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Mouse population-guided resequencing reveals that
variants in CD44 contribute to acetaminophen-induced
liver injury in humans
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Interindividual variability in response to chemicals and drugs is a common regulatory concern. It is assumed that
xenobiotic-induced adverse reactions have a strong genetic basis, but many mechanism-based investigations have not been
successful in identifying susceptible individuals. While recent advances in pharmacogenetics of adverse drug reactions
show promise, the small size of the populations susceptible to important adverse events limits the utility of whole-genome
association studies conducted entirely in humans. We present a strategy to identify genetic polymorphisms that may
underlie susceptibility to adverse drug reactions. First, in a cohort of healthy adults who received the maximum rec-
ommended dose of acetaminophen (4 g/d 3 7 d), we confirm that about one third of subjects develop elevations in serum
alanine aminotransferase, indicative of liver injury. To identify the genetic basis for this susceptibility, a panel of 36
inbred mouse strains was used to model genetic diversity. Mice were treated with 300 mg/kg or a range of additional
acetaminophen doses, and the extent of liver injury was quantified. We then employed whole-genome association analysis
and targeted sequencing to determine that polymorphisms in Ly86, Cd44, Cd59a, and Capn8 correlate strongly with liver
injury and demonstrated that dose-curves vary with background. Finally, we demonstrated that variation in the
orthologous human gene, CD44, is associated with susceptibility to acetaminophen in two independent cohorts. Our
results indicate a role for CD44 in modulation of susceptibility to acetaminophen hepatotoxicity. These studies dem-
onstrate that a diverse mouse population can be used to understand and predict adverse toxicity in heterogeneous human
populations through guided resequencing.

[Supplemental material is available online at http://www.genome.org.]

Adverse reactions, such as liver injury, are prominent reasons for

cessation of drug testing in clinical trials, restrictions on drug use,

and the withdrawal of approved drugs (Shenton et al. 2004). Ad-

verse reactions remain a significant safety concern since they oc-

cur at low rates, often undetectable in standard-sized clinical trials,

and are not foreseen through traditional in vitro and animal safety

testing paradigms (Larrey 2000). While it is widely recognized that

better preclinical models are required to enable accurate prediction

and identification of xenobiotic-induced toxicity (Collins et al.

2008), few experimental paradigms exist that provide preclinical

population-wide testing.

The promise of personalized medicine and the accumulat-

ing knowledge of human genomic variation serve as potent cata-

lysts for pharmacogenetics research (Ingelman-Sundberg 2008).

Polymorphisms within genes encoding xenobiotic metaboliz-

ing enzymes and major histocompatibility complex proteins are

promising genetic biomarkers that may predict the efficacy of drug

treatment or identify individuals at risk of adverse reactions

(Lanfear and McLeod 2007; Tomalik-Scharte et al. 2008). However,

only a limited number of potentially useful biomarkers have

been identified thus far. Furthermore, current research into phar-

macogenetic biomarkers is largely focused on human studies

where only a limited number of positive associations between
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a polymorphism and adverse drug reaction have been reproduced

in independent cohorts.

For the past century, the mouse has been the most widely

used model system for studying human disease and related phe-

notypes, often in ways that are not directly possible in humans

(Paigen 2003). The major mouse genetic resource used for associ-

ation studies of complex polygenic traits is the Laboratory Strain

Diversity Panel (LSDP) (Paigen and Eppig 2000). Recent rese-

quencing of 15 mouse inbred strains and the analysis of their

polymorphism architecture (Roberts et al. 2007) have shown that

LSDP contains as many or more single nucleotide polymorphisms

(SNPs) than estimated to be present in humans, and minor allele

frequency distribution in the LSDP is larger than that present in

man. Thus, we postulated that a panel of inbred mouse strains can

be used to model the phenotypic variation within the human

population and to uncover susceptibility factors for drug-induced

toxicities, thereby shortening the path to the discovery of phar-

macogenetic biomarkers.

In this study, we tested this approach by investigating the

genetic causes of variation in the hepatotoxicity of acetamino-

phen (N-acetyl-p-aminophenol). More than a third of all cases in-

volving acute liver failure in the Unite States are due to overdose

of this widely available medication (Lee 2003); about half of these

cases are unintentional or involve chronic ingestion (Kaplowitz

2005). In addition, it has been estimated that 10% of patients

experiencing liver failure due to acetaminophen were taking rec-

ommended doses of acetaminophen (Lee 2007). Liver injury due

to acetaminophen is a complex phenotype, requiring accumula-

tion of its reactive metabolite, N-acetyl-p-benzoquinone imine

(NAPQI), covalent binding to cellular proteins, oxidative stress,

and hepatocellular necrosis, as well as an imbalance between

protective and injurious cytokines (James et al. 2005; Jaeschke and

Bajt 2006). A recent placebo-controlled clinical study revealed that

about a third of healthy adult volunteers who were administered

the maximum therapeutic dose of acetaminophen (4 g/d for 14 d)

exhibited transient, asymptomatic elevations in serum alanine

aminotransferase (ALT) levels that were greater than three times

the upper limit of normal (Watkins et al. 2006), indicating liver

toxicity. Acetaminophen represents an intriguing model compound

for pharmacogenetic studies, because, while subjects taking ther-

apeutic doses of the drug exhibit transient serum ALT elevations,

the drug has a good safety profile in long-term use (Kuffner et al.

2006). The same pharmacogenetic factors that predispose a person

to transient low-dose ALT elevations may be responsible for de-

creasing that individual’s hepatotoxic susceptibility threshold

at higher doses. For these reasons, acetaminophen is an ideal

compound for the validation of a human-to-mouse-to-human ap-

proach in pharmacogenetic research.

Results

Variability in acetaminophen-induced liver injury in humans

To confirm a prior report of differential sensitivity to acetamino-

phen hepatotoxicity among healthy human volunteers (Watkins

et al. 2006), an independent cohort of 59 healthy subjects was

enrolled in a double-blind, placebo-controlled study in which 49

received the maximum recommended therapeutic dose of acet-

aminophen (4 g/d for 7 d) and 10 subjects were randomly assigned

to placebo. Elevations in ALT greater than 1.5-fold of individual

baseline values were observed for 69% (34/49) of subjects re-

ceiving acetaminophen (Fig. 1; Supplemental Table 1) and values

exceeding twofold baseline were observed in 37% (18/49), con-

firming that some healthy subjects experience mild liver injury in

response to therapeutic doses of acetaminophen. In each subject,

a 1.5-fold cut-off was confirmed to represent significant (P > 0.05)

elevation in ALT from baseline by linear modeling. Interestingly,

31% (15/49) did not demonstrate ALT elevations greater than 1.5-

fold of baseline and showed no meaningful differences from the

placebo-control group (N = 10, P = 0.42). ALT levels were at base-

line levels in all subjects 14 d after cessation of the treatment

(Supplemental Table 1). Elevations in serum ALT correlate well

with other markers of liver injury (e.g., alpha glutathione-

S-transferase), in studies of acetaminophen-induced hepatotoxic-

ity (Supplemental Fig. 1).

Differences in liver injury in mice following acetaminophen
exposure

To determine whether genetic factors influence acetaminophen-

associated liver toxicity, a panel of 36 inbred mouse strains was

selected to represent the genetic variation present within humans

(Beck et al. 2000). Liver toxicity was assessed at 4 and 24 h after

administration of an acute dose (300 mg/kg) of acetaminophen.

Hepatic necrosis was histologically quantified 24 h after treat-

ment, and a dramatic interstrain variation in liver damage, ex-

emplified by a characteristic centrilobular necrosis, was observed

(Fig. 2A,B). CAST/EiJ mice were most resistant as they sustained no

liver necrosis or alterations in serum ALT, while B6C3F1/J mice,

which are commonly used to evaluate chemical toxicity, were the

most sensitive strain.

Serum ALT levels were measured at 4 and 24 h post-dosing

(Fig. 2D,E). A Pearson correlation of 0.77 between serum ALT 24 h

post-dosing with acetaminophen and extent of liver necrosis was

noted, confirming that serum ALT is a good indirect marker for

liver injury. However, comparison between ALT level at 4 and 24 h

post-dosing shows that it may be difficult to predict injury out-

come from ALT measured at early time points following acet-

aminophen doses. These data suggest that there are genetic factors

that may independently affect the timing of acetaminophen-

induced hepatocellular injury and ALT release.

It is well accepted that acetaminophen hepatotoxicity

depends on metabolic activation, hepatic glutathione depletion,

and protein binding of NAPQI as initiating events. However, it is

not known whether variability in glutathione levels and drug

metabolism enzymes contribute to differential toxicity outcomes

between individuals. Therefore, we quantified the ratio of reduced

Figure 1. Maximum serum ALT fold change measured in human vol-
unteers taking daily oral doses of acetaminophen. The peak ALT fold
change over baseline reached over the course of treatment by each
subject in the UNC cohort is shown. Subjects were considered responders
(N = 34) if peak serum ALT reached greater than 1.5-fold (line) higher
than the subject’s baseline value.
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to oxidized glutathione in livers from mice sacrificed 4 h post-

dosing, a time when acetaminophen-induced glutathione deple-

tion is still robust (Mitchell et al. 1973). There was no correlation

between either reduced (Fig. 2C) or total (data not shown) gluta-

thione pool at 4 h and liver necrosis at 24 h post-dosing, sug-

gesting that liver glutathione is not a

sensitive biomarker for predicting inju-

ry outcome across individuals. Similarly,

protein levels of cytochrome p450 2E1

(CYP2E1), CYP1A2, catalase, and gluta-

thione S-transferase pi (GSTP1) in liver

microsomes from those mice sacrificed at

24 h did not correlate with acetamino-

phen-induced liver necrosis, or with se-

rum ALT levels across individual strains

(Supplemental Table 5).

Interindividual differences in phar-

macokinetics of acetaminophen were

found to be not correlated with liver in-

jury in the previous study of acetamin-

ophen hepatotoxicity among healthy

human volunteers (Watkins et al. 2006).

To investigate the interstrain differences

in metabolism of acetaminophen, we se-

lected five strains (LP/J, C57BL/6J, DBA/

2J, NZW/LacJ, and C3H/HeJ) from our

panel based on the differences in sensi-

tivity to acetaminophen-induced liver

necrosis (Fig. 2A). The pharmacokinetics

of the parent compound was assessed

over a 6-h period following a bolus dose

of 50 or 300 mg/kg by oral gavage using

the area under the curve (AUC) (Fig. 3).

After the 50 mg/kg dose, no differences

between strains were observed (Fig. 3A).

After the 300 mg/kg dose, LP/J mice

showed a significantly different profile in

exposure to acetaminophen (Fig. 3B).

Despite the fact that metabolism of

acetaminophen at high doses does vary

between strains, this observation is in-

sufficient to explain interindividual dif-

ferences in liver injury in mice, similar to

that in humans, since susceptible strains

have a much lower plasma exposure to

acetaminophen than the resistant strains.

Representative mouse strains were

selected from across the hepatic injury

gradient to examine whether genetic var-

iation also affects the dose-response. We

classified each strain into one of three

groups by the degree of necrosis ob-

served 24 h following administration of

300 mg/kg acetaminophen. Representa-

tive nonresponder (mean necrosis score

less than 15%), mid-responder (mean

necrosis score 15%–50%), and high-

responder (mean necrosis score >50%)

strains were tested at additional doses

ranging from 30–1200 mg/kg (N = 4).

Markedly different dose-response curves

in response to acetaminophen were ob-

served (Fig. 2F). High-responder strains CBA/J, DBA/2J, and

B6C3F1/J and the mid-responder strain C57BL10/J have signifi-

cant elevations in serum ALT at 24 h post-dosing with a 200 mg/kg

dose. However, the high-responder strain C3H/HeJ and low-

responder strain NOD/LtJ had no observable adverse response

Figure 2. Response to the acute dose of acetaminophen in a panel of mouse strains. (A) Represen-
tative photomicrographs (1003) of the hematoxylin and eosin-stained sections of left liver lobe of mice
24 h after dosing with acetaminophen (300 mg/kg). (B) Liver necrosis score (mean 6 SE, n = 3–4/strain)
in mice treated with acetaminophen (300 mg/kg) for 24 h. (C) Serum ALT levels (mean 6 SE)
in acetaminophen-treated mice sacrificed 24 h after dosing. (D) Serum ALT levels (mean 6 SE) in
acetaminophen-treated mice sacrificed 4 h post-dosing. (E) Liver reduced glutathione (ratio between
acetaminophen- and vehicle-treated animals in each strain, mean 6 SE) 4 h post-dosing. ( ) Strains
with no data. (F ) Dose-response to acetaminophen-induced liver injury as measured by ALT release (n =
4/strain, mean 6 SE) at 24 h after treatment.
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below 300 mg/kg. Of particular interest is strain CAST/EiJ, in

which comparably small elevations in ALT were observed only at

600, 900, or 1200 mg/kg.

Identification of candidate genes for sensitivity
to acetaminophen-induced liver injury

To uncover polymorphisms associated with sensitivity to acet-

aminophen toxicity, we performed haplotype-associated mapping

utilizing a dense SNP map (McClurg et al. 2006). Association

analyses were performed with mouse serum ALT levels for 4 h (Fig.

4A) and 24 h (Fig. 4B) post-dosing. Because the genomic intervals

with the greatest computed association with toxicity contained

several genes (Table 1), we selected candidate genes that could be

reasonably linked to the propagation of oxidative- or immune-

mediated stress responses following acetaminophen exposure. We

chose Cd44, Cd59a, Ly86, Cat, and Capn8 as likely candidate genes

responsible for strain-specific liver injury.

A 300- to 800-bp region from each gene that contained either

known nonsynonymous coding SNPs or polymorphisms in in-

tronic splice site regions was selected for resequencing. Also in-

cluded in the analysis was Cyp2e1, which codes for a primary

enzyme known to metabolize acetaminophen to its reactive me-

tabolite, NAPQI (Gonzalez 2005). Ly86, Cd44, and Cd59a contain

polymorphisms that, within the mouse diversity panel, correlate

well with the degree of ALT release (P < 0.05) (Table 2). The Capn8

gene, which was implicated in the 24-h ALT phenotype genome

scan, was found to have a nonsynonymous coding SNP that is

highly correlative with 24-h ALT measurements (P = 7.39 3 10�5).

The polymorphisms selected for genotyping in Cat or Cyp2e1 were

not correlative with markers of liver injury.

Mouse genes associated with acetaminophen-induced liver
injury translate to humans

To evaluate the human relevance of the susceptibility genes

identified in mice, we tested if polymorphisms in orthologous

genes correlate with interindividual variability in acetaminophen

toxicity in humans. We sequenced 300- to 650-bp regions of

CD44, CD59, CAPN10 (human ortholog of mouse Capn8), and

LY86 that included SNPs reported by the HapMap Project (http://

www.hapmap.org) as having a minimal r 2 of 0.8 and a minor allele

frequency greater than 0.05. Genomic DNA from two inde-

pendent human cohorts were available for these experiments:

a UNC cohort reported here and the Purdue Pharma cohort

(Watkins et al. 2006).

Within the UNC cohort, we observed an association between

an individual’s genotype at a CD44 SNP (rs1467558) and the ele-

vation in serum ALT reached during the 14-d study (P = 0.02) (Fig.

5A). The polymorphism is nonsynonymous, encoding an amino

acid change from an isoleucine (C allele) to a threonine (T allele)

residue in the CD44 protein. In order to test whether this

Figure 3. Plasma AUC of acetaminophen (mean 6 SE) measured across
strains for 6 h post-dosing with 50 mg/kg (i.g.) (A) or 300 mg/kg (i.g.) (B)
following an overnight fast. Asterisk indicates significant differences be-
tween strains by the Tukey post-hoc test.

Figure 4. Haplotype association mapping of acetaminophen-induced
liver injury in the mouse. Serum ALT at 4 h (A) and 24 h (B) after acet-
aminophen (300 mg/kg) treatment was used to identify genomic inter-
vals significantly associated with liver injury. Peaks (numbered, see Table
1) indicate a significant logP association score at each 3-SNP marker
window. Marker colors indicate chromosome number across the mouse
genome.
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association is replicable, we evaluated DNA from 76 subjects en-

rolled in the Purdue Pharma cohort. Because the duration of acet-

aminophen administration was 14 d in the Purdue Pharma cohort

(vs. 7 d in the UNC cohort), data analysis was limited to the first 7

d of treatment. Within the Purdue Pharma cohort, a C/T genotype

at the same CD44 SNP (rs1467558) was also found to be associated

with ALT elevations during treatment (P = 0.01) (Fig. 5B). When

the two cohorts were combined, the association was more signif-

icant (P = 0.002) (Fig. 5C). The Cohen’s d effect size (0.44) indicates

that the SNP has a moderate effect on the toxicity outcome fol-

lowing acetaminophen exposure. Interestingly, the allele effect

size in almost identical within the mouse strain panel (0.42).

Table 1. Genomic regions identified by haplotype-associated mapping in inbred mouse strains

Phenotype Peak Genome position (Mb) Genes in region

4-h ALT 1 Chr 2: 102.08-106.96 Trim44, E430002G05Rik, Slc1a2, Cd44, Pdhx, Apip, Ehf,
BC016548, Elf5, Cat, Abtb2, Nat10, Gpiap1, Lmo2,
4931422A03Rik, Fbxo3, Cd59b, Cd59a, A930018P22Rik,
D430041D05Rik, Hipk3, Cstf3, Tcp11l1, AV216087, Qser1,
Prrg4, Ccdc73, Ga17, Wt1, 0610012H03Rik, Rcn1, Pax6, Elp4,
Immp1l, Zcsl3, 4732421G10Rik, Mpped2, 2700007P21Rik, Fshb

2 Chr 3: 126.439–26.844 Ank2
3 Chr 4: 141.531–43.578 Prdm2, Pdpn, Lrrc38, Pramel1, 4732496O08Rik, Oog4,

BC080695, Pramel5, Pramel4, Oog3
4 Chr 6: 123.795–24.766 V2r1b, Cd163, Pex5, Clstn3, C1rl, C1r, Oact5, Emg1, Phb2,

Ptpn6, Grcc10, Atn1
5 Chr 13: 36.862–37.022 Ly86
6 Chr 17: 5.598–5.655 Zdhhc14

24-h ALT 7 Chr 1: 182.602–82.719 Capn8
7 Chr 1: 189.550–89.735 Prox1
8 Chr 2: 127.489–27.580 Bub1, 1500011K16Rik
9 Chr 4: 124.084–24.395 Utp11l, Fhl3, Sf3a3, Inpp5b, Mtf1, Yrdc, Gm50, Epha10, Cdca8,

9930104L06Rik
10 Chr 5: 97.392–97.681 Prdm8, Fgf5, 1700007G11Rik
11 Chr 7: 86.492–86.594 No known genes

Genes highlighted in bold were selected for sequence analysis.

Table 2. Sequence analysis of polymorphisms within candidate mouse regions

Gene
Genomic
location Genotype

No. of
Strains

4-h ALT
(mean 6 SE)

4-h ALT
P-value

24-h ALT
(mean 6 SE)

24-h ALT
P-value

Cyp2E1 135176451 T 2 1304 6 619 0.4733 8205 6 3128 0.6972
C 22 1822 6 323 0.4733 6355 6 756 0.6972

Catalase 103162120 T 3 149 6 52 0.2527 5381 6 1430 0.2842
C 3 1239 6 409 0.2527 1683 6 928 0.2842
A 9 2563 6 693 0.2527 7578 6 1401 0.2842
deletion 11 1704 6 466 0.2527 5718 6 1057 0.2842

103162021 C 1 3271 6 1373 0.2527 8463 6 3202 0.7456
T 2 50 6 7 0.2527 5272 6 1873 0.7456
deletion 23 1817 6 351 0.2527 5790 6 759 0.7456

Lymphocyte
antigen 86

36798778 G 7 785 6 245 0.0024 4455 6 1126 0.2842

A 21 2465 6 388 0.0024 6724 6 823 0.2842
36798990 C 10 780 6 192 0.0012 5062 6 954 0.3201

A 18 2674 6 430 0.0012 6722 6 892 0.3201

CD44 antigen 102693730 C 6 4731 6 1110 0.0180 9283 6 1773 0.2508
G 22 1309 6 234 0.0180 5232 6 734 0.2508

102693564 G 14 3058 6 593 0.0176 7535 6 1121 0.2842
A 14 1140 6 270 0.0176 4991 6 888 0.2842

CD59a antigen 103896673 T 12 1342 6 399 0.0488 5287 6 868 0.3201
A 16 2716 6 451 0.0488 6964 6 1022 0.3201

103896938 T 12 1342 6 399 0.0488 5287 6 868 0.3201
C 16 2716 6 451 0.0488 6964 6 1022 0.3201

Calpain 8 182615475 T 3 3161 6 952 0.2853 7793 6 2660 0.6877
C 25 1953 6 337 0.2853 5963 6 713 0.6877

182615494 C 2 1302 6 652 0.2853 5509 6 1485 0.7221
T 26 2171 6 339 0.2853 6255 6 756 0.7221

182615696 A 2 852 6 550 0.0963 2095 6 461 7.39 3 10�5

G 26 2204 6 339 0.0963 6458 6 744 7.39 3 10�5

P-values < 0.05 are in bold. Underlined locations indicate nonsynonymous changes.

Genetics of acetaminophen toxicity

Genome Research 1511
www.genome.org



To further assess the functional relevance of this finding to

acetaminophen-induced liver injury in mice and humans, we

performed experiments in Cd44-null mice and performed in silico

prediction of the effect of the amino acid substitution resulting

from the polymorphism at CD44 SNP rs1467558. Indeed, Cd44-

null mice exhibit significantly greater liver injury 24 h following

administration of acetaminophen (300 mg/kg) compared with

their wild-type (C57BL/6J) counterparts (i.e., the mean liver ne-

crosis 6 SE was 40% 6 4% for the wild type and 61% 6 7% in the

Cd44-null). Furthermore, the structural ramification of the change

from isoleucine (C allele) to threonine (T allele) in the human

CD44 protein due to SNP rs1467558 was predicted in silico to be

possibly damaging to the function of the protein due to the po-

tential creation of a cavity within a buried site (with a PolyPhen

PSIC score difference between the variant proteins of 1.711).

A polymorphism within CAPN10 (rs3749166) displayed

a trend across both cohorts in which individuals having the G/A

allele tended to be more sensitive to acetaminophen-induced ALT

elevations in the first 7 d of treatment (Fig. 5D–F). While the trend

remained consistent across sample populations, the data were

only marginally significant when analyzed in the combined

cohorts (P = 0.045). It is interesting to note that while rs3749166

is a synonymous coding SNP, it is a tag SNP for rs2975766, a

nonsynonymous polymorphism that alters coding from iso-

leucine to valine.

There was no correlation between increased serum ALT and

genotyped polymorphisms within the CD59 (rs10538602) or LY86

(rs5874047) genes in the data collected. There was also no statistical

differencebetweensensitivity toacetaminophenandgenotypewhen

all pairs of gene–gene interactions were examined (data not shown).

Discussion
One of the major reasons that efficacious drugs fail to advance

through late stages of development, or are removed or restricted after

entering the marketplace, is because of rare adverse health events

that were not predicted using current preclinical testing paradigms

(Ingelman-Sundberg 2008). Consequently, being able to identify

which drugs cause, and more importantly which individuals are

likely to develop, adverse reactions is a major challenge preventing

informed deployment of new medicines. The experimental ap-

proach we describe here, using acetaminophen as a model com-

pound, bypasses the limitations of humans-only pharmacogenetics

studies by showing that a population of mouse strains can be used to

predict genetic biomarkers of toxicity sensitivity.

A traditional genome-wide pharmacogenetic investigation

(Nelson et al. 2008) into the genetic factors linked to the liver

toxicity of acetaminophen would require a much larger number of

individuals due to greatly reduced power associated with P-value

correction in whole-genome SNP analyses. Conversely, a so-called

‘‘candidate gene’’ analysis (Kindmark et al. 2007) may be equally

challenging due to the complexity of the mechanism of action of

acetaminophen (Kaplowitz 2005). We instead narrowed the set of

potential gene targets by first utilizing haplotype-associated

mapping to determine significant genetic loci. Interestingly, well-

characterized genes known to be essential for acetaminophen

toxicity did not correlate with liver injury in the panel of mouse

strains. While a priori knowledge of the toxicant’s mode of action

can be useful in the selection of genes for follow-up analysis,

validation of susceptibility-modulating genes in the laboratory is

essential. By using this approach, the candidate susceptibility

genes identified through genetic studies in the mouse translated

to two independent human cohorts despite small numbers of in-

dividuals available.

It is noteworthy that the top candidate genes suggested by

the analysis of the inbred mouse strains are related to the immune

response, and not to metabolism and detoxification of acetamin-

ophen. The traditional view on the mechanisms of toxicity, the

approach widely utilized to predict individual responses to xeno-

biotics, would imply that metabolism of acetaminophen to the

reactive electrophile NAPQI and/or detoxification of the latter by

glutathione conjugation should explain, at least to a considerable

degree, the variability in responses. However, no apparent corre-

lation between levels of major metabolizing enzymes, glutathi-

one, or acetaminophen plasma exposure in select strains and liver

injury was observed in the mouse population. Similarly, in several

cytokine knockout mouse models of acetaminophen toxicity,

the sensitivity to liver necrosis due to acetaminophen was largely

independent of covalent binding of NAPQI to proteins or gluta-

thione depletion (Kaplowitz 2005). Furthermore, we found no

correlation with sensitivity for polymorphisms in the genes

encoding catalyses or cytochrome P450 2E1, implying that varia-

tion at these key mediators of acetaminophen toxicity cannot

explain differential susceptibility to acetaminophen. This con-

clusion does not refute the molecular mechanism of APAP toxicity

via bioactivation by CYP2E1. In contrast, our data form a basis by

which we show that the end outcome of the toxicity response is

not directly correlative with interindividual differences in the

basic metabolism of acetaminophen. This indicates that other

Figure 5. Polymorphisms in CD44 (A–C) and CAPN10 (D–F ) associated
with susceptibility to acetaminophen-induced liver injury in humans. Data
from UNC (A,D), Purdue Pharma (B,C) and a combined cohort (C,F) are
shown. Average mean (6SE) serum ALT per genotype is plotted for each
matching study day.
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cellular processes leading to tissue injury, in addition to metabo-

lism and pathways-involved cell damage, are involved in final

determination of liver necrosis following treatment with acet-

aminophen. This raises a critical distinction between genes

(enzymes/proteins) that are essential mediators of toxicity but that

do not functionally vary (i.e., CYP2E1) and those whose activity or

function may vary considerably among individuals and determine

susceptibility to toxicity (i.e., CD44, see below).

While events downstream of the consumption of hepatic

intracellular glutathione are not as well described as those up-

stream of acetaminophen metabolism, these downstream events

have been shown to be a major mediator of the toxicity response.

Indeed, the presence of inflammatory mediators released from

nonparenchymal cells in the liver, including interleukin (IL)6

(James et al. 2003), IL10 (Bourdi et al. 2007), interferon-gamma

(Ishida et al. 2002), and tumor necrosis factor-alpha (Gardner et al.

2002), have been shown to affect liver sensitivity to acetamino-

phen. Furthermore, neutrophil-mediated necrosis (Liu et al. 2006)

and Kupffer cell recruitment (Ju et al. 2002) have also been im-

plicated as important factors in progression of liver injury; how-

ever, their precise role and timing of involvement are debated

(Knight and Jaeschke 2004; Jaeschke 2006).

Our data support the notion that variation in immune re-

sponse may be the most critical of the complex events that de-

termine susceptibility to acetaminophen toxicity since a number

of candidates from this pathway were significantly associated with

strain-specific injury in response to acetaminophen. Within the

mouse diversity panel, ALT release at 4 h was shown to be affected

by polymorphisms in lymphocyte antigen 86 (Ly86, also known as

MD-1), CD44 antigen (Cd44), and CD59a antigen (Cd59a), which

are involved in B-cell responsiveness to lipopolysaccharide, lym-

phocyte adhesion and activation, and regulation of complement

deposition, respectively. Subtle, transient alterations in immuno-

genic signaling during acetaminophen toxicity may also play

a role in the development of idiosyncratic toxicities in an in-

dividual; however, more data are needed to fully characterize this

relationship.

Capn8, a gene identified by association mapping of the 24-h

ALT phenotype, was the only nonimmune gene found to be as-

sociated with sensitivity to acetaminophen (an exonic A-to-G base

change). This observation is intriguing given that calpain released

from necrotic hepatocytes has been associated with the pro-

gression of acetaminophen-induced liver injury (Limaye et al.

2003). In addition, calpastatin, a specific inhibitor of calpain, was

recently shown to play a role in attenuating liver injury and in-

creasing survival of mice following an acute dose (Limaye et al.

2006).

The ability of the panel of mouse strains to predict sensitivity

to acetaminophen-induced liver injury in humans was supported

by sequencing of the orthologous genes positively associated

with liver injury in mice. Consistent with the data in the mouse

population, we found CD44 to be a marker of sensitivity in two

independent human cohorts. The genotypes at CD44 allowed par-

titioning of subjects based upon susceptibility to acetaminophen-

induced hepatic toxicity and implicate variation in immunogenic

cell surface antigens as potential mediators of acetaminophen

sensitivity. It is noteworthy that heterozygous (C/T) individuals

are more susceptible, since (1) in silico prediction of the effect of

this nonsynonymous coding SNP suggests a disruption in the

protein function and (2) Cd44-null mice are more susceptible to

liver necrosis due to acetaminophen. These data are intriguing

given that Cd44-deficient mice exhibit greater liver injury at 24 h

following administration of another classic hepatotoxicant, car-

bon tetrachloride (Kimura et al. 2008). Interestingly, inflam-

matory response to carbon tetrachloride was considerably shifted

in the Cd44-deficient mice compared with wild type (C57BL/6

mice), an effect that may be mediated by temporal differences in

liver NFKB activity. Therefore, it is possible that variations in CD44

may significantly affect liver necrosis through effects on leuko-

cyte signaling via cytokine modulation. However, owing to the

many physiologic and pathologic roles of CD44 isoforms in vivo

(Rouschop et al. 2006), including cell–cell matrix interaction,

lymphocyte extravasation, wound healing, scar formation, cell

migration, and the binding and presentation of growth factors,

the precise mechanistic role of this gene in conferring sensi-

tivity to acetaminophen-induced ALT elevations remains to be

determined.

Collectively, our results indicate that the use of an inbred

mouse strain panel is a valuable tool for evaluating drug safety and

for the development of biomarkers to prescreen individuals prior

to therapeutic drug treatment with potential toxicities. The iden-

tification of the genes associated with differential susceptibility to

toxicity in a preclinical phase, exemplified by the finding that

CD44 may be involved in modulation of susceptibility to acet-

aminophen hepatotoxicity, has potential to focus pharmacoge-

netics research, overcome the challenges of small human cohorts,

and shorten the validation period. The data acquired with this

model could therefore be influential in the analysis of individual

risk to pharmaceutical agents and may facilitate both drug de-

velopment and human safety endeavors. One of the limitations of

this approach, however, lies in the uncertainties of whether the

associations between SNPs and modest increases in ALT observed

with ‘‘therapeutic’’ doses would also predict individuals suscepti-

ble to more severe toxicity seen in overdose situations. Additional

research into the mechanisms of predisposition to minor forms of

liver injury and those that lead to more severe organ damage is

needed.

Methods

Acetaminophen administration to human subjects
Study volunteers were healthy men and women between 18–45 yr
of age and were not receiving concomitant medications. Pre-
screening was performed 14 d prior to admission to confirm
health as previously described (Watkins et al. 2006). Written in-
formed consent was obtained and approved by the UNC In-
stitutional Review Board. Participants remained in the General
Clinical Research Center at UNC for the duration of the 14-d
study, during which they received a controlled diet of stan-
dardized whole-food meals. From days 4–11, subjects received
either Extra Strength Tylenol (two 500-mg tablets of acetamino-
phen, commercial product; n = 49) or placebo (n = 10) orally every
6 h. Blood samples were taken at 08:00 h daily prior to dosing and
analyzed for aspartate aminotransferase (AST), ALT (Supplemental
Table 1), total bilirubin, alkaline phosphatase, blood urea nitro-
gen, alpha-glutathione-S-transferase, and creatinine. Dosing was
discontinued for subjects in whom serum ALT or AST reached
more than three times the upper limit of normal. Baseline serum
ALT was determined as the mean of the values obtained prior to
the start of dosing. Blood was collected from study participants for
DNA isolation. Leukocytes were isolated from whole blood and
DNA was extracted using the Qiagen MidiPrep kit (Qiagen) and
the manufacturer’s protocol. The protocol for the Purdue Pharma
L.P. cohort study has been as previously described (Watkins et al.
2006).
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Acetaminophen administration to mice

Toxicity studies

Male mice aged 7–9 wk were obtained from the Jackson Laboratory
(Bar Harbor, ME) and housed in polycarbonate cages on Sani-
Chips irradiated hardwood bedding (P.J. Murphy Forest Products
Corp.). Animals were fed NTP-2000 diet (Zeigler Brothers, Inc.)
and water ad libitum, and maintained on a 12-h light-dark cycle.
Mice utilized in this study comprised 36 inbred strains that are
priority strains for the Mouse Phenome Project (Bogue and Grubb
2004); B6C3F1/J hybrid mice were also used. Care of mice followed
institutional guidelines under a protocol approved by the In-
stitutional Animal Care and Use Committee. Mice were singly
housed and fasted 18 h prior to intragastric dosing with acet-
aminophen (30, 100, 300, 600, 900, or 1200 mg/kg; 99% pure,
Sigma-Aldrich) or vehicle (0.5% methyl 2-hydroxyethyl cellulose,
Sigma-Aldrich) with a dosing volume of 10 mL/kg for all doses.
Dosing was performed at the same time of day throughout the
study to avoid diurnal variability (Boorman et al. 2005). Feed was
returned 3 h after dosing, and animals were sacrificed at 4 or 24 h.
Blood was collected from the vena cava from animals anesthetized
with Nembutal (100 mg/kg intraperitoneally [i.p.], Abbott Labo-
ratories). Samples were assayed for serum markers by standard
enzymatic procedures (Bergmeyer et al. 1986). Livers were quickly
excised, and sections of the left lobes were placed in 10% phos-
phate buffered formalin for histological analyses. Remaining liver
was snap-frozen in liquid nitrogen and stored at -80°C.

Metabolism studies

Adult (aged 7 wk) male mice of strains C3H/HeJ, C57BL/6J, DBA/
2J, LP/J, and NZW/LacJ were selected for metabolism studies based
on their wide variation of liver toxicity observed at 24 h following
a 300 mg/kg dose. Mice were fed overnight prior to dosing with 50
mg/kg or fasted for 18 h overnight prior to dosing with 300 mg/kg
APAP (N = 5 per strain per dose). Blood (45 mL) was collected se-
quentially from the tail artery at 0, 0.5, 1, 2, and 3 h post-dosing.
At 6 h, blood was collected by exsanguination at 6 h for metabolite
measurements and ALT quantification and livers collected as de-
scribed above.

CD44 knockout studies

To test the ability of CD44 protein to modulate APAP toxicity,
Cd44 knockout mice, B6.Cg-Cd44tm1Hbg/J (N = 6), and wild-type
mice, C57BL/6J (N = 6), were dosed with 300 mg/kg APAP (i.g.) and
sacrificed at 24 h as described in toxicity studies. An interim blood
sample was collected from the tail artery at 4 h post-dosing for ALT
analysis.

Glutathione quantification

Liver samples were homogenized in borax/EDTA (pH 9.3) solu-
tion, precipitated with chloroform, and centrifuged. Reduced
glutathione was derived in liver samples, calibration standards,
and QC samples with 7-fluorobenzofurazan-4-sulfonic acid am-
monium salt (SBD-F) and analyzed by HPLC with fluorescence
detection. Concentrations were calculated using the glutathione
response, sample weights, and a regression line constructed from
the concentrations and peak responses of the appropriate cali-
bration standards (Sigma).

Enzyme-linked immunosorbent assay

Quantitative determinations of protein levels of CYP2E1, CYP1A2,
catalase, and GST was performed using microsomes isolated from

the left liver lobe using the Protein Detector ELISA kit protocol
(KPL, Inc.) as detailed by the manufacturer.

Liver histopathology

Formalin-fixed liver specimens were embedded in paraffin, and
5-mm sections cut in duplicate were applied to each slide. Sections
were stained with hematoxylin and eosin (H&E), and liver injury
was blindly scored. Necrosis was quantified by a point counting
technique (Mouton 2002). Scores were independently verified by
a veterinary pathologist.

Serum metabolite quantification

The procedure used for the quantification of APAP is similar to that
previously described (Shenton et al. 2004). Briefly, a reversed-
phase HPLC assay was used, in which the mobile phase was 5%
acetonitrile and 95% 5 mM sodium sulfate/20 mM potassium
phosphate buffer (pH 3.2) with a flow rate of 1.2 mL/min. Re-
tention times for APAP and the internal standard (3-acet-
amidophenol) detected at 254 nm were 7 and 11 min, respectively.
APAP standard (Sigma) and the internal standard were spiked into
naive mouse plasma to generate standard curves. The AUC was
calculated by using noncompartmental analysis in WinNonLin
(Pharsight). A one-way ANOVA with a Tukey post-hoc test was used
to assess significantly different AUC across mouse strains (P < 0.05).

Haplotype association mapping

Haplotype association mapping was performed as described else-
where (Schadt et al. 2003). Briefly, haplotype associations were
calculated using a modified F-statistic based upon genotype–
phenotype pairings at each 3-SNP window across a 160,000 SNP
data set. Strains excluded from association analysis due to lack of
polymorphism data were C57BL/10J, NZO/H1LtJ, and P/J. LogP
values were plotted across the mouse genome using SpotFire
(SpotFire, Inc.). Genomic intervals with association scores greater
than 3.5 were considered significant. Genes within significant
intervals were identified with the BioMart feature of Ensembl us-
ing NCBI build 36 (http://www.ensembl.org).

Genetic sequence analysis

For sequence-based genotyping, primers were designed using
Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.
cgi). For each reaction, genomic DNA from pedigreed mice or from
human subjects was diluted to 100 ng/mL and 1 mL of DNA mixed
with 12.5 mL of 23 PCR Master Mix (Promega), 2.5 mL of 10 mM
upstream primer, 2.5 mL of 10 mM downstream primer, and 6.5 mL
of nuclease-free water. Primers and conditions used for PCR
amplification are listed in Supplemental Table 2. Sequencing re-
actions were performed using the ABI PRISM BigDye Termina-
tor version 1.1 Cycle Sequencing Ready Reaction Kit with the
AmpliTaq DNA polymerase (Applied Biosystems). DNA was se-
quenced on a 3730 DNA analyzer (Applied Biosystems) (Supple-
mental Table 3). Sequence alignment was performed using Vector
NTI version 10 (Invitrogen).

Statistical methods

Phenotypic values were expressed as the mean 6 SEM. Differences
were considered significant when the P-value < 0.05. The Pearson
correlation coefficient was used to determine correlation between
phenotypic toxicity measurements. Genotype-to-phenotype asso-
ciations for the mouse data were performed using the two-tailed
Student’s t-test (for two variants) or ANOVA (for more than two
variants). P-values were adjusted for multiple comparisons using
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a false discovery rate of 5% for the total number of SNPs (12)
genotyped in mouse strains across the six genes. P-value correc-
tions were performed using the p.adjust module in R (version
2.4.0). P-value corrections were not determined for the four SNPs
tested in humans due to the small number of gene comparisons.
Correlation between human genotype data for CD44 and phe-
notypic responses across time was performed in Partek Genomics
Suite (Partek) using repeated measures ANOVA across the first 7 d
of acetaminophen treatment in which the study centers were
coded as random effects (Supplemental Table 4). In determin-
ing the effect of genotype to influence serum ALT increases in
acetaminophen-treated human subjects during treatment at UNC,
we excluded subjects whose average baseline was 55 U/L or greater
(four subjects). Elevations in ALT level within each subject were
analyzed using linear modeling in which the daily ALT of each
individual over time was assigned a P-value using lm{stats} module
in R (version 2.4.0). To determine the effect size of a SNP, we cal-
culated the Cohen’s d effect size; we used either the serum ALT
measured at 24 h for mouse Cd44 or the maximum serum ALT
measured within the first 7 d of Tylenol dosing for human CD44.
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