on the premise that IkBa forms a
complex with the available cytoplasmic NF-kB mathematically we expressed is as the product
(1-NFkBn) IkBa. From the modeling point of view, in order to achieve a zero steady state for
the protein inhibitor IkBa we need the additional negative term –kI,1. Moreover, at the
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transcriptional response level, instead of assuming the active signaling complex, DR* manifests
the effect of LPS on the cellular response level, we assume that the nuclear activity of NF-kB
(NFkBn) serves as the “active signal” that indirectly stimulates the production rate of the
essential pro-inflammatory response (P).

In our model, the activation of NF-kB signaling module serves as the representative signaling
controller of the pro-inflammatory genetic switch underpinning the manifestation of
transcriptional responses. An inadequate control of its transcriptional activity is associated with
the culmination of a hyperinflammatory response making it a desired therapeutic target. Anti-
inflammatory drugs such as corticosteroids play a critical role in modulating the progression
of inflammation and significant prior research efforts have attempted to elucidate the
mechanisms driving corticosteroid activity (Jusko 1994; DuBois, Xu et al. 1995; Xu, Sun et
al. 1995; Sun, DuBois et al. 1998; Almon, DuBois et al. 2002; Almon, Dubois et al. 2005;
Almon, Lai et al. 2005; Almon, DuBois et al. 2007) Such studies simulate the
pharmacogenomic effect of glucocorticoids at the transcriptional level taking their mechanistic
(signaling) action into account (Ramakrishnan, DuBois et al. 2002; Jusko, DuBois et al.
2005). In an attempt to demonstrate the capability of our model to generate a behavior via
interacting modules, we opt to integrate the regulatory signaling information with the anti-
inflammatory mechanism of corticosteroids, as putative controllers of inflammation. As such,
we will explore means of modulating the activity of NFkB through the use of corticosteroids
which would allow us to perform computational tests that perturb the trajectory of the non-
linear inflammatory signal.

The corticosteroid intervention envelope consists of a set of elementary interactions that
involve: (i) the binding of the corticosteroid drug (D) to its cytosolic receptor (GR), (ii) the
subsequent formation of the drug-receptor complex (DR), (iii) the translocation of the cytosolic
complex to the nucleus (DR(N)) while a portion of nuclear receptor (DR(N)) is recycled and
finally (iv) the auto-regulation of the gene transcript of the glucocorticoid receptor (Rm). All
the interacting components and modules that constitute the NFkB dependent physicochemical
model of inflammation are shown in Figure 5 together with their quantitative representation.
Corticosteroids manifest their anti-inflammatory properties by various mechanisms and due to
our inability to model all the possible mediators that may be affected by steroids, we will
explore their effect towards up-regulation of critical anti-inflammatory proteins including IkBa
(Auphan, DiDonato et al. 1995) and IL-10 (Barber, Coyle et al. 1993).
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(5)

Qualitative Assessment of the Physicochemical Inflammation Model
The proposed integrated model of systemic inflammation prior to any intervention is
characterized by the dynamic state of eleven (11) variables that seek to describe the propagation
of LPS to the transcriptional response level incorporating biological information in the form
of regulatory signaling. In our computational model the host restores homeostasis without any
external perturbation and a self-limited inflammatory response involves the successful
elimination of the inflammatory stimulus within the first 2hr post-endotoxin administration
while followed by a subsequent resolution within 24hr, Figure 6.

Standard parameter estimation techniques are applied in order to evaluate appropriately model
parameters reproducing the available experimental data. These data include transcriptional
profiles of endotoxin receptor (mRNA,R), the primary NFkB inhibitor (mRNA,IkBa) as well
as signatures that reflect essential biological processes such as pro-inflammation (P), anti-
inflammation (A) and cellular energetics (E). The dynamic profiles of all the elements that
constitute the NFkB dependent host response model are presented in Figure 6. Regarding the
parameters associated with the active corticosteroid envelope, prior studies (Jin, Almon et al.
2003) provide values for these kinetics in an attempt to simulate in rat liver the effect of a single
intravenous administration of corticosteroids. Driven by the premise that in our model the
pharmacokinetics of the drug has not been calibrated, we opt to maintain the same values as
outlined in Jin et al. However, of critical importance in mathematical modeling are validation
strategies that establish a communication link between the model and the real-world process.
Therefore, the appropriateness of the proposed model is assessed by performing computational
tests that not only reproduce available data, but rather qualitatively predict and modulate
uncontrolled responses, Figure 7.

The pre-exposure of the host to controlled levels of inflammatory agents affects the eventual
fate of the response. It has been observed that repeated doses of endotoxin insult might lead to
a less vigorous innate immune response, a phenomenon known as endotoxin tolerance. A
“rapid” tolerance scenario can be induced when the system is pre-exposed to a low endotoxin
challenge for between 3–6hr, Figure 7(A). Such preconditioning results in an attenuation of
the inflammatory response characterized by a less vigorous immune response coupled with the
decreased peak level of the pro-inflammatory response. Prior experimental studies (van der
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Poll 1996) have documented that concentrations of the particular pro-inflammatory mediator
(TNF-a) were decreased profoundly ex vivo at 3hr – 6 hr after in vivo endotoxin administration;
while by 24 hrs the endotoxin tolerance had completely resolved. However, the magnitude and
timing of pre-exposure of repeated doses of endotoxin are key determinants for discriminating
between tolerance and potentiation effects. As such, the successive administration of low doses
of LPS may perturb system’s homeostasis towards the progression of an unresolved
inflammatory response, Figure 7(B). In Figure 7(C) we simulate the situation in which the
initial levels of endotoxin are increased as this would probably constitute the most obvious
irreversible disturbance. As such we observe that when the concentration of LPS is strong
enough the response does not abate. Such a computational result validates the general concept
that it is the host response to endotoxin rather than the stimulus itself that yields the progression
of an uncontrolled inflammatory response. Since we have demonstrated the ability of our model
to simulate the trajectory of an unconstrained inflammatory response, the potential of our model
is also demonstrated through systematic perturbations that intend to modulate the inflammatory
response through corticosteroid based intervention strategies. For example, regardless of the
implications of high LPS concentration, the pre-exposure of the system into hypercortisolemia
“reprograms” the dynamics of the system in favor of a balanced immune response, Figure 7
(D). In order to simulate such perturbation we assumed that the active drug signal, DR(N)
favors the transcriptional synthesis of IkBa (mRNA,IkBa). However, qualitatively similar
behavior is observed if the DR(N) signal potentiates humoral anti-inflammatory mechanisms
such as IL-10 signaling (A model component). In particular the system is pre-exposed to
corticosteroids for 6hr in a continuous infusion and the intrinsic dynamics of the system are
effectively modulated towards reversibility in the progression rate. Clinically a preoperative
administration of corticosteroids is further discussed for alleviating surgical stress (Sato, Koeda
et al. 2002) placing emphasis on intervention strategies that target the inflammatory response
at an early dynamic stage (e.g. transcriptional level). In addition to this, due to the physiological
role of steroids in the immune system researchers put significant effort in understanding more
about the cytokine dynamics under hypercortisolemia (Richardson, Rhyne et al. 1989; Hawes,
Rock et al. 1992; Barber, Coyle et al. 1993; Barnes and Karin 1997; Bornstein and Briegel
2003; Keh, Boehnke et al. 2003). These studies have focused on elucidating the in vivo
responses to endotoxin (LPS) when there is an exposure of human subjects to hypercortisolemia
for various durations of time. Thus, in (Barber, Coyle et al. 1993) normal human subjects are
exposed to glucocorticoid infusion concurrent with and before the endotoxin challenge.
Experimental measurements of cytokines and hemodynamic parameters suggest the integral
role of hypercortisolemia in modulating the cytokine network when administered few hours,
e.g. 6hr, before the main endotoxin challenge. Qualitatively, our in silico results lie in general
agreement with prior experimental studies thus paving the way for improving the working
feedback loop between “dry” and “wet” experiments.

Conclusions
In this paper we discussed the potential of systems-based approaches to develop appropriate
network models. We presented two such models in the context of the inflammatory response.
The first was related to the development of networks of interacting transcription factors and
the second model was related to the development of a multi-scale model of interacting modules
of the host inflammatory response. We demonstrated how data analysis, coupled with
optimization can yield significant insights and enable the generation of testable hypotheses. In
concluding this short review we would like to argue that possibly a very significant, and often
overlooked, success of systems-based research is that through the universal language of
mathematics and the opportunity of formalizing and quantifying, albeit with significant
simplifications often times, abstract concepts of complex physiological phenomena, it has
managed to establish communication bridges and made it acceptable to bring together scientists
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from a variety of fields with a common goal: to develop a better understanding of a
physiological condition. However, these efforts are just a mere beginning.

This review aimed at just revealing some of the interesting problems and identify some of the
fascinating opportunities and challenges for systems research in biology and physiology.
Despite numerous supportive preclinical studies, most generated hypotheses related to the
management and treatment of human inflammation have failed clinical testing(Lowry and
Calvano 2008). Even the improved capacity to acquire quantitative data in a clinical setting
has generally failed to improve outcomes in acutely ill patients. These failures were often
attributed to invoking the single variable assumption in a clinical scenario. It has been argued
that prediction of the behavior of complex diseases derived from local insights may be
impossible(Clermont, Bartels et al. 2004). A systems-oriented mathematical modeling
approach, as a means of dynamic knowledge representation, offers a promising possibility of
improving the interpretation of quantitative, patient-specific information and help to better
target therapy(An 2008; An, Faeder et al. 2008; Vodovotz, Csete et al. 2008; Foteinou, Calvano
et al. 2008 (accepted for publication)). However, such models are typically complex and
nonlinear, which precludes the identification of unique parameters and states of the model that
best represent available data(Zenker, Rubin et al. 2007). It has been argued, however, that the
ill-posedness of the inverse problem in quantitative physiology is not merely a technical
obstacle, but rather reflects clinical reality and, when addressed adequately in the solution
process, provides a novel link between mathematically described physiological knowledge and
the clinical concept of differential diagnoses. A thorough account of the state of the art in
computational models of inflammation were presented at the 2007 International Conference
on Complexity in the Acute Illness (ICCAI) and advances summarized in(Vodovotz,
Constantine et al. 2009).
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Figure 1.
(top) trivial overlapping bicluster definition. Although C defines a legitimate biclusters it
should be eliminated; (bottom) Modeling the exclusion of trivial biclusters (Yang, Foteinou et
al. 2007).
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Figure 2.
(top left) Identified biclusters; (top right) Infered interaction; (bottom) Network
representations. More details are discussed in (Yang, Foteinou et al. 2007)
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Figure 3.
Deconvoluted interaction dynamics among the elements of the TF network, (Yang, Yarmush
et al. 2009)
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Figure 4.
Notional modeling framework of LPS response. Upon binding to its receptor a signaling
cascade is activated which leads to the up/down-regulation of numerous pro- and anti-
inflammatory genes
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Figure 5.
A network of interacting components associated with the induction and control of the
inflammatory response (Foteinou, Calvano et al. 2009; Foteinou, Calvano et al. 2009)

Foteinou et al. Page 27

Comput Chem Eng. Author manuscript; available in PMC 2010 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Dynamic profiles of the elements that constitute the physicochemical model of human
inflammation (Foteinou, Calvano et al. 2009)
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Figure 7.
Model predictions of unresolved responses (Foteinou, Calvano et al. 2009)
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Table 1

Transcription factors and activated reported genes

Soluble Factor Reporter

Stimulus Gene

TNF-a NFkB

IL1 AP1

IL6 STAT3

INF-g ISRE

DEX GRE
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